// Copyright (C) 2000 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #include "bochs.h" void BX_CPU_C::SETO_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETO: not available on < 386\n"); #else Bit8u result_8; if (get_OF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETNO_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETNO: not available on < 386\n"); #else Bit8u result_8; if (get_OF()==0) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETB_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETB: not available on < 386\n"); #else Bit8u result_8; if (get_CF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETNB_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETNB: not available on < 386\n"); #else Bit8u result_8; if (get_CF()==0) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETZ_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETZ: not available on < 386\n"); #else Bit8u result_8; if (get_ZF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETNZ_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETNZ: not available on < 386\n"); #else Bit8u result_8; if (get_ZF()==0) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETBE_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETBE: not available on < 386\n"); #else Bit8u result_8; if (get_CF() || get_ZF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETNBE_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETNBE: not available on < 386\n"); #else Bit8u result_8; if ((get_CF()==0) && (get_ZF()==0)) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETS_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETS: not available on < 386\n"); #else Bit8u result_8; if (get_SF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETNS_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETNL: not available on < 386\n"); #else Bit8u result_8; if (get_SF()==0) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETP_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETP: not available on < 386\n"); #else Bit8u result_8; if (get_PF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETNP_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETNP: not available on < 386\n"); #else Bit8u result_8; if (get_PF() == 0) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETL_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETL: not available on < 386\n"); #else Bit8u result_8; if (get_SF() != get_OF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETNL_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETNL: not available on < 386\n"); #else Bit8u result_8; if (get_SF() == get_OF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETLE_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETLE: not available on < 386\n"); #else Bit8u result_8; if (get_ZF() || (get_SF()!=get_OF())) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::SETNLE_Eb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("SETNLE: not available on < 386\n"); #else Bit8u result_8; if ((get_ZF()==0) && (get_SF()==get_OF())) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->mod == 0xc0) { BX_WRITE_8BIT_REG(i->rm, result_8); } else { write_virtual_byte(i->seg, i->rm_addr, &result_8); } #endif } void BX_CPU_C::BSF_GvEv(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("BSF_GvEv(): not supported on < 386\n"); #else if (i->os_32) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32; /* op2_32 is a register or memory reference */ if (i->mod == 0xc0) { op2_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, &op2_32); } if (op2_32 == 0) { set_ZF(1); /* op1_32 undefined */ return; } op1_32 = 0; while ( (op2_32 & 0x01) == 0 ) { op1_32++; op2_32 >>= 1; } set_ZF(0); /* now write result back to destination */ BX_WRITE_32BIT_REG(i->nnn, op1_32); } else { /* 16 bit operand size mode */ Bit16u op1_16, op2_16; /* op2_16 is a register or memory reference */ if (i->mod == 0xc0) { op2_16 = BX_READ_16BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_word(i->seg, i->rm_addr, &op2_16); } if (op2_16 == 0) { set_ZF(1); /* op1_16 undefined */ return; } op1_16 = 0; while ( (op2_16 & 0x01) == 0 ) { op1_16++; op2_16 >>= 1; } set_ZF(0); /* now write result back to destination */ BX_WRITE_16BIT_REG(i->nnn, op1_16); } #endif } void BX_CPU_C::BSR_GvEv(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("BSR_GvEv(): not supported on < 386\n"); #else if (i->os_32) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32; /* op2_32 is a register or memory reference */ if (i->mod == 0xc0) { op2_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, &op2_32); } if (op2_32 == 0) { set_ZF(1); /* op1_32 undefined */ return; } op1_32 = 31; while ( (op2_32 & 0x80000000) == 0 ) { op1_32--; op2_32 <<= 1; } set_ZF(0); /* now write result back to destination */ BX_WRITE_32BIT_REG(i->nnn, op1_32); } else { /* 16 bit operand size mode */ Bit16u op1_16, op2_16; /* op2_16 is a register or memory reference */ if (i->mod == 0xc0) { op2_16 = BX_READ_16BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_word(i->seg, i->rm_addr, &op2_16); } if (op2_16 == 0) { set_ZF(1); /* op1_16 undefined */ return; } op1_16 = 15; while ( (op2_16 & 0x8000) == 0 ) { op1_16--; op2_16 <<= 1; } set_ZF(0); /* now write result back to destination */ BX_WRITE_16BIT_REG(i->nnn, op1_16); } #endif } void BX_CPU_C::BSWAP_EAX(BxInstruction_t *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u eax, b0, b1, b2, b3; eax = EAX; b0 = eax & 0xff; eax >>= 8; b1 = eax & 0xff; eax >>= 8; b2 = eax & 0xff; eax >>= 8; b3 = eax; EAX = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else bx_panic("BSWAP_EAX: not implemented CPU <= 3\n"); #endif } void BX_CPU_C::BSWAP_ECX(BxInstruction_t *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u ecx, b0, b1, b2, b3; ecx = ECX; b0 = ecx & 0xff; ecx >>= 8; b1 = ecx & 0xff; ecx >>= 8; b2 = ecx & 0xff; ecx >>= 8; b3 = ecx; ECX = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else bx_panic("BSWAP_ECX: not implemented CPU <= 3\n"); #endif } void BX_CPU_C::BSWAP_EDX(BxInstruction_t *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u edx, b0, b1, b2, b3; edx = EDX; b0 = edx & 0xff; edx >>= 8; b1 = edx & 0xff; edx >>= 8; b2 = edx & 0xff; edx >>= 8; b3 = edx; EDX = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else bx_panic("BSWAP_EDX: not implemented CPU <= 3\n"); #endif } void BX_CPU_C::BSWAP_EBX(BxInstruction_t *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u ebx, b0, b1, b2, b3; ebx = EBX; b0 = ebx & 0xff; ebx >>= 8; b1 = ebx & 0xff; ebx >>= 8; b2 = ebx & 0xff; ebx >>= 8; b3 = ebx; EBX = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else bx_panic("BSWAP_EBX: not implemented CPU <= 3\n"); #endif } void BX_CPU_C::BSWAP_ESP(BxInstruction_t *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u esp, b0, b1, b2, b3; esp = ESP; b0 = esp & 0xff; esp >>= 8; b1 = esp & 0xff; esp >>= 8; b2 = esp & 0xff; esp >>= 8; b3 = esp; ESP = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else bx_panic("BSWAP_ESP: not implemented CPU <= 3\n"); #endif } void BX_CPU_C::BSWAP_EBP(BxInstruction_t *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u ebp, b0, b1, b2, b3; ebp = EBP; b0 = ebp & 0xff; ebp >>= 8; b1 = ebp & 0xff; ebp >>= 8; b2 = ebp & 0xff; ebp >>= 8; b3 = ebp; EBP = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else bx_panic("BSWAP_EBP: not implemented CPU <= 3\n"); #endif } void BX_CPU_C::BSWAP_ESI(BxInstruction_t *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u esi, b0, b1, b2, b3; esi = ESI; b0 = esi & 0xff; esi >>= 8; b1 = esi & 0xff; esi >>= 