06bbbba109
register name in the Intel docs
817 lines
26 KiB
C++
817 lines
26 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: dma.cc,v 1.23 2002-09-28 13:36:32 vruppert Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2002 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
|
|
#include "bochs.h"
|
|
#define LOG_THIS bx_dma.
|
|
|
|
#define DMA_MODE_DEMAND 0
|
|
#define DMA_MODE_SINGLE 1
|
|
#define DMA_MODE_BLOCK 2
|
|
#define DMA_MODE_CASCADE 3
|
|
|
|
|
|
|
|
bx_dma_c bx_dma;
|
|
#if BX_USE_DMA_SMF
|
|
#define this (&bx_dma)
|
|
#endif
|
|
|
|
|
|
bx_dma_c::bx_dma_c(void)
|
|
{
|
|
put("DMA");
|
|
settype(DMALOG);
|
|
}
|
|
|
|
bx_dma_c::~bx_dma_c(void)
|
|
{
|
|
BX_DEBUG(("Exit."));
|
|
}
|
|
|
|
unsigned
|
|
bx_dma_c::registerDMA8Channel(
|
|
unsigned channel,
|
|
void (* dmaRead)(Bit8u *data_byte),
|
|
void (* dmaWrite)(Bit8u *data_byte),
|
|
const char *name
|
|
)
|
|
{
|
|
if (channel > 3) {
|
|
BX_PANIC(("registerDMA8Channel: invalid channel number(%u).", channel));
|
|
return 0; // Fail.
|
|
}
|
|
if (bx_dma.s[0].chan[channel].used) {
|
|
BX_PANIC(("registerDMA8Channel: channel(%u) already in use.", channel));
|
|
return 0; // Fail.
|
|
}
|
|
BX_INFO(("channel %u used by %s", channel, name));
|
|
bx_dma.h[channel].dmaRead8 = dmaRead;
|
|
bx_dma.h[channel].dmaWrite8 = dmaWrite;
|
|
bx_dma.s[0].chan[channel].used = 1;
|
|
return 1; // OK.
|
|
}
|
|
|
|
unsigned
|
|
bx_dma_c::registerDMA16Channel(
|
|
unsigned channel,
|
|
void (* dmaRead)(Bit16u *data_word),
|
|
void (* dmaWrite)(Bit16u *data_word),
|
|
const char *name
|
|
)
|
|
{
|
|
if ((channel < 4) || (channel > 7)) {
|
|
BX_PANIC(("registerDMA16Channel: invalid channel number(%u).", channel));
|
|
return 0; // Fail.
|
|
}
|
|
if (bx_dma.s[1].chan[channel & 0x03].used) {
|
|
BX_PANIC(("registerDMA16Channel: channel(%u) already in use.", channel));
|
|
return 0; // Fail.
|
|
}
|
|
BX_INFO(("channel %u used by %s", channel, name));
|
|
channel &= 0x03;
|
|
bx_dma.h[channel].dmaRead16 = dmaRead;
|
|
bx_dma.h[channel].dmaWrite16 = dmaWrite;
|
|
bx_dma.s[1].chan[channel].used = 1;
|
|
return 1; // OK.
|
|
}
|
|
|
|
unsigned
|
|
bx_dma_c::unregisterDMAChannel(unsigned channel)
|
|
{
|
|
Boolean ma_sl = (channel > 3);
|
|
bx_dma.s[ma_sl].chan[channel & 0x03].used = 0;
|
|
BX_INFO(("channel %u no longer used", channel));
|
|
return 1;
|
|
}
|
|
|
|
unsigned
|
|
bx_dma_c::get_TC(void)
|
|
{
|
|
return BX_DMA_THIS TC;
|
|
}
|
|
|
|
|
|
void
|
|
bx_dma_c::init(bx_devices_c *d)
|
|
{
|
|
unsigned c, i, j;
|
|
BX_DEBUG(("Init $Id: dma.cc,v 1.23 2002-09-28 13:36:32 vruppert Exp $"));
|
|
|
|
BX_DMA_THIS devices = d;
|
|
|
|
/* 8237 DMA controller */
|
|
|
|
for (i=0; i < 2; i++) {
|
|
for (j=0; j < 4; j++) {
|
|
BX_DMA_THIS s[i].DRQ[j] = 0;
|
|
BX_DMA_THIS s[i].DACK[j] = 0;
|
|
}
|
|
}
|
|
BX_DMA_THIS HLDA = 0;
|
|
BX_DMA_THIS TC = 0;
|
|
|
|
// 0000..000F
|
|
for (i=0x0000; i<=0x000F; i++) {
|
|
BX_DMA_THIS devices->register_io_read_handler(this, read_handler,
|
|
i, "DMA controller");
|
|
BX_DMA_THIS devices->register_io_write_handler(this, write_handler,
|
|
i, "DMA controller");
|
|
}
|
|
|
|
// 00081..008F
|
|
for (i=0x0081; i<=0x008F; i++) {
|
|
