Bochs/bochs/cpu/arith32.cc
Kevin Lawton 00c14e4efe Added ./configure option --enable-all-optimizations which turns on
all available optimizations in one shot.

Finished one last case of an instruction which could but didn't use
  the Read-Modify-Write variants of access.cc functions.

Started going through the integer instructions, merging obvious cases
  where there are two "if (modrm==11b) {" clauses and very little
  action in between, and cleaning up the aweful indentation leftover
  from many years ago when those instructions were implemented using
  cut-and-paste.  We may get a little extra performance out of these
  mods, but they'll also be easier after I'm finished to enhance
  with asm() statements to knock out the lazy flags processing on x86.
2002-09-30 02:02:06 +00:00

939 lines
20 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: arith32.cc,v 1.24 2002-09-30 02:02:06 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64==0
// Make life easier for merging cpu64 and cpu code.
#define RAX EAX
#define RDX EDX
#endif
void
BX_CPU_C::INC_ERX(bxInstruction_c *i)
{
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"incl %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx)
: "1" (BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPMask) | (flags32 & EFlagsOSZAPMask);
BX_CPU_THIS_PTR lf_flags_status &= 0x00000f;
#else
Bit32u erx;
erx = ++ BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx;
#endif
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.hrx = 0;
#endif
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAP_32(0, 0, erx, BX_INSTR_INC32);
#endif
}
void
BX_CPU_C::DEC_ERX(bxInstruction_c *i)
{
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"decl %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx)
: "1" (BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPMask) | (flags32 & EFlagsOSZAPMask);
BX_CPU_THIS_PTR lf_flags_status &= 0x00000f;
#else
Bit32u erx;
erx = -- BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx;
#endif
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.hrx = 0;
#endif
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAP_32(0, 0, erx, BX_INSTR_DEC32);
#endif
}
void
BX_CPU_C::ADD_EdGd(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, sum_32;
op2_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
sum_32 = op1_32 + op2_32;
BX_WRITE_32BIT_REGZ(i->rm(), sum_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
sum_32 = op1_32 + op2_32;
Write_RMW_virtual_dword(sum_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_ADD32);
}
void
BX_CPU_C::ADD_GdEEd(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, sum_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"addl %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (sum_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) | (flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
sum_32 = op1_32 + op2_32;
#endif
BX_WRITE_32BIT_REGZ(i->nnn(), sum_32);
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_ADD32);
#endif
}
void
BX_CPU_C::ADD_GdEGd(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, sum_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 = BX_READ_32BIT_REG(i->rm());
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"addl %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (sum_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) | (flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
sum_32 = op1_32 + op2_32;
#endif
BX_WRITE_32BIT_REGZ(i->nnn(), sum_32);
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_ADD32);
#endif
}
void
BX_CPU_C::ADD_EAXId(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, sum_32;
op1_32 = EAX;
op2_32 = i->Id();
sum_32 = op1_32 + op2_32;
RAX = sum_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_ADD32);
}
void
BX_CPU_C::ADC_EdGd(bxInstruction_c *i)
{
Boolean temp_CF;
temp_CF = getB_CF();
Bit32u op2_32, op1_32, sum_32;
op2_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
sum_32 = op1_32 + op2_32 + temp_CF;
BX_WRITE_32BIT_REGZ(i->rm(), sum_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
sum_32 = op1_32 + op2_32 + temp_CF;
Write_RMW_virtual_dword(sum_32);
}
SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, sum_32, BX_INSTR_ADC32,
temp_CF);
}
void
BX_CPU_C::ADC_GdEd(bxInstruction_c *i)
{
Boolean temp_CF;
temp_CF = getB_CF();
Bit32u op1_32, op2_32, sum_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
sum_32 = op1_32 + op2_32 + temp_CF;
BX_WRITE_32BIT_REGZ(i->nnn(), sum_32);
SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, sum_32, BX_INSTR_ADC32,
temp_CF);
}
void
BX_CPU_C::ADC_EAXId(bxInstruction_c *i)
{
Boolean temp_CF;
temp_CF = getB_CF();
Bit32u op1_32, op2_32, sum_32;
op1_32 = EAX;
op2_32 = i->Id();
sum_32 = op1_32 + op2_32 + temp_CF;
RAX = sum_32;
SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, sum_32, BX_INSTR_ADC32,
temp_CF);
}
void
BX_CPU_C::SBB_EdGd(bxInstruction_c *i)
{
Boolean temp_CF;
temp_CF = getB_CF();
Bit32u op2_32, op1_32, diff_32;
op2_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
diff_32 = op1_32 - (op2_32 + temp_CF);
BX_WRITE_32BIT_REGZ(i->rm(), diff_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
diff_32 = op1_32 - (op2_32 + temp_CF);
Write_RMW_virtual_dword(diff_32);
}
SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, diff_32, BX_INSTR_SBB32,
temp_CF);
}
void
BX_CPU_C::SBB_GdEd(bxInstruction_c *i)
{
Boolean temp_CF;
temp_CF = getB_CF();
Bit32u op1_32, op2_32, diff_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
diff_32 = op1_32 - (op2_32 + temp_CF);
BX_WRITE_32BIT_REGZ(i->nnn(), diff_32);
SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, diff_32, BX_INSTR_SBB32,
temp_CF);
}
void
BX_CPU_C::SBB_EAXId(bxInstruction_c *i)
{
Boolean temp_CF;
temp_CF = getB_CF();
Bit32u op1_32, op2_32, diff_32;
op1_32 = EAX;
op2_32 = i->Id();
diff_32 = op1_32 - (op2_32 + temp_CF);
RAX = diff_32;
SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, diff_32, BX_INSTR_SBB32,
temp_CF);
}
void
BX_CPU_C::SBB_EdId(bxInstruction_c *i)
{
Boolean temp_CF;
temp_CF = getB_CF();
Bit32u op2_32, op1_32, diff_32;
op2_32 = i->Id();
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
diff_32 = op1_32 - (op2_32 + temp_CF);
BX_WRITE_32BIT_REGZ(i->rm(), diff_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
diff_32 = op1_32 - (op2_32 + temp_CF);
Write_RMW_virtual_dword(diff_32);
}
SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, diff_32, BX_INSTR_SBB32,
temp_CF);
}
void
BX_CPU_C::SUB_EdGd(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, diff_32;
op2_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
diff_32 = op1_32 - op2_32;
BX_WRITE_32BIT_REGZ(i->rm(), diff_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
diff_32 = op1_32 - op2_32;
Write_RMW_virtual_dword(diff_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_SUB32);
}
void
BX_CPU_C::SUB_GdEd(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
diff_32 = op1_32 - op2_32;
BX_WRITE_32BIT_REGZ(i->nnn(), diff_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_SUB32);
}
void
BX_CPU_C::SUB_EAXId(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
op1_32 = EAX;
op2_32 = i->Id();
diff_32 = op1_32 - op2_32;
RAX = diff_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_SUB32);
}
void
BX_CPU_C::CMP_EdGd(bxInstruction_c *i)
{
Bit32u op2_32, op1_32;
op2_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"cmpl %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) | (flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit32u diff_32;
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_CMP32);
#endif
}
void
BX_CPU_C::CMP_GdEd(bxInstruction_c *i)
{
Bit32u op1_32, op2_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"cmpl %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) | (flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit32u diff_32;
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_CMP32);
#endif
}
void
BX_CPU_C::CMP_EAXId(bxInstruction_c *i)
{
Bit32u op1_32, op2_32;
op1_32 = EAX;
op2_32 = i->Id();
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"cmpl %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) | (flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit32u diff_32;
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_CMP32);
#endif
}
void
BX_CPU_C::CWDE(bxInstruction_c *i)
{
/* CBW: no flags are effected */
Bit32u temp;
temp = (Bit16s) AX;
RAX = temp;
}
void
BX_CPU_C::CDQ(bxInstruction_c *i)
{
/* CDQ: no flags are affected */
if (EAX & 0x80000000) {
RDX = 0xFFFFFFFF;
}
else {
RDX = 0x00000000;
}
}
// Some info on the opcodes at {0F,A6} and {0F,A7}
// On 386 steps A0-B0:
// {OF,A6} = XBTS
// {OF,A7} = IBTS
// On 486 steps A0-B0:
// {OF,A6} = CMPXCHG 8
// {OF,A7} = CMPXCHG 16|32
//
// On 486 >= B steps, and further processors, the
// CMPXCHG instructions were moved to opcodes:
// {OF,B0} = CMPXCHG 8
// {OF,B1} = CMPXCHG 16|32
void
BX_CPU_C::CMPXCHG_XBTS(bxInstruction_c *i)
{
BX_INFO(("CMPXCHG_XBTS:"));
UndefinedOpcode(i);
}
void
BX_CPU_C::CMPXCHG_IBTS(bxInstruction_c *i)
{
BX_INFO(("CMPXCHG_IBTS:"));
UndefinedOpcode(i);
}
void
BX_CPU_C::XADD_EdGd(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u op2_32, op1_32, sum_32;
/* XADD dst(r/m), src(r)
* temp <-- src + dst | sum = op2 + op1
* src <-- dst | op2 = op1
* dst <-- tmp | op1 = sum
*/
op2_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
sum_32 = op1_32 + op2_32;
// and write destination into source
// Note: if both op1 & op2 are registers, the last one written
// should be the sum, as op1 & op2 may be the same register.