8; b2 = esi & 0xff; esi >>= 8; b3 = esi; ESI = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else bx_panic("BSWAP_ESI: not implemented CPU <= 3\n"); #endif } void BX_CPU_C::BSWAP_EDI(BxInstruction_t *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u edi, b0, b1, b2, b3; edi = EDI; b0 = edi & 0xff; edi >>= 8; b1 = edi & 0xff; edi >>= 8; b2 = edi & 0xff; edi >>= 8; b3 = edi; EDI = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else bx_panic("BSWAP_EDI: not implemented CPU <= 3\n"); #endif } void BX_CPU_C::BT_EvGv(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("BT_EvGv: not available on <386\n"); #else Bit32u op1_addr; if (i->os_32) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32, index; Bit32s displacement32; /* op2_32 is a register, op2_addr is an index of a register */ op2_32 = BX_READ_32BIT_REG(i->nnn); /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { op1_32 = BX_READ_32BIT_REG(i->rm); op2_32 &= 0x1f; set_CF((op1_32 >> op2_32) & 0x01); return; } index = op2_32 & 0x1f; displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32; op1_addr = i->rm_addr + 4 * displacement32; /* pointer, segment address pair */ read_virtual_dword(i->seg, op1_addr, &op1_32); set_CF((op1_32 >> index) & 0x01); } else { /* 16 bit operand size mode */ Bit16u op1_16, op2_16, index; Bit32s displacement32; /* op2_16 is a register, op2_addr is an index of a register */ op2_16 = BX_READ_16BIT_REG(i->nnn); /* op1_16 is a register or memory reference */ if (i->mod == 0xc0) { op1_16 = BX_READ_16BIT_REG(i->rm); op2_16 &= 0x0f; set_CF((op1_16 >> op2_16) & 0x01); return; } index = op2_16 & 0x0f; displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16; op1_addr = i->rm_addr + 2 * displacement32; /* pointer, segment address pair */ read_virtual_word(i->seg, op1_addr, &op1_16); set_CF((op1_16 >> index) & 0x01); } #endif } void BX_CPU_C::BTS_EvGv(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("BTS_EvGv: not available on <386\n"); #else Bit32u op1_addr; if (i->os_32) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32, bit_i, index; Bit32s displacement32; /* op2_32 is a register, op2_addr is an index of a register */ op2_32 = BX_READ_32BIT_REG(i->nnn); /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { op1_32 = BX_READ_32BIT_REG(i->rm); op2_32 &= 0x1f; set_CF((op1_32 >> op2_32) & 0x01); op1_32 |= (((Bit32u) 1) << op2_32); /* now write diff back to destination */ BX_WRITE_32BIT_REG(i->rm, op1_32); return; } index = op2_32 & 0x1f; displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32; op1_addr = i->rm_addr + 4 * displacement32; /* pointer, segment address pair */ read_RMW_virtual_dword(i->seg, op1_addr, &op1_32); bit_i = (op1_32 >> index) & 0x01; op1_32 |= (((Bit32u) 1) << index); write_RMW_virtual_dword(op1_32); set_CF(bit_i); } else { /* 16 bit operand size mode */ Bit16u op1_16, op2_16, bit_i, index; Bit32s displacement32; /* op2_16 is a register, op2_addr is an index of a register */ op2_16 = BX_READ_16BIT_REG(i->nnn); /* op1_16 is a register or memory reference */ if (i->mod == 0xc0) { op1_16 = BX_READ_16BIT_REG(i->rm); op2_16 &= 0x0f; set_CF((op1_16 >> op2_16) & 0x01); op1_16 |= (((Bit16u) 1) << op2_16); /* now write diff back to destination */ BX_WRITE_16BIT_REG(i->rm, op1_16); return; } index = op2_16 & 0x0f; displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16; op1_addr = i->rm_addr + 2 * displacement32; /* pointer, segment address pair */ read_RMW_virtual_word(i->seg, op1_addr, &op1_16); bit_i = (op1_16 >> index) & 0x01; op1_16 |= (((Bit16u) 1) << index); write_RMW_virtual_word(op1_16); set_CF(bit_i); } #endif } void BX_CPU_C::BTR_EvGv(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("BTR_EvGv: not available on <386\n"); #else Bit32u op1_addr; if (i->os_32) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32, index, temp_cf; Bit32s displacement32; /* op2_32 is a register, op2_addr is an index of a register */ op2_32 = BX_READ_32BIT_REG(i->nnn); /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { op1_32 = BX_READ_32BIT_REG(i->rm); op2_32 &= 0x1f; set_CF((op1_32 >> op2_32) & 0x01); op1_32 &= ~(((Bit32u) 1) << op2_32); /* now write diff back to destination */ BX_WRITE_32BIT_REG(i->rm, op1_32); return; } index = op2_32 & 0x1f; displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32; op1_addr = i->rm_addr + 4 * displacement32; /* pointer, segment address pair */ read_RMW_virtual_dword(i->seg, op1_addr, &op1_32); temp_cf = (op1_32 >> index) & 0x01; op1_32 &= ~(((Bit32u) 1) << index); /* now write back to destination */ write_RMW_virtual_dword(op1_32); set_CF(temp_cf); } else { /* 16 bit operand size mode */ Bit16u op1_16, op2_16, index, temp_cf; Bit32s displacement32; /* op2_16 is a register, op2_addr is an index of a register */ op2_16 = BX_READ_16BIT_REG(i->nnn); /* op1_16 is a register or memory reference */ if (i->mod == 0xc0) { op1_16 = BX_READ_16BIT_REG(i->rm); op2_16 &= 0x0f; set_CF((op1_16 >> op2_16) & 0x01); op1_16 &= ~(((Bit16u) 1) << op2_16); /* now write diff back to destination */ BX_WRITE_16BIT_REG(i->rm, op1_16); return; } index = op2_16 & 0x0f; displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16; op1_addr = i->rm_addr + 2 * displacement32; /* pointer, segment address pair */ read_RMW_virtual_word(i->seg, op1_addr, &op1_16); temp_cf = (op1_16 >> index) & 0x01; op1_16 &= ~(((Bit16u) 1) << index); /* now write back to destination */ write_RMW_virtual_word(op1_16); set_CF(temp_cf); } #endif } void BX_CPU_C::BTC_EvGv(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("BTC_EvGv: not available on <386\n"); #else Bit32u op1_addr; if (i->os_32) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32, index_32, temp_CF; Bit32s displacement32; op2_32 = BX_READ_32BIT_REG(i->nnn); index_32 = op2_32 & 0x1f; /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { op1_32 = BX_READ_32BIT_REG(i->rm); op1_addr = 0; // keep compiler happy } else { displacement32 = ((Bit32s) (op2_32 & 0xffffffe0)) / 32; op1_addr = i->rm_addr + 4 * displacement32; read_RMW_virtual_dword(i->seg, op1_addr, &op1_32); } temp_CF = (op1_32 >> index_32) & 0x01; op1_32 &= ~(((Bit32u) 1) << index_32); /* clear out bit */ op1_32 |= (((Bit32u) !temp_CF) << index_32); /* set to complement */ /* now write diff back to destination */ if (i->mod == 0xc0) { BX_WRITE_32BIT_REG(i->rm, op1_32); } else { write_RMW_virtual_dword(op1_32); } set_CF(temp_CF); } else { /* 16 bit operand size mode */ Bit16u op1_16, op2_16, index_16, temp_CF; Bit16s displacement16; op2_16 = BX_READ_16BIT_REG(i->nnn); index_16 = op2_16 & 0x0f; /* op1_16 is a register or memory reference */ if (i->mod == 0xc0) { op1_16 = BX_READ_16BIT_REG(i->rm); op1_addr = 0; // keep compiler happy } else { displacement16 = ((Bit16s) (op2_16 & 0xfff0)) / 16; op1_addr = i->rm_addr + 2 * displacement16; read_RMW_virtual_word(i->seg, op1_addr, &op1_16); } temp_CF = (op1_16 >> index_16) & 0x01; op1_16 &= ~(((Bit16u) 1) << index_16); /* clear out bit */ op1_16 |= (((Bit16u) !temp_CF) << index_16); /* set to complement */ /* now write diff back to destination */ if (i->mod == 0xc0) { BX_WRITE_16BIT_REG(i->rm, op1_16); } else { write_RMW_virtual_word(op1_16); } set_CF(temp_CF); } #endif } void BX_CPU_C::BT_EvIb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("BT_EvIb: not available on <386\n"); #else if (i->os_32) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32; Bit8u op2_8; op2_8 = i->Ib; op2_8 %= 32; /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { op1_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, &op1_32); } set_CF((op1_32 >> op2_8) & 0x01); } else { /* 16 bit operand size mode */ Bit16u op1_16; Bit8u op2_8; op2_8 = i->Ib; op2_8 %= 16; /* op1_16 is a register or memory reference */ if (i->mod == 0xc0) { op1_16 = BX_READ_16BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_word(i->seg, i->rm_addr, &op1_16); } set_CF((op1_16 >> op2_8) & 0x01); } #endif } void BX_CPU_C::BTS_EvIb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("BTS_EvIb: not available on <386\n"); #else if (i->os_32) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, temp_CF; Bit8u op2_8; op2_8 = i->Ib; op2_8 %= 32; /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { op1_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32); } temp_CF = (op1_32 >> op2_8) & 0x01; op1_32 |= (((Bit32u) 1) << op2_8); /* now write diff back to destination */ if (i->mod == 0xc0) { BX_WRITE_32BIT_REG(i->rm, op1_32); } else { write_RMW_virtual_dword(op1_32); } set_CF(temp_CF); } else { /* 16 bit operand size mode */ Bit16u op1_16, temp_CF; Bit8u op2_8; op2_8 = i->Ib; op2_8 %= 16; /* op1_16 is a register or memory reference */ if (i->mod == 0xc0) { op1_16 = BX_READ_16BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16); } temp_CF = (op1_16 >> op2_8) & 0x01; op1_16 |= (((Bit16u) 1) << op2_8); /* now write diff back to destination */ if (i->mod == 0xc0) { BX_WRITE_16BIT_REG(i->rm, op1_16); } else { write_RMW_virtual_word(op1_16); } set_CF(temp_CF); } #endif } void BX_CPU_C::BTC_EvIb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("BTC_EvIb: not available on <386\n"); #else if (i->os_32) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, temp_CF; Bit8u op2_8; op2_8 = i->Ib; op2_8 %= 32; /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { op1_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32); } temp_CF = (op1_32 >> op2_8) & 0x01; op1_32 &= ~(((Bit32u) 1) << op2_8); /* clear out bit */ op1_32 |= (((Bit32u) !temp_CF) << op2_8); /* set to complement */ /* now write diff back to destination */ if (i->mod == 0xc0) { BX_WRITE_32BIT_REG(i->rm, op1_32); } else { write_RMW_virtual_dword(op1_32); } set_CF(temp_CF); } else { /* 16 bit operand size mode */ Bit16u op1_16, temp_CF; Bit8u op2_8; op2_8 = i->Ib; op2_8 %= 16; /* op1_16 is a register or memory reference */ if (i->mod == 0xc0) { op1_16 = BX_READ_16BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16); } temp_CF = (op1_16 >> op2_8) & 0x01; op1_16 &= ~(((Bit16u) 1) << op2_8); /* clear out bit */ op1_16 |= (((Bit16u) !temp_CF) << op2_8); /* set to complement */ /* now write diff back to destination */ if (i->mod == 0xc0) { BX_WRITE_16BIT_REG(i->rm, op1_16); } else { write_RMW_virtual_word(op1_16); } set_CF(temp_CF); } #endif } void BX_CPU_C::BTR_EvIb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 bx_panic("BTR_EvIb: not available on <386\n"); #else if (i->os_32) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, temp_CF; Bit8u op2_8; op2_8 = i->Ib; op2_8 %= 32; /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { op1_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32); } temp_CF = (op1_32 >> op2_8) & 0x01; op1_32 &= ~(((Bit32u) 1) << op2_8); /* now write diff back to destination */ if (i->mod == 0xc0) { BX_WRITE_32BIT_REG(i->rm, op1_32); } else { write_RMW_virtual_dword(op1_32); } set_CF(temp_CF); } else { /* 16 bit operand size mode */ Bit16u op1_16, temp_CF; Bit8u op2_8; op2_8 = i->Ib; op2_8 %= 16; /* op1_16 is a register or memory reference */ if (i->mod == 0xc0) { op1_16 = BX_READ_16BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16); } temp_CF = (op1_16 >> op2_8) & 0x01; op1_16 &= ~(((Bit16u) 1) << op2_8); /* now write diff back to destination */ if (i->mod == 0xc0) { BX_WRITE_16BIT_REG(i->rm, op1_16); } else { write_RMW_virtual_word(op1_16); } set_CF(temp_CF); } #endif }