BX_DMA_THIS devices->register_io_read_handler(this, read_handler,
|
|
i, "DMA controller");
|
|
BX_DMA_THIS devices->register_io_write_handler(this, write_handler,
|
|
i, "DMA controller");
|
|
}
|
|
|
|
// 000C0..00DE
|
|
for (i=0x00C0; i<=0x00DE; i+=2) {
|
|
BX_DMA_THIS devices->register_io_read_handler(this, read_handler,
|
|
i, "DMA controller");
|
|
BX_DMA_THIS devices->register_io_write_handler(this, write_handler,
|
|
i, "DMA controller");
|
|
}
|
|
|
|
|
|
for (i=0; i<2; i++) {
|
|
for (c=0; c<4; c++) {
|
|
BX_DMA_THIS s[i].chan[c].mode.mode_type = 0; // demand mode
|
|
BX_DMA_THIS s[i].chan[c].mode.address_decrement = 0; // address increment
|
|
BX_DMA_THIS s[i].chan[c].mode.autoinit_enable = 0; // autoinit disable
|
|
BX_DMA_THIS s[i].chan[c].mode.transfer_type = 0; // verify
|
|
BX_DMA_THIS s[i].chan[c].base_address = 0;
|
|
BX_DMA_THIS s[i].chan[c].current_address = 0;
|
|
BX_DMA_THIS s[i].chan[c].base_count = 0;
|
|
BX_DMA_THIS s[i].chan[c].current_count = 0;
|
|
BX_DMA_THIS s[i].chan[c].page_reg = 0;
|
|
BX_DMA_THIS s[i].chan[c].used = 0;
|
|
}
|
|
}
|
|
BX_DMA_THIS s[1].chan[0].used = 1; // cascade channel in use
|
|
BX_INFO(("channel 4 used by cascade"));
|
|
}
|
|
|
|
void
|
|
bx_dma_c::reset(unsigned type)
|
|
{
|
|
reset_controller(0);
|
|
reset_controller(1);
|
|
}
|
|
|
|
void
|
|
bx_dma_c::reset_controller(unsigned num)
|
|
{
|
|
BX_DMA_THIS s[num].mask[0] = 1;
|
|
BX_DMA_THIS s[num].mask[1] = 1;
|
|
BX_DMA_THIS s[num].mask[2] = 1;
|
|
BX_DMA_THIS s[num].mask[3] = 1;
|
|
BX_DMA_THIS s[num].command_reg = 0;
|
|
BX_DMA_THIS s[num].status_reg = 0;
|
|
BX_DMA_THIS s[num].request_reg = 0;
|
|
BX_DMA_THIS s[num].temporary_reg = 0;
|
|
BX_DMA_THIS s[num].flip_flop = 0;
|
|
}
|
|
|
|
// index to find channel from register number (only [0],[1],[2],[6] used)
|
|
Bit8u channelindex[7] = {2, 3, 1, 0, 0, 0, 0};
|
|
|
|
|
|
// static IO port read callback handler
|
|
// redirects to non-static class handler to avoid virtual functions
|
|
|
|
Bit32u
|
|
bx_dma_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
|
|
{
|
|
#if !BX_USE_DMA_SMF
|
|
bx_dma_c *class_ptr = (bx_dma_c *) this_ptr;
|
|
|
|
return( class_ptr->read(address, io_len) );
|
|
}
|
|
|
|
/* 8237 DMA controller */
|
|
Bit32u
|
|
bx_dma_c::read( Bit32u address, unsigned io_len)
|
|
{
|
|
#else
|
|
UNUSED(this_ptr);
|
|
#endif // !BX_USE_DMA_SMF
|
|
|
|
Bit8u retval;
|
|
Bit8u channel;
|
|
Boolean ma_sl;
|
|
|
|
if (io_len > 1) {
|
|
BX_ERROR(("io read from address %08x, len=%u",
|
|
(unsigned) address, (unsigned) io_len));
|
|
return 0xff;
|
|
}
|
|
|
|
BX_DEBUG(("read addr=%04x", (unsigned) address));
|
|
|
|
#if BX_DMA_FLOPPY_IO < 1
|
|
/* if we're not supporting DMA/floppy IO just return a bogus value */
|
|
return(0xff);
|
|
#endif
|
|
|
|
switch (address) {
|
|
case 0x00: /* DMA-1 current address, channel 0 */
|
|
case 0x02: /* DMA-1 current address, channel 1 */
|
|
case 0x04: /* DMA-1 current address, channel 2 */
|
|
case 0x06: /* DMA-1 current address, channel 3 */
|
|
case 0xc0: /* DMA-2 current address, channel 0 */
|
|
case 0xc4: /* DMA-2 current address, channel 1 */
|
|
case 0xc8: /* DMA-2 current address, channel 2 */
|
|
case 0xcc: /* DMA-2 current address, channel 3 */
|
|
