///////////////////////////////////////////////////////////////////////// // $Id: cpu.cc,v 1.297 2009-10-31 20:16:21 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #include "iodev/iodev.h" // Make code more tidy with a few macros. #if BX_SUPPORT_X86_64==0 #define RIP EIP #define RCX ECX #endif #define InstrumentICACHE 0 #if InstrumentICACHE static unsigned iCacheLookups=0; static unsigned iCacheMisses=0; #define InstrICache_StatsMask 0xffffff #define InstrICache_Stats() {\ if ((iCacheLookups & InstrICache_StatsMask) == 0) { \ BX_INFO(("ICACHE lookups: %u, misses: %u, hit rate = %6.2f%% ", \ iCacheLookups, \ iCacheMisses, \ (iCacheLookups-iCacheMisses) * 100.0 / iCacheLookups)); \ iCacheLookups = iCacheMisses = 0; \ } \ } #define InstrICache_Increment(v) (v)++ #else #define InstrICache_Stats() #define InstrICache_Increment(v) #endif // The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few // instructions and then return so that the other processors have a chance to // run. This is used by bochs internal debugger or when simulating // multiple processors. // // If maximum instructions have been executed, return. The zero-count // means run forever. #if BX_SUPPORT_SMP || BX_DEBUGGER #define CHECK_MAX_INSTRUCTIONS(count) \ if ((count) > 0) { \ (count)--; \ if ((count) == 0) return; \ } #else #define CHECK_MAX_INSTRUCTIONS(count) #endif void BX_CPU_C::cpu_loop(Bit32u max_instr_count) { #if BX_DEBUGGER BX_CPU_THIS_PTR break_point = 0; BX_CPU_THIS_PTR magic_break = 0; BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON; #endif if (setjmp(BX_CPU_THIS_PTR jmp_buf_env)) { // only from exception function we can get here ... BX_INSTR_NEW_INSTRUCTION(BX_CPU_ID); BX_TICK1_IF_SINGLE_PROCESSOR(); #if BX_DEBUGGER || BX_GDBSTUB if (dbg_instruction_epilog()) return; #endif CHECK_MAX_INSTRUCTIONS(max_instr_count); #if BX_GDBSTUB if (bx_dbg.gdbstub_enabled) return; #endif } // If the exception() routine has encountered a nasty fault scenario, // the debugger may request that control is returned to it so that // the situation may be examined. #if BX_DEBUGGER if (bx_guard.interrupt_requested) return; #endif // We get here either by a normal function call, or by a longjmp // back from an exception() call. In either case, commit the // new EIP/ESP, and set up other environmental fields. This code // mirrors similar code below, after the interrupt() call. BX_CPU_THIS_PTR prev_rip = RIP; // commit new EIP BX_CPU_THIS_PTR speculative_rsp = 0; BX_CPU_THIS_PTR EXT = 0; BX_CPU_THIS_PTR errorno = 0; while (1) { // check on events which occurred for previous instructions (traps) // and ones which are asynchronous to the CPU (hardware interrupts) if (BX_CPU_THIS_PTR async_event) { if (handleAsyncEvent()) { // If request to return to caller ASAP. return; } } no_async_event: bx_address eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias; if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) { prefetch(); eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias; } bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrPage + eipBiased; bxICacheEntry_c *entry = BX_CPU_THIS_PTR iCache.get_entry(pAddr, BX_CPU_THIS_PTR fetchModeMask); bxInstruction_c *i = entry->i; InstrICache_Increment(iCacheLookups); InstrICache_Stats(); if ((entry->pAddr == pAddr) && (entry->writeStamp == *(BX_CPU_THIS_PTR currPageWriteStampPtr))) { // iCache hit. An instruction was found in the iCache } else { // iCache miss. No validated instruction with matching fetch parameters // is in the iCache. InstrICache_Increment(iCacheMisses); serveICacheMiss(entry, (Bit32u) eipBiased, pAddr); i = entry->i; } BxExecutePtr_tR execute = i->execute; #if BX_SUPPORT_TRACE_CACHE bxInstruction_c *last = i + (entry->ilen); for(;;) { #endif #if BX_INSTRUMENTATION BX_INSTR_OPCODE(BX_CPU_ID, BX_CPU_THIS_PTR eipFetchPtr + (RIP + BX_CPU_THIS_PTR eipPageBias), i->ilen(), BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, Is64BitMode()); #endif #if BX_DISASM if (BX_CPU_THIS_PTR trace) { // print the instruction that is about to be executed debug_disasm_instruction(BX_CPU_THIS_PTR prev_rip); } #endif // decoding instruction compeleted -> continue with execution BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i); RIP += i->ilen(); BX_CPU_CALL_METHOD(execute, (i)); // might iterate repeat instruction BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i); BX_TICK1_IF_SINGLE_PROCESSOR(); // inform instrumentation about new instruction BX_INSTR_NEW_INSTRUCTION(BX_CPU_ID); #if BX_SUPPORT_TRACE_CACHE execute = (++i)->execute; #endif // note instructions generating exceptions never reach this point #if BX_DEBUGGER || BX_GDBSTUB if (dbg_instruction_epilog()) return; #endif CHECK_MAX_INSTRUCTIONS(max_instr_count); #if BX_SUPPORT_TRACE_CACHE if (BX_CPU_THIS_PTR async_event) { // clear stop trace magic indication that probably was set by repeat or branch32/64 BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE; break; } if (i == last) goto no_async_event; } #endif } // while (1) } void BX_CPP_AttrRegparmN(2) BX_CPU_C::repeat(bxInstruction_c *i, BxExecutePtr_tR execute) { // non repeated instruction if (! i->repUsedL()) { BX_CPU_CALL_METHOD(execute, (i)); return; } #if BX_X86_DEBUGGER BX_CPU_THIS_PTR in_repeat = 0; #endif #if BX_SUPPORT_X86_64 if (i->as64L()) { while(1) { if (RCX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX --; } if (RCX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } else #endif if (i->as32L()) { while(1) { if (ECX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX = ECX - 1; } if (ECX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } else // 16bit addrsize { while(1) { if (CX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); CX --; } if (CX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } #if BX_X86_DEBUGGER BX_CPU_THIS_PTR in_repeat = 1; #endif RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP #if BX_SUPPORT_TRACE_CACHE // assert magic async_event to stop trace execution BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE; #endif } void BX_CPP_AttrRegparmN(2) BX_CPU_C::repeat_ZF(bxInstruction_c *i, BxExecutePtr_tR execute) { unsigned rep = i->repUsedValue(); // non repeated instruction if (! rep) { BX_CPU_CALL_METHOD(execute, (i)); return; } #if BX_X86_DEBUGGER BX_CPU_THIS_PTR in_repeat = 0; #endif if (rep == 3) { /* repeat prefix 0xF3 */ #if BX_SUPPORT_X86_64 if (i->as64L()) { while(1) { if (RCX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX --; } if (! get_ZF() || RCX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } else #endif if (i->as32L()) { while(1) { if (ECX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX = ECX - 1; } if (! get_ZF() || ECX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } else // 16bit addrsize { while(1) { if (CX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); CX --; } if (! get_ZF() || CX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } } else { /* repeat prefix 0xF2 */ #if BX_SUPPORT_X86_64 if (i->as64L()) { while(1) { if (RCX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX --; } if (get_ZF() || RCX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } else #endif if (i->as32L()) { while(1) { if (ECX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX = ECX - 1; } if (get_ZF() || ECX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } else // 16bit addrsize { while(1) { if (CX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); CX --; } if (get_ZF() || CX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } } #if BX_X86_DEBUGGER BX_CPU_THIS_PTR in_repeat = 1; #endif RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP #if BX_SUPPORT_TRACE_CACHE // assert magic async_event to stop trace execution BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE; #endif } unsigned BX_CPU_C::handleAsyncEvent(void) { // // This area is where we process special conditions and events. // if (BX_CPU_THIS_PTR activity_state) { // For one processor, pass the time as quickly as possible until // an interrupt wakes up the CPU. while (1) { if ((BX_CPU_INTR && (BX_CPU_THIS_PTR get_IF() || (BX_CPU_THIS_PTR activity_state == BX_ACTIVITY_STATE_MWAIT_IF))) || BX_CPU_THIS_PTR pending_NMI || BX_CPU_THIS_PTR pending_SMI || BX_CPU_THIS_PTR pending_INIT) { // interrupt ends the HALT condition #if BX_SUPPORT_MONITOR_MWAIT if (BX_CPU_THIS_PTR activity_state >= BX_ACTIVITY_STATE_MWAIT) BX_MEM(0)->clear_monitor(BX_CPU_THIS_PTR bx_cpuid); #endif BX_CPU_THIS_PTR activity_state = 0; BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume break; } if (BX_CPU_THIS_PTR activity_state == BX_ACTIVITY_STATE_ACTIVE) { BX_INFO(("handleAsyncEvent: reset detected in HLT state")); break; } // for multiprocessor simulation, even if this CPU is halted we still // must give the others a chance to simulate. If an interrupt has // arrived, then clear the HALT condition; otherwise just return from // the CPU loop with stop_reason STOP_CPU_HALTED. #if BX_SUPPORT_SMP if (BX_SMP_PROCESSORS > 1) { // HALT condition remains, return so other CPUs have a chance #if BX_DEBUGGER BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED; #endif return 1; // Return to caller of cpu_loop. } #endif #if BX_DEBUGGER if (bx_guard.interrupt_requested) return 1; // Return to caller of cpu_loop. #endif BX_TICK1(); } } else if (bx_pc_system.kill_bochs_request) { // setting kill_bochs_request causes the cpu loop to return ASAP. return 1; // Return to caller of cpu_loop. } // VMLAUNCH/VMRESUME cannot be executed with interrupts inhibited. // Save inhibit interrupts state into shadow bits after clearing BX_CPU_THIS_PTR inhibit_mask = (BX_CPU_THIS_PTR inhibit_mask << 2) & 0xF; // Priority 1: Hardware Reset and Machine Checks // RESET // Machine Check // (bochs doesn't support these) // Priority 2: Trap on Task Switch // T flag in TSS is set if (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_TASK_SWITCH_BIT) exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt // Priority 3: External Hardware Interventions // FLUSH // STOPCLK // SMI // INIT if (BX_CPU_THIS_PTR pending_SMI && ! BX_CPU_THIS_PTR smm_mode()) { // clear SMI pending flag and disable NMI when SMM was accepted BX_CPU_THIS_PTR pending_SMI = 0; enter_system_management_mode(); } if (BX_CPU_THIS_PTR pending_INIT && ! BX_CPU_THIS_PTR disable_INIT) { #if BX_SUPPORT_VMX if (BX_CPU_THIS_PTR in_vmx_guest) { BX_ERROR(("VMEXIT: INIT pin asserted")); VMexit(0, VMX_VMEXIT_INIT, 0); } #endif // reset will clear pending INIT BX_CPU_THIS_PTR reset(BX_RESET_SOFTWARE); } // Priority 4: Traps on Previous Instruction // Breakpoints // Debug Trap Exceptions (TF flag set or data/IO breakpoint) if (BX_CPU_THIS_PTR debug_trap && !