// Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #ifndef BX_CPU_H # define BX_CPU_H 1 #include #include "cpu/lazy_flags.h" #define BX_SREG_ES 0 #define BX_SREG_CS 1 #define BX_SREG_SS 2 #define BX_SREG_DS 3 #define BX_SREG_FS 4 #define BX_SREG_GS 5 // segment register encoding #define BX_SEG_REG_ES 0 #define BX_SEG_REG_CS 1 #define BX_SEG_REG_SS 2 #define BX_SEG_REG_DS 3 #define BX_SEG_REG_FS 4 #define BX_SEG_REG_GS 5 #define BX_SEG_REG_NULL 8 #define BX_NULL_SEG_REG(seg) ((seg) & BX_SEG_REG_NULL) #ifdef BX_LITTLE_ENDIAN #define BX_REG8L_OFFSET 0 #define BX_REG8H_OFFSET 1 #define BX_REG16_OFFSET 0 #else // BX_BIG_ENDIAN #define BX_REG8L_OFFSET 3 #define BX_REG8H_OFFSET 2 #define BX_REG16_OFFSET 2 #endif // ifdef BX_LITTLE_ENDIAN #define BX_8BIT_REG_AL 0 #define BX_8BIT_REG_CL 1 #define BX_8BIT_REG_DL 2 #define BX_8BIT_REG_BL 3 #define BX_8BIT_REG_AH 4 #define BX_8BIT_REG_CH 5 #define BX_8BIT_REG_DH 6 #define BX_8BIT_REG_BH 7 #define BX_16BIT_REG_AX 0 #define BX_16BIT_REG_CX 1 #define BX_16BIT_REG_DX 2 #define BX_16BIT_REG_BX 3 #define BX_16BIT_REG_SP 4 #define BX_16BIT_REG_BP 5 #define BX_16BIT_REG_SI 6 #define BX_16BIT_REG_DI 7 #define BX_32BIT_REG_EAX 0 #define BX_32BIT_REG_ECX 1 #define BX_32BIT_REG_EDX 2 #define BX_32BIT_REG_EBX 3 #define BX_32BIT_REG_ESP 4 #define BX_32BIT_REG_EBP 5 #define BX_32BIT_REG_ESI 6 #define BX_32BIT_REG_EDI 7 #if defined(NEED_CPU_REG_SHORTCUTS) /* WARNING: Only BX_CPU_C member functions can use these shortcuts safely! Functions that use the shortcuts outside of BX_CPU_C might work when BX_USE_CPU_SMF=1 but will fail when BX_USE_CPU_SMF=0 (for example in SMP mode). */ // access to 8 bit general registers #define AL (BX_CPU_THIS_PTR gen_reg[0].word.byte.rl) #define CL (BX_CPU_THIS_PTR gen_reg[1].word.byte.rl) #define DL (BX_CPU_THIS_PTR gen_reg[2].word.byte.rl) #define BL (BX_CPU_THIS_PTR gen_reg[3].word.byte.rl) #define AH (BX_CPU_THIS_PTR gen_reg[0].word.byte.rh) #define CH (BX_CPU_THIS_PTR gen_reg[1].word.byte.rh) #define DH (BX_CPU_THIS_PTR gen_reg[2].word.byte.rh) #define BH (BX_CPU_THIS_PTR gen_reg[3].word.byte.rh) // access to 16 bit general registers #define AX (BX_CPU_THIS_PTR gen_reg[0].word.rx) #define CX (BX_CPU_THIS_PTR gen_reg[1].word.rx) #define DX (BX_CPU_THIS_PTR gen_reg[2].word.rx) #define BX (BX_CPU_THIS_PTR gen_reg[3].word.rx) #define SP (BX_CPU_THIS_PTR gen_reg[4].word.rx) #define BP (BX_CPU_THIS_PTR gen_reg[5].word.rx) #define SI (BX_CPU_THIS_PTR gen_reg[6].word.rx) #define DI (BX_CPU_THIS_PTR gen_reg[7].word.rx) // access to 16 bit instruction pointer #define IP (* (Bit16u *) (((Bit8u *) &BX_CPU_THIS_PTR eip) + BX_REG16_OFFSET)) // accesss to 32 bit general registers #define EAX BX_CPU_THIS_PTR gen_reg[0].erx #define ECX BX_CPU_THIS_PTR gen_reg[1].erx #define EDX BX_CPU_THIS_PTR gen_reg[2].erx #define EBX BX_CPU_THIS_PTR gen_reg[3].erx #define ESP BX_CPU_THIS_PTR gen_reg[4].erx #define EBP BX_CPU_THIS_PTR gen_reg[5].erx #define ESI BX_CPU_THIS_PTR gen_reg[6].erx #define EDI BX_CPU_THIS_PTR gen_reg[7].erx // access to 32 bit instruction pointer #define EIP BX_CPU_THIS_PTR eip #define BX_READ_8BIT_REG(index) (((index) < 4) ? \ (BX_CPU_THIS_PTR gen_reg[index].word.byte.rl) : \ (BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh)) #define BX_READ_16BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].word.rx) #define BX_READ_32BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].erx) #define BX_READ_16BIT_BASE_REG(var, index) {\ var = *BX_CPU_THIS_PTR _16bit_base_reg[index];\ } #define BX_READ_16BIT_INDEX_REG(var, index) {\ var = *BX_CPU_THIS_PTR _16bit_index_reg[index];\ } #define BX_WRITE_8BIT_REG(index, val) {\ if ((index) < 4) \ BX_CPU_THIS_PTR gen_reg[index].word.byte.rl = val; \ else \ BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh = val; \ } #define BX_WRITE_16BIT_REG(index, val) {\ BX_CPU_THIS_PTR gen_reg[index].word.rx = val; \ } #define BX_WRITE_32BIT_REG(index, val) {\ BX_CPU_THIS_PTR gen_reg[index].erx = val; \ } #define TF BX_CPU_THIS_PTR eflags.tf #define IF BX_CPU_THIS_PTR eflags.if_ #define DF BX_CPU_THIS_PTR eflags.df #define IOPL BX_CPU_THIS_PTR eflags.iopl #ifndef CPL #define CPL (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl) #endif #endif // defined(NEED_CPU_REG_SHORTCUTS) #define BX_DE_EXCEPTION 0 // Divide Error (fault) #define BX_DB_EXCEPTION 1 // Debug (fault/trap) #define BX_BP_EXCEPTION 3 // Breakpoint (trap) #define BX_OF_EXCEPTION 4 // Overflow (trap) #define BX_BR_EXCEPTION 5 // BOUND (fault) #define BX_UD_EXCEPTION 6 #define BX_NM_EXCEPTION 7 #define BX_DF_EXCEPTION 8 #define BX_TS_EXCEPTION 10 #define BX_NP_EXCEPTION 11 #define BX_SS_EXCEPTION 12 #define BX_GP_EXCEPTION 13 #define BX_PF_EXCEPTION 14 #define BX_MF_EXCEPTION 16 #define BX_AC_EXCEPTION 17 typedef struct { /* 31|30|29|28|27|26|25|24|23|22|21|20|19|18|17|16 * ==|==|=====|==|==|==|==|==|==|==|==|==|==|==|== * 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|ID|VP|VF|AC|VM|RF * * 15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0 * ==|==|=====|==|==|==|==|==|==|==|==|==|==|==|== * 0|NT| IOPL|OF|DF|IF|TF|SF|ZF| 0|AF| 0|PF| 1|CF */ // In order to get access to these fields from the Dynamic Translation // code, using only 8bit offsets, I needed to move these fields // together. Bit32u cf; Bit32u af; Bit32u zf; Bit32u sf; Bit32u of; Boolean bit1; Bit8u pf_byte; /* PF derived from last result byte when needed */ Boolean bit3; Boolean bit5; Boolean tf; Boolean if_; Boolean df; #if BX_CPU_LEVEL >= 2 Bit8u iopl; Boolean nt; #endif Boolean bit15; #if BX_CPU_LEVEL >= 3 Boolean rf; Boolean vm; #endif #if BX_CPU_LEVEL >= 4 Boolean ac; // alignment check // Boolean vif; // Virtual Interrupt Flag // Boolean vip; // Virtual Interrupt Pending Boolean id; // late model 486 and beyond had CPUID #endif } bx_flags_reg_t; #if BX_CPU_LEVEL >= 2 typedef struct { Bit32u val32; // 32bit value of register // bitfields broken out for efficient access #if BX_CPU_LEVEL >= 3 Boolean pg; // paging #endif // CR0 notes: // Each x86 level has its own quirks regarding how it handles // reserved bits. I used DOS DEBUG.EXE in real mode on the // following processors, tried to clear bits 1..30, then tried // to set bits 1..30, to see how these bits are handled. // I found the following: // // Processor try to clear bits 1..30 try to set bits 1..30 // 386 7FFFFFF0 7FFFFFFE // 486DX2 00000010 6005003E // Pentium 00000010 7FFFFFFE // Pentium-II 00000010 6005003E // // My assumptions: // All processors: bit 4 is hardwired to 1 (not true on all clones) // 386: bits 5..30 of CR0 are also hardwired to 1 // Pentium: reserved bits retain value set using mov cr0, reg32 // 486DX2/Pentium-II: reserved bits are hardwired to 0 #if BX_CPU_LEVEL >= 4 Boolean cd; // cache disable Boolean nw; // no write-through Boolean am; // alignment mask Boolean wp; // write-protect Boolean ne; // numerics exception #endif Boolean ts; // task switched Boolean em; // emulate math coprocessor Boolean mp; // monitor coprocessor Boolean pe; // protected mode enable } bx_cr0_t; #endif typedef struct { /* bx_selector_t */ Bit16u value; /* the 16bit value of the selector */ #if BX_CPU_LEVEL >= 2 /* the following fields are extracted from the value field in protected mode only. They're used for sake of efficiency */ Bit16u index; /* 13bit index extracted from value in protected mode */ Bit8u ti; /* table indicator bit extracted from value */ Bit8u rpl; /* RPL extracted from value */ #endif } bx_selector_t; typedef struct { Boolean valid; /* 0 = invalid, 1 = valid */ Boolean p; /* present */ Bit8u dpl; /* descriptor privilege level 0..3 */ Boolean segment; /* 0 = system/gate, 1 = data/code segment */ Bit8u type; /* For system & gate descriptors, only * 0 = invalid descriptor (reserved) * 1 = 286 available Task State Segment (TSS) * 2 = LDT descriptor * 3 = 286 busy Task State Segment (TSS) * 4 = 286 call gate * 5 = task gate * 6 = 286 interrupt gate * 7 = 286 trap gate * 8 = (reserved) * 9 = 386 available TSS * 10 = (reserved) * 11 = 386 busy TSS * 12 = 386 call gate * 13 = (reserved) * 14 = 386 interrupt gate * 15 = 386 trap gate */ union { struct { Boolean executable; /* 1=code, 0=data or stack segment */ Boolean c_ed; /* for code: 1=conforming, for data/stack: 1=expand down */ Boolean r_w; /* for code: readable?, for data/stack: writeable? */ Boolean a; /* accessed? */ Bit32u base; /* base address: 286=24bits, 386=32bits */ Bit32u limit; /* limit: 286=16bits, 386=20bits */ Bit32u limit_scaled; /* for efficiency, this contrived field is set to * limit for byte granular, and * (limit << 12) | 0xfff for page granular seg's */ #if BX_CPU_LEVEL >= 3 Boolean g; /* granularity: 0=byte, 1=4K (page) */ Boolean d_b; /* default size: 0=16bit, 1=32bit */ Boolean avl; /* available for use by system */ #endif } segment; struct { Bit8u word_count; /* 5bits (0..31) #words to copy from caller's stack * to called procedure's stack. (call gates only)*/ Bit16u dest_selector; Bit16u dest_offset; } gate286; struct { // type 5: Task Gate Descriptor Bit16u tss_selector; // TSS segment selector } taskgate; #if BX_CPU_LEVEL >= 3 struct { Bit8u dword_count; /* 5bits (0..31) #dwords to copy from caller's