ma_sl = (address >= 0xc0);
|
|
channel = (address >> (1 + ma_sl)) & 0x03;
|
|
if (BX_DMA_THIS s[ma_sl].flip_flop==0) {
|
|
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
|
|
return(BX_DMA_THIS s[ma_sl].chan[channel].current_address & 0xff);
|
|
}
|
|
else {
|
|
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
|
|
return(BX_DMA_THIS s[ma_sl].chan[channel].current_address >> 8);
|
|
}
|
|
|
|
case 0x01: /* DMA-1 current count, channel 0 */
|
|
case 0x03: /* DMA-1 current count, channel 1 */
|
|
case 0x05: /* DMA-1 current count, channel 2 */
|
|
case 0x07: /* DMA-1 current count, channel 3 */
|
|
case 0xc2: /* DMA-2 current count, channel 0 */
|
|
case 0xc6: /* DMA-2 current count, channel 1 */
|
|
case 0xca: /* DMA-2 current count, channel 2 */
|
|
case 0xce: /* DMA-2 current count, channel 3 */
|
|
ma_sl = (address >= 0xc2);
|
|
channel = (address >> (1 + ma_sl)) & 0x03;
|
|
if (BX_DMA_THIS s[ma_sl].flip_flop==0) {
|
|
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
|
|
return(BX_DMA_THIS s[ma_sl].chan[channel].current_count & 0xff);
|
|
}
|
|
else {
|
|
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
|
|
return(BX_DMA_THIS s[ma_sl].chan[channel].current_count >> 8);
|
|
}
|
|
|
|
case 0x08: // DMA-1 Status Register
|
|
case 0xd0: // DMA-2 Status Register
|
|
// bit 7: 1 = channel 3 request
|
|
// bit 6: 1 = channel 2 request
|
|
// bit 5: 1 = channel 1 request
|
|
// bit 4: 1 = channel 0 request
|
|
// bit 3: 1 = channel 3 has reached terminal count
|
|
// bit 2: 1 = channel 2 has reached terminal count
|
|
// bit 1: 1 = channel 1 has reached terminal count
|
|
// bit 0: 1 = channel 0 has reached terminal count
|
|
// reading this register clears lower 4 bits (hold flags)
|
|
ma_sl = (address == 0xd0);
|
|
retval = BX_DMA_THIS s[ma_sl].status_reg;
|
|
BX_DMA_THIS s[ma_sl].status_reg &= 0xf0;
|
|
return(retval);
|
|
break;
|
|
case 0x0d: // DMA-1: temporary register
|
|
case 0xda: // DMA-2: temporary register
|
|
ma_sl = (address == 0xda);
|
|
BX_ERROR(("DMA-%d: read of temporary register", ma_sl+1));
|
|
// Note: write to 0x0D clears temporary register
|
|
return(0);
|
|
break;
|
|
|
|
case 0x0081: // DMA-1 page register, channel 2
|
|
case 0x0082: // DMA-1 page register, channel 3
|
|
case 0x0083: // DMA-1 page register, channel 1
|
|
case 0x0087: // DMA-1 page register, channel 0
|
|
channel = channelindex[address - 0x81];
|
|
return( BX_DMA_THIS s[0].chan[channel].page_reg );
|
|
|
|
case 0x0089: // DMA-2 page register, channel 2
|
|
case 0x008a: // DMA-2 page register, channel 3
|
|
case 0x008b: // DMA-2 page register, channel 1
|
|
case 0x008f: // DMA-2 page register, channel 0
|
|
channel = channelindex[address - 0x89];
|
|
return( BX_DMA_THIS s[1].chan[channel].page_reg );
|
|
|
|
case 0x0084:
|
|
case 0x0085:
|
|
case 0x0086:
|
|
case 0x0088:
|
|
case 0x008c:
|
|
case 0x008d:
|
|
case 0x008e:
|
|
BX_DEBUG(("read: extra page register 0x%04x unsupported", (unsigned) address));
|
|
return(0);
|
|
|
|
default:
|
|
BX_ERROR(("read: unsupported address=%04x", (unsigned) address));
|
|
return(0);
|
|
}
|
|
}
|
|
|
|
|
|
// static IO port write callback handler
|
|
// redirects to non-static class handler to avoid virtual functions
