Bochs/bochs/cpu/lazy_flags.cc
2007-03-18 19:29:17 +00:00

1066 lines
35 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: lazy_flags.cc,v 1.34 2007-03-18 19:29:17 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
// This array defines a look-up table for the even parity-ness
// of an 8bit quantity, for optimal assignment of the parity bit
// in the EFLAGS register
const bx_bool bx_parity_lookup[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
};
bx_bool BX_CPU_C::get_CFLazy(void)
{
unsigned cf;
BX_ASSERT((BX_CPU_THIS_PTR lf_flags_status & 0x00000f) == BX_LF_INDEX_OSZAPC);
switch (BX_CPU_THIS_PTR oszapc.instr) {
case BX_INSTR_ADD8:
cf = (BX_CPU_THIS_PTR oszapc.result_8 <
BX_CPU_THIS_PTR oszapc.op1_8);
break;
case BX_INSTR_ADD16:
cf = (BX_CPU_THIS_PTR oszapc.result_16 <
BX_CPU_THIS_PTR oszapc.op1_16);
break;
case BX_INSTR_ADD32:
cf = (BX_CPU_THIS_PTR oszapc.result_32 <
BX_CPU_THIS_PTR oszapc.op1_32);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_ADD64:
cf = (BX_CPU_THIS_PTR oszapc.result_64 <
BX_CPU_THIS_PTR oszapc.op1_64);
break;
#endif
// used only if CF = 1 when executing ADC instruction
case BX_INSTR_ADC8:
cf = (BX_CPU_THIS_PTR oszapc.result_8 <=
BX_CPU_THIS_PTR oszapc.op1_8);
break;
// used only if CF = 1 when executing ADC instruction
case BX_INSTR_ADC16:
cf = (BX_CPU_THIS_PTR oszapc.result_16 <=
BX_CPU_THIS_PTR oszapc.op1_16);
break;
// used only if CF = 1 when executing ADC instruction
case BX_INSTR_ADC32:
cf = (BX_CPU_THIS_PTR oszapc.result_32 <=
BX_CPU_THIS_PTR oszapc.op1_32);
break;
#if BX_SUPPORT_X86_64
// used only if CF = 1 when executing ADC instruction
case BX_INSTR_ADC64:
cf = (BX_CPU_THIS_PTR oszapc.result_64 <=
BX_CPU_THIS_PTR oszapc.op1_64);
break;
#endif
case BX_INSTR_SUB8:
cf = (BX_CPU_THIS_PTR oszapc.op1_8 <
BX_CPU_THIS_PTR oszapc.op2_8);
break;
case BX_INSTR_SUB16:
cf = (BX_CPU_THIS_PTR oszapc.op1_16 <
BX_CPU_THIS_PTR oszapc.op2_16);
break;
case BX_INSTR_SUB32:
cf = (BX_CPU_THIS_PTR oszapc.op1_32 <
BX_CPU_THIS_PTR oszapc.op2_32);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_SUB64:
cf = (BX_CPU_THIS_PTR oszapc.op1_64 <
BX_CPU_THIS_PTR oszapc.op2_64);
break;
#endif
// used only if CF = 1 when executing SBB instruction
case BX_INSTR_SBB8:
cf = (BX_CPU_THIS_PTR oszapc.op1_8 < BX_CPU_THIS_PTR oszapc.result_8) ||
(BX_CPU_THIS_PTR oszapc.op2_8==0xff);
break;
// used only if CF = 1 when executing SBB instruction
case BX_INSTR_SBB16:
cf = (BX_CPU_THIS_PTR oszapc.op1_16 < BX_CPU_THIS_PTR oszapc.result_16) ||
(BX_CPU_THIS_PTR oszapc.op2_16==0xffff);
break;
// used only if CF = 1 when executing SBB instruction
case BX_INSTR_SBB32:
cf = (BX_CPU_THIS_PTR oszapc.op1_32 < BX_CPU_THIS_PTR oszapc.result_32) ||
(BX_CPU_THIS_PTR oszapc.op2_32==0xffffffff);
break;
#if BX_SUPPORT_X86_64
// used only if CF = 1 when executing SBB instruction
case BX_INSTR_SBB64:
cf = (BX_CPU_THIS_PTR oszapc.op1_64 < BX_CPU_THIS_PTR oszapc.result_64) ||
(BX_CPU_THIS_PTR oszapc.op2_64==BX_CONST64(0xffffffffffffffff));
break;
#endif
case BX_INSTR_NEG8:
cf = (BX_CPU_THIS_PTR oszapc.result_8 != 0);
break;
case BX_INSTR_NEG16:
cf = (BX_CPU_THIS_PTR oszapc.result_16 != 0);
break;
case BX_INSTR_NEG32:
cf = (BX_CPU_THIS_PTR oszapc.result_32 != 0);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_NEG64:
cf = (BX_CPU_THIS_PTR oszapc.result_64 != 0);
break;
#endif
case BX_INSTR_LOGIC8:
case BX_INSTR_LOGIC16:
case BX_INSTR_LOGIC32:
case BX_INSTR_BITSCAN16:
case BX_INSTR_BITSCAN32:
#if BX_SUPPORT_X86_64
case BX_INSTR_LOGIC64:
case BX_INSTR_BITSCAN64:
#endif
cf = 0;
break;
case BX_INSTR_SAR8:
if (BX_CPU_THIS_PTR oszapc.op2_8 < 8) {
cf = (BX_CPU_THIS_PTR oszapc.op1_8 >>
(BX_CPU_THIS_PTR oszapc.op2_8 - 1)) & 0x01;
}
else {
cf = (BX_CPU_THIS_PTR oszapc.op1_8 & 0x80) > 0;
}
break;
case BX_INSTR_SHR8:
cf = (BX_CPU_THIS_PTR oszapc.op1_8 >>
(BX_CPU_THIS_PTR oszapc.op2_8 - 1)) & 0x01;
break;
case BX_INSTR_SAR16:
if (BX_CPU_THIS_PTR oszapc.op2_16 < 16) {
cf = (BX_CPU_THIS_PTR oszapc.op1_16 >>
(BX_CPU_THIS_PTR oszapc.op2_16 - 1)) & 0x01;
}
else {
cf = (BX_CPU_THIS_PTR oszapc.op1_16 & 0x8000) > 0;
}
break;
case BX_INSTR_SHR16:
case BX_INSTR_SHRD16:
cf = (BX_CPU_THIS_PTR oszapc.op1_16 >>
(BX_CPU_THIS_PTR oszapc.op2_16 - 1)) & 0x01;
break;
case BX_INSTR_SAR32:
case BX_INSTR_SHR32:
case BX_INSTR_SHRD32:
cf = (BX_CPU_THIS_PTR oszapc.op1_32 >>
(BX_CPU_THIS_PTR oszapc.op2_32 - 1)) & 0x01;
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_SAR64:
case BX_INSTR_SHR64:
case BX_INSTR_SHRD64:
cf = (BX_CPU_THIS_PTR oszapc.op1_64 >>
(BX_CPU_THIS_PTR oszapc.op2_64 - 1)) & 0x01;
break;
#endif
case BX_INSTR_SHL8:
if (BX_CPU_THIS_PTR oszapc.op2_8 <= 8) {
cf = (BX_CPU_THIS_PTR oszapc.op1_8 >>
(8 - BX_CPU_THIS_PTR oszapc.op2_8)) & 0x01;
}
else {
cf = 0;
}
break;
case BX_INSTR_SHL16:
if (BX_CPU_THIS_PTR oszapc.op2_16 <= 16) {
cf = (BX_CPU_THIS_PTR oszapc.op1_16 >>
(16 - BX_CPU_THIS_PTR oszapc.op2_16)) & 0x01;
}
else {
cf = 0;
}
break;
case BX_INSTR_SHL32:
cf = (BX_CPU_THIS_PTR oszapc.op1_32 >>
(32 - BX_CPU_THIS_PTR oszapc.op2_32)) & 0x01;
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_SHL64:
cf = (BX_CPU_THIS_PTR oszapc.op1_64 >>
(64 - BX_CPU_THIS_PTR oszapc.op2_64)) & 0x01;
break;
#endif
case BX_INSTR_IMUL8:
cf = ! ((BX_CPU_THIS_PTR oszapc.op1_8 < 0x80 &&
BX_CPU_THIS_PTR oszapc.op2_8 == 0) ||
((BX_CPU_THIS_PTR oszapc.op1_8 & 0x80) &&
BX_CPU_THIS_PTR oszapc.op2_8 == 0xff));
break;
case BX_INSTR_IMUL16:
cf = ! ((BX_CPU_THIS_PTR oszapc.op1_16 < 0x8000 &&
BX_CPU_THIS_PTR oszapc.op2_16 == 0) ||
((BX_CPU_THIS_PTR oszapc.op1_16 & 0x8000) &&
BX_CPU_THIS_PTR oszapc.op2_16 == 0xffff));
break;
case BX_INSTR_IMUL32:
cf = ! ((BX_CPU_THIS_PTR oszapc.op1_32 < 0x80000000 &&
BX_CPU_THIS_PTR oszapc.op2_32 == 0) ||
((BX_CPU_THIS_PTR oszapc.op1_32 & 0x80000000) &&
BX_CPU_THIS_PTR oszapc.op2_32 == 0xffffffff));
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_IMUL64:
cf = ! ((BX_CPU_THIS_PTR oszapc.op1_64 < BX_CONST64(0x8000000000000000) &&
BX_CPU_THIS_PTR oszapc.op2_64 == 0) ||
((BX_CPU_THIS_PTR oszapc.op1_64 & BX_CONST64(0x8000000000000000)) &&
BX_CPU_THIS_PTR oszapc.op2_64 == BX_CONST64(0xffffffffffffffff)));
break;
#endif
case BX_INSTR_MUL8:
cf = (BX_CPU_THIS_PTR oszapc.op2_8 != 0);
break;
case BX_INSTR_MUL16:
cf = (BX_CPU_THIS_PTR oszapc.op2_16 != 0);
break;
case BX_INSTR_MUL32:
cf = (BX_CPU_THIS_PTR oszapc.op2_32 != 0);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_MUL64:
cf = (BX_CPU_THIS_PTR oszapc.op2_64 != 0);
break;
#endif
default:
cf = 0; // Keep compiler quiet.