(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG_SHADOW)) { // A trap may be inhibited on this boundary due to an instruction // which loaded SS. If so we clear the inhibit_mask below // and don't execute this code until the next boundary. exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt } // Priority 5: External Interrupts // NMI Interrupts // Maskable Hardware Interrupts if (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_INTERRUPTS_SHADOW) { // Processing external interrupts is inhibited on this // boundary because of certain instructions like STI. // inhibit_mask is cleared below, in which case we will have // an opportunity to check interrupts on the next instruction // boundary. } #if BX_SUPPORT_VMX else if (! BX_CPU_THIS_PTR disable_NMI && BX_CPU_THIS_PTR in_vmx_guest && VMEXIT(VMX_VM_EXEC_CTRL2_NMI_WINDOW_VMEXIT)) { // NMI-window exiting BX_ERROR(("VMEXIT: NMI window exiting")); VMexit(0, VMX_VMEXIT_NMI_WINDOW, 0); } #endif else if (BX_CPU_THIS_PTR pending_NMI && ! BX_CPU_THIS_PTR disable_NMI) { BX_CPU_THIS_PTR pending_NMI = 0; BX_CPU_THIS_PTR disable_NMI = 1; BX_CPU_THIS_PTR errorno = 0; BX_CPU_THIS_PTR EXT = 1; /* external event */ #if BX_SUPPORT_VMX VMexit_Event(0, BX_NMI, 2, 0, 0); #endif BX_INSTR_HWINTERRUPT(BX_CPU_ID, 2, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); interrupt(2, BX_NMI, 0, 0); } #if BX_SUPPORT_VMX else if (BX_CPU_THIS_PTR vmx_interrupt_window && BX_CPU_THIS_PTR get_IF()) { // interrupt-window exiting BX_ERROR(("VMEXIT: interrupt window exiting")); VMexit(0, VMX_VMEXIT_INTERRUPT_WINDOW, 0); } #endif else if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF() && BX_DBG_ASYNC_INTR) { Bit8u vector; #if BX_SUPPORT_VMX VMexit_ExtInterrupt(); #endif // NOTE: similar code in ::take_irq() #if BX_SUPPORT_APIC if (BX_CPU_THIS_PTR lapic.INTR) vector = BX_CPU_THIS_PTR lapic.acknowledge_int(); else #endif // if no local APIC, always acknowledge the PIC. vector = DEV_pic_iac(); // may set INTR with next interrupt BX_CPU_THIS_PTR errorno = 0; BX_CPU_THIS_PTR EXT = 1; /* external event */ #if BX_SUPPORT_VMX VMexit_Event(0, BX_EXTERNAL_INTERRUPT, vector, 0, 0); #endif BX_INSTR_HWINTERRUPT(BX_CPU_ID, vector, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); interrupt(vector, BX_EXTERNAL_INTERRUPT, 0, 0); // Set up environment, as would be when this main cpu loop gets // invoked. At the end of normal instructions, we always commmit // the new EIP. But here, we call interrupt() much like // it was a sofware interrupt instruction, and need to effect the // commit here. This code mirrors similar code above. BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP BX_CPU_THIS_PTR speculative_rsp = 0; BX_CPU_THIS_PTR EXT = 0; BX_CPU_THIS_PTR errorno = 0; } else if (BX_HRQ && BX_DBG_ASYNC_DMA) { // NOTE: similar code in ::take_dma() // assert Hold Acknowledge (HLDA) and go into a bus hold state DEV_dma_raise_hlda(); } // Priority 6: Faults from fetching next instruction // Code breakpoint fault // Code segment limit violation (priority 7 on 486/Pentium) // Code page fault (priority 7 on 486/Pentium) // (handled in main decode loop) // Priority 7: Faults from decoding next instruction // Instruction length > 15 bytes // Illegal opcode // Coprocessor not available // (handled in main decode loop etc) // Priority 8: Faults on executing an instruction // Floating point execution // Overflow // Bound error // Invalid TSS // Segment not present // Stack fault // General protection // Data page fault // Alignment check // (handled by rest of the code) // Now we can handle things which are synchronous to instruction // execution. if (BX_CPU_THIS_PTR get_RF()) { BX_CPU_THIS_PTR clear_RF(); } #if BX_X86_DEBUGGER else { // only bother comparing if any breakpoints enabled and // debug events are not inhibited on this boundary. if (! (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG_SHADOW) && ! BX_CPU_THIS_PTR in_repeat) { if (BX_CPU_THIS_PTR dr7 & 0x000000ff) { bx_address iaddr = get_laddr(BX_SEG_REG_CS, BX_CPU_THIS_PTR prev_rip); Bit32u dr6_bits = hwdebug_compare(iaddr, 1, BX_HWDebugInstruction, BX_HWDebugInstruction); if (dr6_bits) { // Add to the list of debug events thus far. BX_CPU_THIS_PTR debug_trap |= dr6_bits; BX_ERROR(("#DB: x86 code breakpoint catched")); exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt } } } } #endif if (BX_CPU_THIS_PTR get_TF()) { // TF is set before execution of next instruction. Schedule // a debug trap (#DB) after execution. After completion of // next instruction, the code above will invoke the trap. BX_CPU_THIS_PTR debug_trap |= BX_DEBUG_SINGLE_STEP_BIT; } if (!