|
|
|
|
void
|
|
bx_dma_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
|
|
{
|
|
#if !BX_USE_DMA_SMF
|
|
bx_dma_c *class_ptr = (bx_dma_c *) this_ptr;
|
|
|
|
class_ptr->write(address, value, io_len);
|
|
}
|
|
|
|
|
|
/* 8237 DMA controller */
|
|
void
|
|
bx_dma_c::write(Bit32u address, Bit32u value, unsigned io_len)
|
|
{
|
|
#else
|
|
UNUSED(this_ptr);
|
|
#endif // !BX_USE_DMA_SMF
|
|
Bit8u set_mask_bit;
|
|
Bit8u channel;
|
|
Boolean ma_sl;
|
|
|
|
if (io_len > 1) {
|
|
if ( (io_len == 2) && (address == 0x0b) ) {
|
|
#if BX_USE_DMA_SMF
|
|
BX_DMA_THIS write_handler(NULL, address, value & 0xff, 1);
|
|
BX_DMA_THIS write_handler(NULL, address+1, value >> 8, 1);
|
|
#else
|
|
BX_DMA_THIS write(address, value & 0xff, 1);
|
|
BX_DMA_THIS write(address+1, value >> 8, 1);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
BX_ERROR(("io write to address %08x, len=%u",
|
|
(unsigned) address, (unsigned) io_len));
|
|
return;
|
|
}
|
|
|
|
BX_DEBUG(("write: address=%04x value=%02x",
|
|
(unsigned) address, (unsigned) value));
|
|
|
|
#if BX_DMA_FLOPPY_IO < 1
|
|
/* if we're not supporting DMA/floppy IO just return */
|
|
return;
|
|
#endif
|
|
|
|
switch (address) {
|
|
case 0x00:
|
|
case 0x02:
|
|
case 0x04:
|
|
case 0x06:
|
|
case 0xc0:
|
|
case 0xc4:
|
|
case 0xc8:
|
|
case 0xcc:
|
|
ma_sl = (address >= 0xc0);
|
|
channel = (address >> (1 + ma_sl)) & 0x03;
|
|
BX_DEBUG((" DMA-%d base and current address, channel %d", ma_sl+1, channel));
|
|
if (BX_DMA_THIS s[ma_sl].flip_flop==0) { /* 1st byte */
|
|
BX_DMA_THIS s[ma_sl].chan[channel].base_address = value;
|
|
BX_DMA_THIS s[ma_sl].chan[channel].current_address = value;
|
|
}
|
|
else { /* 2nd byte */
|
|
BX_DMA_THIS s[ma_sl].chan[channel].base_address |= (value << 8);
|
|
BX_DMA_THIS s[ma_sl].chan[channel].current_address |= (value << 8);
|
|
BX_DEBUG((" base = %04x",
|
|
(unsigned) BX_DMA_THIS s[ma_sl].chan[channel].base_address));
|
|
BX_DEBUG((" curr = %04x",
|
|
(unsigned) BX_DMA_THIS s[ma_sl].chan[channel].current_address));
|
|
}
|
|
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
|
|
return;
|
|
break;
|
|
|
|
case 0x01:
|
|
case 0x03:
|
|
case 0x05:
|
|
case 0x07:
|
|
case 0xc2:
|
|
case 0xc6:
|
|
case 0xca:
|
|
case 0xce:
|
|
ma_sl = (address >= 0xc2);
|
|
channel = (address >> (1 + ma_sl)) & 0x03;
|
|
BX_DEBUG((" DMA-%d base and current count, channel %d", ma_sl+1, channel));
|
|
if (BX_DMA_THIS s[ma_sl].flip_flop==0) { /* 1st byte */
|
|
BX_DMA_THIS s[ma_sl].chan[channel].base_count = value;
|
|
BX_DMA_THIS s[ma_sl].chan[channel].current_count = value;
|
|
}
|
|
else { /* 2nd byte */
|
|
BX_DMA_THIS s[ma_sl].chan[channel].base_count |= (value << 8);
|
|
BX_DMA_THIS s[ma_sl].chan[channel].current_count |= (value << 8);
|
|
BX_DEBUG((" base = %04x",
|
|
(unsigned) BX_DMA_THIS s[ma_sl].chan[channel].base_count));
|
|
BX_DEBUG((" curr = %04x",
|
|
(unsigned) BX_DMA_THIS s[ma_sl].chan[channel].current_count));
|
|
}
|
|
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
|
|
return;
|
|
break;
|
|
|
|
case 0x08: /* DMA-1: command register */
|
|
case 0xd0: /* DMA-2: command register */
|
|
ma_sl = (address == 0xd0);
|
|
if (value != 0x04)
|
|