BX_PANIC(("get_CF: OSZAPC: unknown instr %u",
(unsigned) BX_CPU_THIS_PTR oszapc.instr));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xfffff0;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<0);
BX_CPU_THIS_PTR eflags.val32 |= (!!cf)<<0;
return(cf);
}
bx_bool BX_CPU_C::get_AFLazy(void)
{
unsigned af;
switch ((BX_CPU_THIS_PTR lf_flags_status>>8) & 0x00000f) {
case BX_LF_INDEX_OSZAPC:
switch (BX_CPU_THIS_PTR oszapc.instr) {
case BX_INSTR_ADD8:
case BX_INSTR_ADC8:
case BX_INSTR_SUB8:
case BX_INSTR_SBB8:
af =
((BX_CPU_THIS_PTR oszapc.op1_8 ^
BX_CPU_THIS_PTR oszapc.op2_8) ^
BX_CPU_THIS_PTR oszapc.result_8) & 0x10;
break;
case BX_INSTR_ADD16:
case BX_INSTR_ADC16:
case BX_INSTR_SUB16:
case BX_INSTR_SBB16:
af =
((BX_CPU_THIS_PTR oszapc.op1_16 ^
BX_CPU_THIS_PTR oszapc.op2_16) ^
BX_CPU_THIS_PTR oszapc.result_16) & 0x10;
break;
case BX_INSTR_ADD32:
case BX_INSTR_ADC32:
case BX_INSTR_SUB32:
case BX_INSTR_SBB32:
af =
((BX_CPU_THIS_PTR oszapc.op1_32 ^
BX_CPU_THIS_PTR oszapc.op2_32) ^
BX_CPU_THIS_PTR oszapc.result_32) & 0x10;
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_ADD64:
case BX_INSTR_ADC64:
case BX_INSTR_SUB64:
case BX_INSTR_SBB64:
af =
((BX_CPU_THIS_PTR oszapc.op1_64 ^
BX_CPU_THIS_PTR oszapc.op2_64) ^
BX_CPU_THIS_PTR oszapc.result_64) & 0x10;
break;
#endif
case BX_INSTR_NEG8:
af = (BX_CPU_THIS_PTR oszapc.result_8 & 0x0f) != 0;
break;
case BX_INSTR_NEG16:
af = (BX_CPU_THIS_PTR oszapc.result_16 & 0x0f) != 0;
break;
case BX_INSTR_NEG32:
af = (BX_CPU_THIS_PTR oszapc.result_32 & 0x0f) != 0;
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_NEG64:
af = (BX_CPU_THIS_PTR oszapc.result_64 & 0x0f) != 0;
break;
#endif
case BX_INSTR_LOGIC8:
case BX_INSTR_LOGIC16:
case BX_INSTR_LOGIC32:
case BX_INSTR_BITSCAN16:
case BX_INSTR_BITSCAN32:
#if BX_SUPPORT_X86_64
case BX_INSTR_LOGIC64:
case BX_INSTR_BITSCAN64:
case BX_INSTR_SAR64:
case BX_INSTR_SHR64:
case BX_INSTR_SHRD64:
case BX_INSTR_SHL64:
case BX_INSTR_IMUL64:
case BX_INSTR_MUL64:
#endif
case BX_INSTR_SAR8:
case BX_INSTR_SAR16:
case BX_INSTR_SAR32:
case BX_INSTR_SHR8:
case BX_INSTR_SHR16:
case BX_INSTR_SHR32:
case BX_INSTR_SHRD16:
case BX_INSTR_SHRD32:
case BX_INSTR_SHL8:
case BX_INSTR_SHL16:
case BX_INSTR_SHL32:
case BX_INSTR_IMUL8:
case BX_INSTR_IMUL16:
case BX_INSTR_IMUL32:
case BX_INSTR_MUL8:
case BX_INSTR_MUL16:
case BX_INSTR_MUL32:
af = 0;
break;
default:
af = 0; // Keep compiler quiet.
BX_PANIC(("get_AF: OSZAPC: unknown instr %u",
(unsigned) BX_CPU_THIS_PTR oszapc.instr));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xfff0ff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<4);
BX_CPU_THIS_PTR eflags.val32 |= (!!af)<<4;
return(af);
case BX_LF_INDEX_OSZAP:
switch (BX_CPU_THIS_PTR oszap.instr) {
case BX_INSTR_INC8:
af = (BX_CPU_THIS_PTR oszap.result_8 & 0x0f) == 0;
break;
case BX_INSTR_INC16:
af = (BX_CPU_THIS_PTR oszap.result_16 & 0x0f) == 0;
break;
case BX_INSTR_INC32:
af = (BX_CPU_THIS_PTR oszap.result_32 & 0x0f) == 0;
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_INC64:
af = (BX_CPU_THIS_PTR oszap.result_64 & 0x0f) == 0;
break;
#endif
case BX_INSTR_DEC8:
af = (BX_CPU_THIS_PTR oszap.result_8 & 0x0f) == 0x0f;
break;
case BX_INSTR_DEC16:
af = (BX_CPU_THIS_PTR oszap.result_16 & 0x0f) == 0x0f;
break;
case BX_INSTR_DEC32:
af = (BX_CPU_THIS_PTR oszap.result_32 & 0x0f) == 0x0f;
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_DEC64:
af = (BX_CPU_THIS_PTR oszap.result_64 & 0x0f) == 0x0f;
break;
#endif
default:
af = 0; // Keep compiler quiet.