((BX_CPU_INTR && BX_CPU_THIS_PTR get_IF()) || BX_CPU_THIS_PTR debug_trap || // BX_CPU_THIS_PTR get_TF() // implies debug_trap is set BX_HRQ #if BX_SUPPORT_VMX || BX_CPU_THIS_PTR vmx_interrupt_window || BX_CPU_THIS_PTR inhibit_mask #endif #if BX_X86_DEBUGGER // any debug code breakpoint is set || ((BX_CPU_THIS_PTR dr7 & 0xff) && (((BX_CPU_THIS_PTR dr7 >> 16) & 3) == 0 || ((BX_CPU_THIS_PTR dr7 >> 20) & 3) == 0 || ((BX_CPU_THIS_PTR dr7 >> 24) & 3) == 0 || ((BX_CPU_THIS_PTR dr7 >> 28) & 3) == 0)) #endif )) BX_CPU_THIS_PTR async_event = 0; return 0; // Continue executing cpu_loop. } // boundaries of consideration: // // * physical memory boundary: 1024k (1Megabyte) (increments of...) // * A20 boundary: 1024k (1Megabyte) // * page boundary: 4k // * ROM boundary: 2k (dont care since we are only reading) // * segment boundary: any void BX_CPU_C::prefetch(void) { bx_address laddr; unsigned pageOffset; #if BX_SUPPORT_X86_64 if (Is64BitMode()) { if (! IsCanonical(RIP)) { BX_ERROR(("prefetch: #GP(0): RIP crossed canonical boundary")); exception(BX_GP_EXCEPTION, 0, 0); } // linear address is equal to RIP in 64-bit long mode pageOffset = PAGE_OFFSET(EIP); laddr = RIP; // Calculate RIP at the beginning of the page. BX_CPU_THIS_PTR eipPageBias = pageOffset - RIP; BX_CPU_THIS_PTR eipPageWindowSize = 4096; } else #endif { BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RIP); /* avoid 32-bit EIP wrap */ laddr = BX_CPU_THIS_PTR get_laddr32(BX_SEG_REG_CS, EIP); pageOffset = PAGE_OFFSET(laddr); // Calculate RIP at the beginning of the page. BX_CPU_THIS_PTR eipPageBias = (bx_address) pageOffset - EIP; Bit32u limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled; if (EIP > limit) { BX_ERROR(("prefetch: EIP [%08x] > CS.limit [%08x]", EIP, limit)); exception(BX_GP_EXCEPTION, 0, 0); } BX_CPU_THIS_PTR eipPageWindowSize = 4096; if (limit + BX_CPU_THIS_PTR eipPageBias < 4096) { BX_CPU_THIS_PTR eipPageWindowSize = (Bit32u)(limit + BX_CPU_THIS_PTR eipPageBias + 1); } } bx_address lpf = LPFOf(laddr); unsigned TLB_index = BX_TLB_INDEX_OF(lpf, 0); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index]; Bit8u *fetchPtr = 0; if ((tlbEntry->lpf == lpf) && !(tlbEntry->accessBits & USER_PL)) { BX_CPU_THIS_PTR pAddrPage = tlbEntry->ppf; fetchPtr = (Bit8u*) tlbEntry->hostPageAddr; } else { bx_phy_address pAddr; if (BX_CPU_THIS_PTR cr0.get_PG()) { pAddr = translate_linear(laddr, CPL, BX_EXECUTE); } else { pAddr = (bx_phy_address) laddr; } BX_CPU_THIS_PTR pAddrPage = LPFOf(pAddr); } if (fetchPtr) { BX_CPU_THIS_PTR eipFetchPtr = fetchPtr; } else { BX_CPU_THIS_PTR eipFetchPtr = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS, BX_CPU_THIS_PTR pAddrPage, BX_EXECUTE); // Sanity checks if (! BX_CPU_THIS_PTR eipFetchPtr) { bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrPage + pageOffset; if (pAddr >= BX_MEM(0)->get_memory_len()) { BX_PANIC(("prefetch: running in bogus memory, pAddr=0x" FMT_PHY_ADDRX, pAddr)); } else { BX_PANIC(("prefetch: getHostMemAddr vetoed direct read, pAddr=0x" FMT_PHY_ADDRX, pAddr)); } } } BX_CPU_THIS_PTR currPageWriteStampPtr = pageWriteStampTable.getPageWriteStampPtr(BX_CPU_THIS_PTR pAddrPage); } void BX_CPU_C::boundaryFetch(const Bit8u *fetchPtr, unsigned remainingInPage, bxInstruction_c *i) { unsigned j, k; Bit8u fetchBuffer[32]; unsigned ret; if (remainingInPage >= 15) { BX_ERROR(("boundaryFetch #GP(0): too many instruction prefixes")); exception(BX_GP_EXCEPTION, 0, 0); } // Read all leftover bytes in current page up to boundary. for (j=0; jilen(), BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, Is64BitMode()); } void BX_CPU_C::deliver_SIPI(unsigned vector) { if (BX_CPU_THIS_PTR activity_state == BX_ACTIVITY_STATE_WAIT_FOR_SIPI) { BX_CPU_THIS_PTR activity_state = BX_ACTIVITY_STATE_ACTIVE; RIP = 0; load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], vector*0x100); BX_CPU_THIS_PTR disable_INIT = 0; // enable INIT pin back BX_INFO(("CPU %d started up at %04X:%08X by APIC", BX_CPU_THIS_PTR bx_cpuid, vector*0x100, EIP)); } else { BX_INFO(("CPU %d started up by APIC, but was not halted at the time", BX_CPU_THIS_PTR bx_cpuid)); } } void BX_CPU_C::deliver_INIT(void) { if (! BX_CPU_THIS_PTR disable_INIT) { BX_CPU_THIS_PTR pending_INIT = 1; BX_CPU_THIS_PTR async_event = 1; } } void BX_CPU_C::deliver_NMI(void) { BX_CPU_THIS_PTR pending_NMI = 1; BX_CPU_THIS_PTR async_event = 1; } void BX_CPU_C::deliver_SMI(void) { BX_CPU_THIS_PTR pending_SMI = 1; BX_CPU_THIS_PTR async_event = 1; } void BX_CPU_C::set_INTR(bx_bool value) { BX_CPU_THIS_PTR INTR = value; BX_CPU_THIS_PTR async_event = 1; } #if BX_DEBUGGER || BX_GDBSTUB bx_bool BX_CPU_C::dbg_instruction_epilog(void) { #if BX_DEBUGGER Bit64u tt = bx_pc_system.time_ticks(); bx_address debug_eip = RIP; Bit16u cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; BX_CPU_THIS_PTR guard_found.icount++; BX_CPU_THIS_PTR guard_found.cs = cs; BX_CPU_THIS_PTR guard_found.eip = debug_eip; BX_CPU_THIS_PTR guard_found.laddr = BX_CPU_THIS_PTR get_laddr(BX_SEG_REG_CS, debug_eip); BX_CPU_THIS_PTR guard_found.code_32_64 = BX_CPU_THIS_PTR fetchModeMask; // // Take care of break point conditions generated during instruction execution // // Check if we hit read/write or time breakpoint if (BX_CPU_THIS_PTR break_point) { switch (BX_CPU_THIS_PTR break_point) { case BREAK_POINT_TIME: BX_INFO(("[" FMT_LL "d] Caught time breakpoint", tt)); BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT; return(1); // on a breakpoint case BREAK_POINT_READ: BX_INFO(("[" FMT_LL "d] Caught read watch point", tt)); BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT; return(1); // on a breakpoint case BREAK_POINT_WRITE: BX_INFO(("[" FMT_LL "d] Caught write watch point", tt)); BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT; return(1); // on a breakpoint default: BX_PANIC(("Weird break point condition")); } } if (BX_CPU_THIS_PTR magic_break) { BX_INFO(("[" FMT_LL "d] Stopped on MAGIC BREAKPOINT", bx_pc_system.time_ticks())); BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT; return(1); // on a breakpoint } // convenient point to see if user requested debug break or typed Ctrl-C if (bx_guard.interrupt_requested) { return(1); } // support for 'show' command in debugger extern unsigned dbg_show_mask; if(dbg_show_mask) { int rv = bx_dbg_show_symbolic(); if (rv) return(rv); } // Just committed an instruction, before fetching a new one // see if debugger is looking for iaddr breakpoint of any type if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) { #if (BX_DBG_MAX_VIR_BPOINTS > 0) if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) { for (unsigned n=0; n 0) if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) { for (unsigned n=0; n 0) if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) { bx_phy_address phy; bx_bool valid = dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.laddr, &phy); if (valid) { for (unsigned n=0; n