BX_ERROR(("DMA: write to 0x%02x: value(%02xh) not 04h", address,
|
|
(unsigned) value));
|
|
BX_DMA_THIS s[ma_sl].command_reg = value;
|
|
return;
|
|
break;
|
|
|
|
case 0x09: // DMA-1: request register
|
|
case 0xd2: // DMA-2: request register
|
|
ma_sl = (address == 0xd2);
|
|
channel = value & 0x03;
|
|
BX_ERROR(("DMA-%d: write to request register (%02x)", ma_sl+1, (unsigned) value));
|
|
// note: write to 0x0d clears this register
|
|
if (value & 0x04) {
|
|
// set request bit
|
|
BX_DMA_THIS s[ma_sl].status_reg |= (1 << (channel+4));
|
|
BX_DEBUG(("DMA-%d: set request bit for channel %u", ma_sl+1, (unsigned) channel));
|
|
}
|
|
else {
|
|
// clear request bit
|
|
BX_DMA_THIS s[ma_sl].status_reg &= ~(1 << (channel+4));
|
|
BX_DEBUG(("DMA-%d: cleared request bit for channel %u", ma_sl+1, (unsigned) channel));
|
|
}
|
|
control_HRQ(ma_sl);
|
|
return;
|
|
break;
|
|
|
|
case 0x0a:
|
|
case 0xd4:
|
|
ma_sl = (address == 0xd4);
|
|
set_mask_bit = value & 0x04;
|
|
channel = value & 0x03;
|
|
BX_DMA_THIS s[ma_sl].mask[channel] = (set_mask_bit > 0);
|
|
BX_DEBUG(("DMA-%d: set_mask_bit=%u, channel=%u, mask now=%02xh", ma_sl+1,
|
|
(unsigned) set_mask_bit, (unsigned) channel, (unsigned) BX_DMA_THIS s[ma_sl].mask[channel]));
|
|
control_HRQ(ma_sl);
|
|
return;
|
|
break;
|
|
|
|
case 0x0b: /* DMA-1 mode register */
|
|
case 0xd6: /* DMA-2 mode register */
|
|
ma_sl = (address == 0xd6);
|
|
channel = value & 0x03;
|
|
BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type = (value >> 6) & 0x03;
|
|
BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement = (value >> 5) & 0x01;
|
|
BX_DMA_THIS s[ma_sl].chan[channel].mode.autoinit_enable = (value >> 4) & 0x01;
|
|
BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type = (value >> 2) & 0x03;
|
|
BX_DEBUG(("DMA-%d: mode register[%u] = %02x", ma_sl+1,
|
|
(unsigned) channel, (unsigned) value));
|
|
return;
|
|
break;
|
|
|
|
case 0x0c: /* DMA-1 clear byte flip/flop */
|
|
case 0xd8: /* DMA-2 clear byte flip/flop */
|
|
ma_sl = (address == 0xd8);
|
|
BX_DEBUG(("DMA-%d: clear flip/flop", ma_sl+1));
|
|
BX_DMA_THIS s[ma_sl].flip_flop = 0;
|
|
return;
|
|
break;
|
|
|
|
case 0x0d: // DMA-1: master clear
|
|
case 0xda: // DMA-2: master clear
|
|
ma_sl = (address == 0xda);
|
|
BX_DEBUG(("DMA-%d: master clear", ma_sl+1));
|
|
// writing any value to this port resets DMA controller 1 / 2
|
|
// same action as a hardware reset
|
|
// mask register is set (chan 0..3 disabled)
|
|
// command, status, request, temporary, and byte flip-flop are all cleared
|
|
reset_controller(ma_sl);
|
|
return;
|
|
break;
|
|
|
|
case 0x0e: // DMA-1: clear mask register
|
|
case 0xdc: // DMA-2: clear mask register
|
|
ma_sl = (address == 0xdc);
|
|
BX_DEBUG(("DMA-%d: clear mask register", ma_sl+1));
|
|
BX_DMA_THIS s[ma_sl].mask[0] = 0;
|
|
BX_DMA_THIS s[ma_sl].mask[1] = 0;
|
|
BX_DMA_THIS s[ma_sl].mask[2] = 0;
|
|
BX_DMA_THIS s[ma_sl].mask[3] = 0;
|
|
control_HRQ(ma_sl);
|
|
return;
|
|
break;
|
|
|
|
case 0x0f: // DMA-1: write all mask bits
|
|
case 0xde: // DMA-2: write all mask bits
|
|
ma_sl = (address == 0xde);
|
|
BX_DEBUG(("DMA-%d: write all mask bits", ma_sl+1));
|
|
BX_DMA_THIS s[ma_sl].mask[0] = value & 0x01; value >>= 1;
|
|