BX_PANIC(("get_AF: OSZAP: unknown instr %u",
(unsigned) BX_CPU_THIS_PTR oszap.instr));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xfff0ff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<4);
BX_CPU_THIS_PTR eflags.val32 |= (!!af)<<4;
return(af);
default:
BX_PANIC(("get_AF: unknown case"));
return(0);
}
}
bx_bool BX_CPU_C::get_ZFLazy(void)
{
unsigned zf;
switch ((BX_CPU_THIS_PTR lf_flags_status>>12) & 0x00000f) {
case BX_LF_INDEX_OSZAPC:
switch (BX_CPU_THIS_PTR oszapc.instr) {
case BX_INSTR_LOGIC8:
case BX_INSTR_ADD8:
case BX_INSTR_ADC8:
case BX_INSTR_SUB8:
case BX_INSTR_SBB8:
case BX_INSTR_NEG8:
case BX_INSTR_SAR8:
case BX_INSTR_SHR8:
case BX_INSTR_SHL8:
zf = (BX_CPU_THIS_PTR oszapc.result_8 == 0);
break;
case BX_INSTR_LOGIC16:
case BX_INSTR_ADD16:
case BX_INSTR_ADC16:
case BX_INSTR_SUB16:
case BX_INSTR_SBB16:
case BX_INSTR_NEG16:
case BX_INSTR_SAR16:
case BX_INSTR_SHR16:
case BX_INSTR_SHRD16:
case BX_INSTR_SHL16:
zf = (BX_CPU_THIS_PTR oszapc.result_16 == 0);
break;
case BX_INSTR_LOGIC32:
case BX_INSTR_ADD32:
case BX_INSTR_ADC32:
case BX_INSTR_SUB32:
case BX_INSTR_SBB32:
case BX_INSTR_NEG32:
case BX_INSTR_SAR32:
case BX_INSTR_SHR32:
case BX_INSTR_SHRD32:
case BX_INSTR_SHL32:
zf = (BX_CPU_THIS_PTR oszapc.result_32 == 0);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_LOGIC64:
case BX_INSTR_ADD64:
case BX_INSTR_ADC64:
case BX_INSTR_SUB64:
case BX_INSTR_SBB64:
case BX_INSTR_NEG64:
case BX_INSTR_SAR64:
case BX_INSTR_SHR64:
case BX_INSTR_SHRD64:
case BX_INSTR_SHL64:
zf = (BX_CPU_THIS_PTR oszapc.result_64 == 0);
break;
#endif
case BX_INSTR_IMUL8:
case BX_INSTR_MUL8:
zf = (BX_CPU_THIS_PTR oszapc.op1_8 == 0);
break;
case BX_INSTR_IMUL16:
case BX_INSTR_MUL16:
zf = (BX_CPU_THIS_PTR oszapc.op1_16 == 0);
break;
case BX_INSTR_IMUL32:
case BX_INSTR_MUL32:
zf = (BX_CPU_THIS_PTR oszapc.op1_32 == 0);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_IMUL64:
case BX_INSTR_MUL64:
zf = (BX_CPU_THIS_PTR oszapc.op1_64 == 0);
break;
#endif
case BX_INSTR_BITSCAN16:
case BX_INSTR_BITSCAN32:
#if BX_SUPPORT_X86_64
case BX_INSTR_BITSCAN64:
#endif
zf = 0;
break;
default:
zf = 0;
BX_PANIC(("get_ZF: OSZAPC: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xff0fff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<6);
BX_CPU_THIS_PTR eflags.val32 |= zf<<6; // zf always exactly 0 or 1.
return(zf);
case BX_LF_INDEX_OSZAP:
switch (BX_CPU_THIS_PTR oszap.instr) {
case BX_INSTR_INC8:
case BX_INSTR_DEC8:
zf = (BX_CPU_THIS_PTR oszap.result_8 == 0);
break;
case BX_INSTR_INC16:
case BX_INSTR_DEC16:
zf = (BX_CPU_THIS_PTR oszap.result_16 == 0);
break;
case BX_INSTR_INC32:
case BX_INSTR_DEC32:
zf = (BX_CPU_THIS_PTR oszap.result_32 == 0);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_INC64:
case BX_INSTR_DEC64:
zf = (BX_CPU_THIS_PTR oszap.result_64 == 0);
break;
#endif
default:
zf = 0;
BX_PANIC(("get_ZF: OSZAP: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xff0fff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<6);
BX_CPU_THIS_PTR eflags.val32 |= zf<<6; // zf always exactly 0 or 1.