// For example: XADD AL, AL
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
BX_WRITE_32BIT_REGZ(i->rm(), sum_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
sum_32 = op1_32 + op2_32;
Write_RMW_virtual_dword(sum_32);
/* and write destination into source */
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_XADD32);
#else
#panic "XADD_EdGd"
#endif
}
void
BX_CPU_C::ADD_EEdId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, sum_32;
op2_32 = i->Id();
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"addl %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (sum_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
sum_32 = op1_32 + op2_32;
#endif
Write_RMW_virtual_dword(sum_32);
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_ADD32);
#endif
}
void
BX_CPU_C::ADD_EGdId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, sum_32;
op2_32 = i->Id();
op1_32 = BX_READ_32BIT_REG(i->rm());
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"addl %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (sum_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
sum_32 = op1_32 + op2_32;
#endif
BX_WRITE_32BIT_REGZ(i->rm(), sum_32);
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_ADD32);
#endif
}
void
BX_CPU_C::ADC_EdId(bxInstruction_c *i)
{
Boolean temp_CF;
temp_CF = getB_CF();
Bit32u op2_32, op1_32, sum_32;
op2_32 = i->Id();
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
sum_32 = op1_32 + op2_32 + temp_CF;
BX_WRITE_32BIT_REGZ(i->rm(), sum_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
sum_32 = op1_32 + op2_32 + temp_CF;
Write_RMW_virtual_dword(sum_32);
}
SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, sum_32, BX_INSTR_ADC32,
temp_CF);
}
void
BX_CPU_C::SUB_EdId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, diff_32;
op2_32 = i->Id();
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
diff_32 = op1_32 - op2_32;
BX_WRITE_32BIT_REGZ(i->rm(), diff_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
diff_32 = op1_32 - op2_32;
Write_RMW_virtual_dword(diff_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_SUB32);
}
void
BX_CPU_C::CMP_EdId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32;
op2_32 = i->Id();
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"cmpl %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) | (flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit32u diff_32;
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_CMP32);
#endif
}
void
BX_CPU_C::NEG_Ed(bxInstruction_c *i)
{
Bit32u op1_32, diff_32;
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
diff_32 = 0 - op1_32;
BX_WRITE_32BIT_REGZ(i->rm(), diff_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
diff_32 = 0 - op1_32;
Write_RMW_virtual_dword(diff_32);
}
SET_FLAGS_OSZAPC_32(op1_32, 0, diff_32, BX_INSTR_NEG32);
}
void
BX_CPU_C::INC_Ed(bxInstruction_c *i)
{
Bit32u op1_32;
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
op1_32++;
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
op1_32++;
Write_RMW_virtual_dword(op1_32);
}
SET_FLAGS_OSZAP_32(0, 0, op1_32, BX_INSTR_INC32);
}
void
BX_CPU_C::DEC_Ed(bxInstruction_c *i)
{
Bit32u op1_32;
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
op1_32--;
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
op1_32--;
Write_RMW_virtual_dword(op1_32);
}
SET_FLAGS_OSZAP_32(0, 0, op1_32, BX_INSTR_DEC32);
}
void
BX_CPU_C::CMPXCHG_EdGd(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u op2_32, op1_32, diff_32;
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
diff_32 = EAX - op1_32;
SET_FLAGS_OSZAPC_32(EAX, op1_32, diff_32, BX_INSTR_CMP32);
if (diff_32 == 0) { // if accumulator == dest
// ZF = 1
set_ZF(1);
// dest <-- src
op2_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), op2_32);
}
else {
Write_RMW_virtual_dword(op2_32);
}
}
else {
// ZF = 0
set_ZF(0);
// accumulator <-- dest
RAX = op1_32;
}
#else
BX_PANIC(("CMPXCHG_EdGd:"));
#endif
}
void
BX_CPU_C::CMPXCHG8B(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 5) || (BX_CPU_LEVEL_HACKED >= 5)
Bit32u op1_64_lo, op1_64_hi, diff;
if (i->modC0()) {
BX_INFO(("CMPXCHG8B: dest is reg: #UD"));
UndefinedOpcode(i);
}
read_virtual_dword(i->seg(), RMAddr(i), &op1_64_lo);
read_RMW_virtual_dword(i->seg(), RMAddr(i) + 4, &op1_64_hi);
diff = EAX - op1_64_lo;
diff |= EDX - op1_64_hi;
// SET_FLAGS_OSZAPC_32(EAX, op1_32, diff_32, BX_INSTR_CMP32);
if (diff == 0) { // if accumulator == dest
// ZF = 1
set_ZF(1);
// dest <-- src
Write_RMW_virtual_dword(ECX);
write_virtual_dword(i->seg(), RMAddr(i), &EBX);
}
else {
// ZF = 0
set_ZF(0);
// accumulator <-- dest
RAX = op1_64_lo;
RDX = op1_64_hi;
}
#else
BX_INFO(("CMPXCHG8B: not implemented yet"));
UndefinedOpcode(i);
#endif
}