BX_DMA_THIS s[ma_sl].mask[1] = value & 0x01; value >>= 1;
|
|
BX_DMA_THIS s[ma_sl].mask[2] = value & 0x01; value >>= 1;
|
|
BX_DMA_THIS s[ma_sl].mask[3] = value & 0x01;
|
|
control_HRQ(ma_sl);
|
|
return;
|
|
break;
|
|
|
|
case 0x81: /* DMA-1 page register, channel 2 */
|
|
case 0x82: /* DMA-1 page register, channel 3 */
|
|
case 0x83: /* DMA-1 page register, channel 1 */
|
|
case 0x87: /* DMA-1 page register, channel 0 */
|
|
/* address bits A16-A23 for DMA channel */
|
|
channel = channelindex[address - 0x81];
|
|
BX_DMA_THIS s[0].chan[channel].page_reg = value;
|
|
BX_DEBUG(("DMA-1: page register %d = %02x", channel, (unsigned) value));
|
|
return;
|
|
break;
|
|
|
|
case 0x89: /* DMA-2 page register, channel 2 */
|
|
case 0x8a: /* DMA-2 page register, channel 3 */
|
|
case 0x8b: /* DMA-2 page register, channel 1 */
|
|
case 0x8f: /* DMA-2 page register, channel 0 */
|
|
/* address bits A16-A23 for DMA channel */
|
|
channel = channelindex[address - 0x89];
|
|
BX_DMA_THIS s[1].chan[channel].page_reg = value;
|
|
BX_DEBUG(("DMA-2: page register %d = %02x", channel + 4, (unsigned) value));
|
|
return;
|
|
break;
|
|
|
|
case 0x0084:
|
|
case 0x0085:
|
|
case 0x0086:
|
|
case 0x0088:
|
|
case 0x008c:
|
|
case 0x008d:
|
|
case 0x008e:
|
|
BX_DEBUG(("write: extra page register 0x%04x unsupported", (unsigned) address));
|
|
return;
|
|
break;
|
|
|
|
default:
|
|
BX_ERROR(("write ignored: %04xh = %02xh",
|
|
(unsigned) address, (unsigned) value));
|
|
}
|
|
}
|
|
|
|
void
|
|
bx_dma_c::set_DRQ(unsigned channel, Boolean val)
|
|
{
|
|
Bit32u dma_base, dma_roof;
|
|
Boolean ma_sl;
|
|
|
|
if (channel > 7) {
|
|
BX_PANIC(("set_DRQ() channel > 7"));
|
|
return;
|
|
}
|
|
ma_sl = (channel > 3);
|
|
BX_DMA_THIS s[ma_sl].DRQ[channel & 0x03] = val;
|
|
if (!BX_DMA_THIS s[ma_sl].chan[channel & 0x03].used) {
|
|
BX_PANIC(("set_DRQ(): channel %d not connected to device", channel));
|
|
return;
|
|
}
|
|
channel &= 0x03;
|
|
if (!val) {
|
|
//BX_DEBUG(("bx_dma_c::DRQ(): val == 0"));
|
|
// clear bit in status reg
|
|
BX_DMA_THIS s[ma_sl].status_reg &= ~(1 << (channel+4));
|
|
|
|
control_HRQ(ma_sl);
|
|
return;
|
|
}
|
|
|
|
#if 0
|
|
BX_INFO(("mask[%d]: %02x", channel, (unsigned) BX_DMA_THIS s[0].mask[channel]));
|
|
BX_INFO(("flip_flop: %u", (unsigned) BX_DMA_THIS s[0].flip_flop));
|
|
BX_INFO(("status_reg: %02x", (unsigned) BX_DMA_THIS s[0].status_reg));
|
|
BX_INFO(("mode_type: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].mode.mode_type));
|
|
BX_INFO(("address_decrement: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].mode.address_decrement));
|
|
BX_INFO(("autoinit_enable: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].mode.autoinit_enable));
|
|
BX_INFO(("transfer_type: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].mode.transfer_type));
|
|
BX_INFO(("base_address: %04x", (unsigned) BX_DMA_THIS s[0].chan[channel].base_address));
|
|
BX_INFO(("current_address: %04x", (unsigned) BX_DMA_THIS s[0].chan[channel].current_address));
|
|
BX_INFO(("base_count: %04x", (unsigned) BX_DMA_THIS s[0].chan[channel].base_count));
|
|
BX_INFO(("current_count: %04x", (unsigned) BX_DMA_THIS s[0].chan[channel].current_count));
|
|