return(zf);
default:
BX_PANIC(("get_ZF: unknown case"));
return(0);
}
}
bx_bool BX_CPU_C::get_SFLazy(void)
{
unsigned sf;
switch ((BX_CPU_THIS_PTR lf_flags_status>>16) & 0x00000f) {
case BX_LF_INDEX_OSZAPC:
switch (BX_CPU_THIS_PTR oszapc.instr) {
case BX_INSTR_LOGIC8:
case BX_INSTR_ADD8:
case BX_INSTR_ADC8:
case BX_INSTR_SUB8:
case BX_INSTR_SBB8:
case BX_INSTR_NEG8:
case BX_INSTR_SAR8:
case BX_INSTR_SHR8:
case BX_INSTR_SHL8:
sf = (BX_CPU_THIS_PTR oszapc.result_8 >= 0x80);
break;
case BX_INSTR_LOGIC16:
case BX_INSTR_ADD16:
case BX_INSTR_ADC16:
case BX_INSTR_SUB16:
case BX_INSTR_SBB16:
case BX_INSTR_NEG16:
case BX_INSTR_SAR16:
case BX_INSTR_SHR16:
case BX_INSTR_SHRD16:
case BX_INSTR_SHL16:
case BX_INSTR_BITSCAN16:
sf = (BX_CPU_THIS_PTR oszapc.result_16 >= 0x8000);
break;
case BX_INSTR_LOGIC32:
case BX_INSTR_ADD32:
case BX_INSTR_ADC32:
case BX_INSTR_SUB32:
case BX_INSTR_SBB32:
case BX_INSTR_NEG32:
case BX_INSTR_SAR32:
case BX_INSTR_SHR32:
case BX_INSTR_SHRD32:
case BX_INSTR_SHL32:
case BX_INSTR_BITSCAN32:
sf = (BX_CPU_THIS_PTR oszapc.result_32 >= 0x80000000);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_LOGIC64:
case BX_INSTR_ADD64:
case BX_INSTR_ADC64:
case BX_INSTR_SUB64:
case BX_INSTR_SBB64:
case BX_INSTR_NEG64:
case BX_INSTR_SAR64:
case BX_INSTR_SHR64:
case BX_INSTR_SHRD64:
case BX_INSTR_SHL64:
case BX_INSTR_BITSCAN64:
sf = (BX_CPU_THIS_PTR oszapc.result_64 >= BX_CONST64(0x8000000000000000));
break;
#endif
case BX_INSTR_IMUL8:
case BX_INSTR_MUL8:
sf = (BX_CPU_THIS_PTR oszapc.op1_8 >= 0x80);
break;
case BX_INSTR_IMUL16:
case BX_INSTR_MUL16:
sf = (BX_CPU_THIS_PTR oszapc.op1_16 >= 0x8000);
break;
case BX_INSTR_IMUL32:
case BX_INSTR_MUL32:
sf = (BX_CPU_THIS_PTR oszapc.op1_32 >= 0x80000000);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_IMUL64:
case BX_INSTR_MUL64:
sf = (BX_CPU_THIS_PTR oszapc.op1_64 >= BX_CONST64(0x8000000000000000));
break;
#endif
default:
sf = 0; // Keep compiler quiet.
BX_PANIC(("get_SF: OSZAPC: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xf0ffff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<7);
BX_CPU_THIS_PTR eflags.val32 |= (!!sf)<<7;
return(sf);
case BX_LF_INDEX_OSZAP:
switch (BX_CPU_THIS_PTR oszap.instr) {
case BX_INSTR_INC8:
case BX_INSTR_DEC8:
sf = (BX_CPU_THIS_PTR oszap.result_8 >= 0x80);
break;
case BX_INSTR_INC16:
case BX_INSTR_DEC16:
sf = (BX_CPU_THIS_PTR oszap.result_16 >= 0x8000);
break;
case BX_INSTR_INC32:
case BX_INSTR_DEC32:
sf = (BX_CPU_THIS_PTR oszap.result_32 >= 0x80000000);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_INC64:
case BX_INSTR_DEC64:
sf = (BX_CPU_THIS_PTR oszap.result_64 >= BX_CONST64(0x8000000000000000));
break;
#endif
default:
sf = 0; // Keep compiler quiet.
BX_PANIC(("get_SF: OSZAP: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xf0ffff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<7);
BX_CPU_THIS_PTR eflags.val32 |= (!!sf)<<7;
return(sf);
default:
BX_PANIC(("get_SF: unknown case"));
return(0);
}
}
#define GET_ADD_OVERFLOW(op1, op2, result, mask) \
(((~((op1) ^ (op2)) & ((op2) ^ (result))) & (mask)) != 0)
#define GET_SUB_OVERFLOW(op1, op2, result, mask) \
(((((op1) ^ (op2)) & ((op1) ^ (result))) & (mask)) != 0)
bx_bool BX_CPU_C::get_OFLazy(void)
{
unsigned of;
switch ((BX_CPU_THIS_PTR lf_flags_status>>20) & 0x00000f) {
case BX_LF_INDEX_OSZAPC:
switch (BX_CPU_THIS_PTR oszapc.instr) {
case BX_INSTR_ADD8:
case BX_INSTR_ADC8:
of = GET_ADD_OVERFLOW(BX_CPU_THIS_PTR oszapc.op1_8, BX_CPU_THIS_PTR oszapc.op2_8,
BX_CPU_THIS_PTR oszapc.result_8, 0x80);
break;
case BX_INSTR_ADD16:
case BX_INSTR_ADC16:
of = GET_ADD_OVERFLOW(BX_CPU_THIS_PTR oszapc.op1_16, BX_CPU_THIS_PTR oszapc.op2_16,
BX_CPU_THIS_PTR oszapc.result_16, 0x8000);
break;
case BX_INSTR_ADD32:
case BX_INSTR_ADC32:
of = GET_ADD_OVERFLOW(BX_CPU_THIS_PTR oszapc.op1_32, BX_CPU_THIS_PTR oszapc.op2_32,
BX_CPU_THIS_PTR oszapc.result_32, 0x80000000);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_ADD64:
case BX_INSTR_ADC64:
of = GET_ADD_OVERFLOW(BX_CPU_THIS_PTR oszapc.op1_64, BX_CPU_THIS_PTR oszapc.op2_64,
BX_CPU_THIS_PTR oszapc.result_64, BX_CONST64(0x8000000000000000));
break;
#endif
case BX_INSTR_SUB8:
case BX_INSTR_SBB8:
of = GET_SUB_OVERFLOW(BX_CPU_THIS_PTR oszapc.op1_8, BX_CPU_THIS_PTR oszapc.op2_8,
BX_CPU_THIS_PTR oszapc.result_8, 0x80);
break;
case BX_INSTR_SUB16:
case BX_INSTR_SBB16:
of = GET_SUB_OVERFLOW(BX_CPU_THIS_PTR oszapc.op1_16, BX_CPU_THIS_PTR oszapc.op2_16,
BX_CPU_THIS_PTR oszapc.result_16, 0x8000);
break;
case BX_INSTR_SUB32:
case BX_INSTR_SBB32:
of = GET_SUB_OVERFLOW(BX_CPU_THIS_PTR oszapc.op1_32, BX_CPU_THIS_PTR oszapc.op2_32,
BX_CPU_THIS_PTR oszapc.result_32, 0x80000000);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_SUB64:
case BX_INSTR_SBB64:
of = GET_SUB_OVERFLOW(BX_CPU_THIS_PTR oszapc.op1_64, BX_CPU_THIS_PTR oszapc.op2_64,
BX_CPU_THIS_PTR oszapc.result_64, BX_CONST64(0x8000000000000000));
break;
#endif
case BX_INSTR_NEG8:
of = (BX_CPU_THIS_PTR oszapc.result_8 == 0x80);
break;
case BX_INSTR_NEG16:
of = (BX_CPU_THIS_PTR oszapc.result_16 == 0x8000);
break;
case BX_INSTR_NEG32:
of = (BX_CPU_THIS_PTR oszapc.result_32 == 0x80000000);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_NEG64:
of = (BX_CPU_THIS_PTR oszapc.result_64 == BX_CONST64(0x8000000000000000));
break;
#endif
case BX_INSTR_LOGIC8:
case BX_INSTR_LOGIC16:
case BX_INSTR_LOGIC32:
case BX_INSTR_BITSCAN16:
case BX_INSTR_BITSCAN32:
case BX_INSTR_SAR8:
case BX_INSTR_SAR16:
case BX_INSTR_SAR32:
#if BX_SUPPORT_X86_64
case BX_INSTR_LOGIC64:
case BX_INSTR_BITSCAN64:
case BX_INSTR_SAR64:
#endif
of = 0;
break;
case BX_INSTR_SHR8:
if (BX_CPU_THIS_PTR oszapc.op2_8 == 1)
of = (BX_CPU_THIS_PTR oszapc.op1_8 >= 0x80);
else
of = 0; /* undocumented, but hardware really does it */
break;
case BX_INSTR_SHR16:
if (BX_CPU_THIS_PTR oszapc.op2_16 == 1)
of = (BX_CPU_THIS_PTR oszapc.op1_16 >= 0x8000);
else
of = 0; /* undocumented, but hardware really does it */
break;
case BX_INSTR_SHR32:
if (BX_CPU_THIS_PTR oszapc.op2_32 == 1)
of = (BX_CPU_THIS_PTR oszapc.op1_32 >= 0x80000000);
else
of = 0; /* undocumented, but hardware really does it */
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_SHR64:
if (BX_CPU_THIS_PTR oszapc.op2_64 == 1)
of = (BX_CPU_THIS_PTR oszapc.op1_64 >= BX_CONST64(0x8000000000000000));
else
of = 0; /* undocumented, but hardware really does it */
break;
#endif
case BX_INSTR_SHRD16:
/* undocumented, but this formula works right for any shift count */
of = (((BX_CPU_THIS_PTR oszapc.result_16 << 1) ^
BX_CPU_THIS_PTR oszapc.result_16) & 0x8000) > 0;
break;
case BX_INSTR_SHRD32:
/* undocumented, but this formula works right for any shift count */
of = (((BX_CPU_THIS_PTR oszapc.result_32 << 1) ^
BX_CPU_THIS_PTR oszapc.result_32) & 0x80000000) > 0;
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_SHRD64:
/* undocumented, but this formula works right for any shift count */
of = (((BX_CPU_THIS_PTR oszapc.result_64 << 1) ^
BX_CPU_THIS_PTR oszapc.result_64) & BX_CONST64(0x8000000000000000)) > 0;
break;
#endif
case BX_INSTR_SHL8:
if (BX_CPU_THIS_PTR oszapc.op2_8 == 1)
of = ((BX_CPU_THIS_PTR oszapc.op1_8 ^
BX_CPU_THIS_PTR oszapc.result_8) & 0x80) > 0;
else
of = (((BX_CPU_THIS_PTR oszapc.op1_8 <<
(BX_CPU_THIS_PTR oszapc.op2_8 - 1)) ^
BX_CPU_THIS_PTR oszapc.result_8) & 0x80) > 0;
break;
case BX_INSTR_SHL16:
if (BX_CPU_THIS_PTR oszapc.op2_16 == 1)
of = ((BX_CPU_THIS_PTR oszapc.op1_16 ^
BX_CPU_THIS_PTR oszapc.result_16) & 0x8000) > 0;
else
of = (((BX_CPU_THIS_PTR oszapc.op1_16 <<
(BX_CPU_THIS_PTR oszapc.op2_16 - 1)) ^
BX_CPU_THIS_PTR oszapc.result_16) & 0x8000) > 0;
break;
case BX_INSTR_SHL32:
if (BX_CPU_THIS_PTR oszapc.op2_32 == 1)
of = ((BX_CPU_THIS_PTR oszapc.op1_32 ^
BX_CPU_THIS_PTR oszapc.result_32) & 0x80000000) > 0;
else
of = (((BX_CPU_THIS_PTR oszapc.op1_32 <<
(BX_CPU_THIS_PTR oszapc.op2_32 - 1)) ^
BX_CPU_THIS_PTR oszapc.result_32) & 0x80000000) > 0;
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_SHL64:
if (BX_CPU_THIS_PTR oszapc.op2_64 == 1)
of = ((BX_CPU_THIS_PTR oszapc.op1_64 ^
BX_CPU_THIS_PTR oszapc.result_64) & BX_CONST64(0x8000000000000000)) > 0;
else
of = (((BX_CPU_THIS_PTR oszapc.op1_64 <<
(BX_CPU_THIS_PTR oszapc.op2_64 - 1)) ^
BX_CPU_THIS_PTR oszapc.result_64) & BX_CONST64(0x8000000000000000)) > 0;
break;
#endif
case BX_INSTR_IMUL8:
of = ! ((BX_CPU_THIS_PTR oszapc.op1_8 < 0x80 &&
BX_CPU_THIS_PTR oszapc.op2_8 == 0) ||
((BX_CPU_THIS_PTR oszapc.op1_8 & 0x80) &&
BX_CPU_THIS_PTR oszapc.op2_8 == 0xff));
break;
case BX_INSTR_IMUL16:
of = ! ((BX_CPU_THIS_PTR oszapc.op1_16 < 0x8000 &&
BX_CPU_THIS_PTR oszapc.op2_16 == 0) ||
((BX_CPU_THIS_PTR oszapc.op1_16 & 0x8000) &&
BX_CPU_THIS_PTR oszapc.op2_16 == 0xffff));
break;
case BX_INSTR_IMUL32:
of = ! ((BX_CPU_THIS_PTR oszapc.op1_32 < 0x80000000 &&
BX_CPU_THIS_PTR oszapc.op2_32 == 0) ||
((BX_CPU_THIS_PTR oszapc.op1_32 & 0x80000000) &&
BX_CPU_THIS_PTR oszapc.op2_32 == 0xffffffff));
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_IMUL64:
of = ! ((BX_CPU_THIS_PTR oszapc.op1_64 < BX_CONST64(0x8000000000000000) &&
BX_CPU_THIS_PTR oszapc.op2_64 == 0) ||
((BX_CPU_THIS_PTR oszapc.op1_64 & BX_CONST64(0x8000000000000000)) &&
BX_CPU_THIS_PTR oszapc.op2_64 == BX_CONST64(0xffffffffffffffff)));
break;
#endif
case BX_INSTR_MUL8:
of = (BX_CPU_THIS_PTR oszapc.op2_8 != 0);
break;
case BX_INSTR_MUL16:
of = (BX_CPU_THIS_PTR oszapc.op2_16 != 0);
break;
case BX_INSTR_MUL32:
of = (BX_CPU_THIS_PTR oszapc.op2_32 != 0);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_MUL64:
of = (BX_CPU_THIS_PTR oszapc.op2_64 != 0);
break;
#endif
default:
of = 0; // Keep compiler happy.