BX_INFO(("page_reg: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].page_reg));
|
|
#endif
|
|
|
|
BX_DMA_THIS s[ma_sl].status_reg |= (1 << (channel+4));
|
|
|
|
if ( (BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type != DMA_MODE_SINGLE) &&
|
|
(BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type != DMA_MODE_DEMAND) &&
|
|
(BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type != DMA_MODE_CASCADE) )
|
|
BX_PANIC(("set_DRQ: mode_type(%02x) not handled",
|
|
(unsigned) BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type));
|
|
|
|
dma_base = (BX_DMA_THIS s[ma_sl].chan[channel].page_reg << 16) |
|
|
(BX_DMA_THIS s[ma_sl].chan[channel].base_address << ma_sl);
|
|
if (BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement==0) {
|
|
dma_roof = dma_base + (BX_DMA_THIS s[ma_sl].chan[channel].base_count << ma_sl);
|
|
} else {
|
|
dma_roof = dma_base - (BX_DMA_THIS s[ma_sl].chan[channel].base_count << ma_sl);
|
|
}
|
|
if ( (dma_base & (0x7fff0000 << ma_sl)) != (dma_roof & (0x7fff0000 << ma_sl)) ) {
|
|
BX_INFO(("dma_base = %08x", (unsigned) dma_base));
|
|
BX_INFO(("dma_base_count = %08x", (unsigned) BX_DMA_THIS s[ma_sl].chan[channel].base_count));
|
|
BX_INFO(("dma_roof = %08x", (unsigned) dma_roof));
|
|
BX_PANIC(("request outside %dk boundary", 64 << ma_sl));
|
|
}
|
|
|
|
control_HRQ(ma_sl);
|
|
}
|
|
|
|
void
|
|
bx_dma_c::control_HRQ(Boolean ma_sl)
|
|
{
|
|
unsigned channel;
|
|
|
|
// deassert HRQ if no DRQ is pending
|
|
if ((BX_DMA_THIS s[ma_sl].status_reg & 0xf0) == 0) {
|
|
if (ma_sl) {
|
|
bx_pc_system.set_HRQ(0);
|
|
} else {
|
|
BX_DMA_THIS set_DRQ(4, 0);
|
|
}
|
|
return;
|
|
}
|
|
// find highest priority channel
|
|
for (channel=0; channel<4; channel++) {
|
|
if ( (BX_DMA_THIS s[ma_sl].status_reg & (1 << (channel+4))) &&
|
|
(BX_DMA_THIS s[ma_sl].mask[channel]==0) ) {
|
|
if (ma_sl) {
|
|
// assert Hold ReQuest line to CPU
|
|
bx_pc_system.set_HRQ(1);
|
|
} else {
|
|
// send DRQ to cascade channel of the master
|
|
BX_DMA_THIS set_DRQ(4, 1);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
bx_dma_c::raise_HLDA(void)
|
|
{
|
|
unsigned channel;
|
|
Bit32u phy_addr;
|
|
Boolean count_expired = 0;
|
|
Boolean ma_sl = 0;
|
|
|
|
BX_DMA_THIS HLDA = 1;
|
|
// find highest priority channel
|
|
for (channel=0; channel<4; channel++) {
|
|
if ( (BX_DMA_THIS s[1].status_reg & (1 << (channel+4))) &&
|
|
(BX_DMA_THIS s[1].mask[channel]==0) ) {
|
|
ma_sl = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (channel == 0) { // master cascade channel
|
|
BX_DMA_THIS s[1].DACK[0] = 1;
|
|
for (channel=0; channel<4; channel++) {
|
|
if ( (BX_DMA_THIS s[0].status_reg & (1 << (channel+4))) &&
|
|
(BX_DMA_THIS s[0].mask[channel]==0) ) {
|
|
ma_sl = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (channel >= 4) {
|
|
// wait till they're unmasked
|
|
return;
|
|
}
|
|
|
|
//BX_DEBUG(("hlda: OK in response to DRQ(%u)", (unsigned) channel));
|
|
phy_addr = (BX_DMA_THIS s[ma_sl].chan[channel].page_reg << 16) |
|
|
(BX_DMA_THIS s[ma_sl].chan[channel].current_address << ma_sl);
|
|
|
|
BX_DMA_THIS s[ma_sl].DACK[channel] = 1;
|
|
// check for expiration of count, so we can signal TC and DACK(n)
|
|
// at the same time.