BX_PANIC(("get_OF: OSZAPC: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0x0fffff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<11);
BX_CPU_THIS_PTR eflags.val32 |= (!!of)<<11;
return(of);
case BX_LF_INDEX_OSZAP:
switch (BX_CPU_THIS_PTR oszap.instr) {
case BX_INSTR_INC8:
of = (BX_CPU_THIS_PTR oszap.result_8 == 0x80);
break;
case BX_INSTR_INC16:
of = (BX_CPU_THIS_PTR oszap.result_16 == 0x8000);
break;
case BX_INSTR_INC32:
of = (BX_CPU_THIS_PTR oszap.result_32 == 0x80000000);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_INC64:
of = (BX_CPU_THIS_PTR oszap.result_64 == BX_CONST64(0x8000000000000000));
break;
#endif
case BX_INSTR_DEC8:
of = (BX_CPU_THIS_PTR oszap.result_8 == 0x7F);
break;
case BX_INSTR_DEC16:
of = (BX_CPU_THIS_PTR oszap.result_16 == 0x7FFF);
break;
case BX_INSTR_DEC32:
of = (BX_CPU_THIS_PTR oszap.result_32 == 0x7FFFFFFF);
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_DEC64:
of = (BX_CPU_THIS_PTR oszap.result_64 == BX_CONST64(0x7FFFFFFFFFFFFFFF));
break;
#endif
default:
of = 0; // Keep compiler happy.
BX_PANIC(("get_OF: OSZAP: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0x0fffff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<11);
BX_CPU_THIS_PTR eflags.val32 |= (!!of)<<11;
return(of);
default:
BX_PANIC(("get_OF: unknown case"));
return(0);
}
}
bx_bool BX_CPU_C::get_PFLazy(void)
{
unsigned pf;
switch ((BX_CPU_THIS_PTR lf_flags_status>>4) & 0x00000f) {
case BX_LF_INDEX_OSZAPC:
switch (BX_CPU_THIS_PTR oszapc.instr) {
case BX_INSTR_LOGIC8:
case BX_INSTR_ADD8:
case BX_INSTR_ADC8:
case BX_INSTR_SUB8:
case BX_INSTR_SBB8:
case BX_INSTR_NEG8:
case BX_INSTR_SAR8:
case BX_INSTR_SHR8:
case BX_INSTR_SHL8:
pf = bx_parity_lookup[BX_CPU_THIS_PTR oszapc.result_8];
break;
case BX_INSTR_LOGIC16:
case BX_INSTR_ADD16:
case BX_INSTR_ADC16:
case BX_INSTR_SUB16:
case BX_INSTR_SBB16:
case BX_INSTR_NEG16:
case BX_INSTR_SAR16:
case BX_INSTR_SHR16:
case BX_INSTR_SHRD16:
case BX_INSTR_SHL16:
case BX_INSTR_BITSCAN16:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszapc.result_16];
break;
case BX_INSTR_LOGIC32:
case BX_INSTR_ADD32:
case BX_INSTR_ADC32:
case BX_INSTR_SUB32:
case BX_INSTR_SBB32:
case BX_INSTR_NEG32:
case BX_INSTR_SAR32:
case BX_INSTR_SHR32:
case BX_INSTR_SHRD32:
case BX_INSTR_SHL32:
case BX_INSTR_BITSCAN32:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszapc.result_32];
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_LOGIC64:
case BX_INSTR_ADD64:
case BX_INSTR_ADC64:
case BX_INSTR_SUB64:
case BX_INSTR_SBB64:
case BX_INSTR_NEG64:
case BX_INSTR_SAR64:
case BX_INSTR_SHR64:
case BX_INSTR_SHRD64:
case BX_INSTR_SHL64:
case BX_INSTR_BITSCAN64:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszapc.result_64];
break;
#endif
case BX_INSTR_IMUL8:
case BX_INSTR_MUL8:
pf = bx_parity_lookup[BX_CPU_THIS_PTR oszapc.op1_8];
break;
case BX_INSTR_IMUL16:
case BX_INSTR_MUL16:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszapc.op1_16];
break;
case BX_INSTR_IMUL32:
case BX_INSTR_MUL32:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszapc.op1_32];
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_IMUL64:
case BX_INSTR_MUL64:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszapc.op1_64];
break;
#endif
default:
pf = 0; // Keep compiler quiet.
BX_PANIC(("get_PF: OSZAPC: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xffff0f;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<2);
BX_CPU_THIS_PTR eflags.val32 |= (pf)<<2; // pf is always 0 or 1 here
return(pf);
case BX_LF_INDEX_OSZAP:
switch (BX_CPU_THIS_PTR oszap.instr) {
case BX_INSTR_INC8:
case BX_INSTR_DEC8:
pf = bx_parity_lookup[BX_CPU_THIS_PTR oszap.result_8];
break;
case BX_INSTR_INC16:
case BX_INSTR_DEC16:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszap.result_16];
break;
case BX_INSTR_INC32:
case BX_INSTR_DEC32:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszap.result_32];
break;
#if BX_SUPPORT_X86_64
case BX_INSTR_INC64:
case BX_INSTR_DEC64:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszap.result_64];
break;
#endif
default:
pf = 0; // Keep compiler quiet.
BX_PANIC(("get_PF: OSZAP: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xffff0f;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<2);
BX_CPU_THIS_PTR eflags.val32 |= (pf)<<2; // pf is always 0 or 1 here
return(pf);
default:
BX_PANIC(("get_PF: unknown case"));
return(0);
}
}