|
|
if (BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement==0)
|
|
BX_DMA_THIS s[ma_sl].chan[channel].current_address++;
|
|
else
|
|
BX_DMA_THIS s[ma_sl].chan[channel].current_address--;
|
|
BX_DMA_THIS s[ma_sl].chan[channel].current_count--;
|
|
if (BX_DMA_THIS s[ma_sl].chan[channel].current_count == 0xffff) {
|
|
// count expired, done with transfer
|
|
// assert TC, deassert HRQ & DACK(n) lines
|
|
BX_DMA_THIS s[ma_sl].status_reg |= (1 << channel); // hold TC in status reg
|
|
BX_DMA_THIS TC = 1;
|
|
count_expired = 1;
|
|
if (BX_DMA_THIS s[ma_sl].chan[channel].mode.autoinit_enable == 0) {
|
|
// set mask bit if not in autoinit mode
|
|
BX_DMA_THIS s[ma_sl].mask[channel] = 1;
|
|
}
|
|
else {
|
|
// count expired, but in autoinit mode
|
|
// reload count and base address
|
|
BX_DMA_THIS s[ma_sl].chan[channel].current_address =
|
|
BX_DMA_THIS s[ma_sl].chan[channel].base_address;
|
|
BX_DMA_THIS s[ma_sl].chan[channel].current_count =
|
|
BX_DMA_THIS s[ma_sl].chan[channel].base_count;
|
|
}
|
|
}
|
|
|
|
Bit8u data_byte;
|
|
Bit16u data_word;
|
|
|
|
if (BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type == 1) { // write
|
|
// DMA controlled xfer of byte from I/O to Memory
|
|
|
|
if (!ma_sl) {
|
|
if (BX_DMA_THIS h[channel].dmaWrite8)
|
|
BX_DMA_THIS h[channel].dmaWrite8(&data_byte);
|
|
else
|
|
BX_PANIC(("no dmaWrite handler for channel %u.", channel));
|
|
|
|
BX_MEM_WRITE_PHYSICAL(phy_addr, 1, &data_byte);
|
|
|
|
BX_DBG_DMA_REPORT(phy_addr, 1, BX_WRITE, data_byte);
|
|
}
|
|
else {
|
|
if (BX_DMA_THIS h[channel].dmaWrite16)
|
|
BX_DMA_THIS h[channel].dmaWrite16(&data_word);
|
|
else
|
|
BX_PANIC(("no dmaWrite handler for channel %u.", channel));
|
|
|
|
BX_MEM_WRITE_PHYSICAL(phy_addr, 2, &data_word);
|
|
|
|
BX_DBG_DMA_REPORT(phy_addr, 2, BX_WRITE, data_word);
|
|
}
|
|
}
|
|
else if (BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type == 2) { // read
|
|
// DMA controlled xfer of byte from Memory to I/O
|
|
|
|
if (!ma_sl) {
|
|
BX_MEM_READ_PHYSICAL(phy_addr, 1, &data_byte);
|
|
|
|
if (BX_DMA_THIS h[channel].dmaRead8)
|
|
BX_DMA_THIS h[channel].dmaRead8(&data_byte);
|
|
|
|
BX_DBG_DMA_REPORT(phy_addr, 1, BX_READ, data_byte);
|
|
}
|
|
else {
|
|
BX_MEM_READ_PHYSICAL(phy_addr, 2, &data_word);
|
|
|
|
if (BX_DMA_THIS h[channel].dmaRead16)
|
|
BX_DMA_THIS h[channel].dmaRead16(&data_word);
|
|
|
|
BX_DBG_DMA_REPORT(phy_addr, 2, BX_READ, data_word);
|
|
}
|
|
}
|
|
else if (BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type == 0) {
|
|
// verify
|
|
|
|
if (!ma_sl) {
|
|
if (BX_DMA_THIS h[channel].dmaWrite8)
|
|
BX_DMA_THIS h[channel].dmaWrite8(&data_byte);
|
|
else
|
|
BX_PANIC(("no dmaWrite handler for channel %u.", channel));
|
|
}
|
|
else {
|
|
if (BX_DMA_THIS h[channel].dmaWrite16)
|
|
BX_DMA_THIS h[channel].dmaWrite16(&data_word);
|
|
else
|
|
BX_PANIC(("no dmaWrite handler for channel %u.", channel));
|
|
}
|
|
}
|
|
else {
|
|
BX_PANIC(("hlda: transfer_type 3 is undefined"));
|
|
}
|
|
|
|
if (count_expired) {
|
|
BX_DMA_THIS TC = 0; // clear TC, adapter card already notified
|
|
BX_DMA_THIS HLDA = 0;
|
|
bx_pc_system.set_HRQ(0); // clear HRQ to CPU
|
|
BX_DMA_THIS s[ma_sl].DACK[channel] = 0; // clear DACK to adapter card
|
|
if (!ma_sl) {
|
|
BX_DMA_THIS set_DRQ(4, 0); // clear DRQ to cascade
|
|
BX_DMA_THIS s[1].DACK[0] = 0; // clear DACK to cascade
|
|
}
|
|
}
|
|
}
|