stack * to called procedure's stack. (call gates only)*/ Bit16u dest_selector; Bit32u dest_offset; } gate386; #endif struct { Bit32u base; /* 24 bit 286 TSS base */ Bit16u limit; /* 16 bit 286 TSS limit */ } tss286; #if BX_CPU_LEVEL >= 3 struct { Bit32u base; /* 32 bit 386 TSS base */ Bit32u limit; /* 20 bit 386 TSS limit */ Bit32u limit_scaled; // Same notes as for 'segment' field Boolean g; /* granularity: 0=byte, 1=4K (page) */ Boolean avl; /* available for use by system */ } tss386; #endif struct { Bit32u base; /* 286=24 386+ =32 bit LDT base */ Bit16u limit; /* 286+ =16 bit LDT limit */ } ldt; } u; } bx_descriptor_t; typedef struct { bx_selector_t selector; bx_descriptor_t cache; } bx_segment_reg_t; typedef void * (*BxVoidFPtr_t)(void); class BX_CPU_C; typedef struct BxInstruction_tag { // prefix stuff here... unsigned attr; // attribute from fetchdecode unsigned b1; // opcode1 byte unsigned rep_used; unsigned modrm; // mod-nnn-r/m byte unsigned mod; unsigned nnn; unsigned rm; Bit16u displ16u; // for 16-bit modrm forms Bit32u displ32u; // for 32-bit modrm forms unsigned seg; unsigned sib; // scale-index-base (2nd modrm byte) unsigned scale; unsigned index; unsigned base; Bit32u addr_displacement; // address displacement Bit32u rm_addr; Bit32u Id; Bit16u Iw; Bit8u Ib; Bit8u Ib2; // for ENTER_IwIb Bit16u Iw2; // for JMP_Ap unsigned ilen; // instruction length unsigned os_32, as_32; // OperandSize/AddressSize is 32bit unsigned flags_in, flags_out; // flags needed, flags modified #if BX_USE_CPU_SMF void (*ResolveModrm)(BxInstruction_tag *); void (*execute)(BxInstruction_tag *); #else void (BX_CPU_C::*ResolveModrm)(BxInstruction_tag *); void (BX_CPU_C::*execute)(BxInstruction_tag *); #endif #if BX_DYNAMIC_TRANSLATION BxVoidFPtr_t DTResolveModrm; #endif #if BX_DYNAMIC_TRANSLATION unsigned DTAttr; Bit8u * (*DTFPtr)(Bit8u *, BxInstruction_tag *); unsigned DTMemRegsUsed; #endif } BxInstruction_t; #if BX_USE_CPU_SMF typedef void (*BxExecutePtr_t)(BxInstruction_t *); #else typedef void (BX_CPU_C::*BxExecutePtr_t)(BxInstruction_t *); #endif #if BX_DYNAMIC_TRANSLATION typedef Bit8u * (*BxDTASResolveModrm_t)(Bit8u *, BxInstruction_t *, unsigned, unsigned); #endif #if BX_DYNAMIC_TRANSLATION // Arrays of function pointers which handle a specific // mod-rm address format extern BxDTASResolveModrm_t BxDTResolve32Mod0[]; extern BxDTASResolveModrm_t BxDTResolve32Mod1or2[]; extern BxDTASResolveModrm_t BxDTResolve32Mod0Base[]; extern BxDTASResolveModrm_t BxDTResolve32Mod1or2Base[]; extern BxDTASResolveModrm_t BxDTResolve16Mod1or2[]; extern BxDTASResolveModrm_t BxDTResolve16Mod0[]; #endif #if BX_CPU_LEVEL < 2 /* no GDTR or IDTR register in an 8086 */ #else typedef struct { Bit32u base; /* base address: 24bits=286,32bits=386 */ Bit16u limit; /* limit, 16bits */ } bx_global_segment_reg_t; #endif #if BX_USE_TLB typedef struct { Bit32u lpf; // linear page frame Bit32u ppf; // physical page frame Bit32u pte_addr; // Page Table Address for updating A & D bits Bit32u combined_access; } bx_TLB_entry; #endif // #if BX_USE_TLB #ifdef BX_BIG_ENDIAN typedef struct { union { Bit32u erx; struct { Bit16u word_filler; union { Bit16u rx; struct { Bit8u rh; Bit8u rl; } byte; }; } word; }; } bx_gen_reg_t; #else typedef struct { union { Bit32u erx; struct { union { Bit16u rx; struct { Bit8u rl; Bit8u rh; } byte; }; Bit16u word_filler; } word; }; } bx_gen_reg_t; #endif typedef enum { APIC_TYPE_NONE, APIC_TYPE_IOAPIC, APIC_TYPE_LOCAL_APIC } bx_apic_type_t; #if BX_SUPPORT_APIC class bx_generic_apic_c : public logfunctions { protected: Bit32u base_addr; Bit8u id; #define APIC_UNKNOWN_ID 0xff #define APIC_VERSION_ID 0x00170011 // same version as 82093 IOAPIC public: bx_generic_apic_c (); virtual ~bx_generic_apic_c (); virtual void init (); virtual void hwreset () { } Bit32u get_base (void) { return base_addr; } void set_base (Bit32u newbase); void set_id (Bit8u newid); Bit8u get_id () { return id; } virtual char *get_name(); Boolean is_selected (Bit32u addr, Bit32u len); void read (Bit32u addr, void *data, unsigned len); virtual void read_aligned(Bit32u address, Bit32u *data, unsigned len); virtual void write(Bit32u address, Bit32u *value, unsigned len); virtual void startup_msg (Bit32u vector); // on local APIC, trigger means deliver to the CPU. // on I/O APIC, trigger means direct to another APIC according to table. virtual void trigger_irq (unsigned num, unsigned from); virtual void untrigger_irq (unsigned num, unsigned from); virtual Bit32u get_delivery_bitmask (Bit8u dest, Bit8u dest_mode); Boolean deliver (Bit8u destination, Bit8u dest_mode, Bit8u delivery_mode, Bit8u vector, Bit8u polarity, Bit8u trig_mode); virtual Boolean match_logical_addr (Bit8u address); virtual bx_apic_type_t get_type (); }; class bx_local_apic_c : public bx_generic_apic_c { #define BX_LOCAL_APIC_MAX_INTS 256 // TMR=trigger mode register. Cleared for edge-triggered interrupts // and set for level-triggered interrupts. If set, local APIC must send // EOI message to all other APICs. EOI's are not implemented. Bit8u tmr[BX_LOCAL_APIC_MAX_INTS]; // IRR=interrupt request register. When an interrupt is triggered by // the I/O APIC or another processor, it sets a bit in irr. The bit is // cleared when the interrupt is acknowledged by the processor. Bit8u irr[BX_LOCAL_APIC_MAX_INTS]; // ISR=in-service register. When an IRR bit is cleared, the corresponding // bit in ISR is set. The ISR bit is cleared when Bit8u isr[BX_LOCAL_APIC_MAX_INTS]; Bit32u arb_id, arb_priority, task_priority, log_dest, dest_format, spurious_vec; Bit32u lvt[6]; #define APIC_LVT_TIMER 0 #define APIC_LVT_THERMAL 1 #define APIC_LVT_PERFORM 2 #define APIC_LVT_LINT0 3 #define APIC_LVT_LINT1 4 #define APIC_LVT_ERROR 5 Bit32u timer_initial, timer_current, timer_divconf; Boolean timer_active; // internal state, not accessible from bus Bit32u timer_divide_counter, timer_divide_factor; Bit32u apic_base_msr; Bit32u icr_high, icr_low; Bit32u err_status; #define APIC_ERR_ILLEGAL_ADDR 0x80 #define APIC_ERR_RX_ILLEGAL_VEC 0x40 #define APIC_ERR_TX_ILLEGAL_VEC 0x20 #define APIC_ERR_RX_ACCEPT_ERR 0x08 #define APIC_ERR_TX_ACCEPT_ERR 0x04 #define APIC_ERR_RX_CHECKSUM 0x02 #define APIC_ERR_TX_CHECKSUM 0x01 public: bx_local_apic_c(BX_CPU_C *mycpu); virtual ~bx_local_apic_c(void); BX_CPU_C *cpu; virtual void hwreset (); virtual void init (); BX_CPU_C *get_cpu (Bit8u id); void set_id (Bit8u newid); // redefine to set cpu->name virtual char *get_name(); virtual void write (Bit32u addr, Bit32u *data, unsigned len); virtual void read_aligned(Bit32u address, Bit32u *data, unsigned len); virtual void startup_msg (Bit32u vector); // on local APIC, trigger means raise the CPU's INTR line. For now // I also have to raise pc_system.INTR but that should be replaced // with the cpu-specific INTR signals. virtual void trigger_irq (unsigned num, unsigned from); virtual void untrigger_irq (unsigned num, unsigned from); Bit8u acknowledge_int (); // only the local CPU should call this int highest_priority_int (Bit8u *array); void service_local_apic (); void print_status (); virtual Boolean match_logical_addr (Bit8u address); virtual Boolean is_local_apic () { return true; } virtual bx_apic_type_t get_type () { return APIC_TYPE_LOCAL_APIC; } virtual Bit32u get_delivery_bitmask (Bit8u dest, Bit8u dest_mode); Bit8u get_ppr (); Bit8u get_apr (); void periodic (Bit32u usec_delta); void set_divide_configuration (Bit32u value); }; #define APIC_MAX_ID 16 extern bx_generic_apic_c *apic_index[APIC_MAX_ID]; #endif // if BX_SUPPORT_APIC #if BX_USE_CPU_SMF == 0 // normal member functions. This can ONLY be used within BX_CPU_C classes. // Anyone on the outside should use the BX_CPU macro (defined in bochs.h) // instead. # define BX_CPU_THIS_PTR this-> # define BX_SMF # define BX_CPU_C_PREFIX BX_CPU_C:: // with normal member functions, calling a member fn pointer looks like // object->*(fnptr)(arg, ...); // Since this is different from when SMF=1, encapsulate it in a macro. # define BX_CPU_CALL_METHOD(func, args) \ (this->*((BxExecutePtr_t) (func))) args #else // static member functions. With SMF, there is only one CPU by definition. # define BX_CPU_THIS_PTR BX_CPU(0)-> # define BX_SMF static # define BX_CPU_C_PREFIX # define BX_CPU_CALL_METHOD(func, args) \ ((BxExecutePtr_t) (func)) args #endif typedef void (*BxDTShim_t)(void); class BX_MEM_C; class BX_CPU_C : public logfunctions { public: // for now... char name[64]; // General register set // eax: accumulator // ebx: base // ecx: count // edx: data // ebp: base pointer // esi: source index // edi: destination index // esp: stack pointer bx_gen_reg_t gen_reg[8]; Bit32u eip; // instruction pointer #if BX_CPU_LEVEL > 0 // so that we can back up when handling faults, exceptions, etc. // we need to store the value of the instruction pointer, before // each fetch/execute cycle. Bit32u prev_eip; #endif // A few pointer to functions for use by the dynamic translation // code. Keep them close to the gen_reg declaration, so I can // use an 8bit offset to access them. #if BX_DYNAMIC_TRANSLATION BxDTShim_t DTWrite8vShim; BxDTShim_t DTWrite16vShim; BxDTShim_t DTWrite32vShim; BxDTShim_t DTRead8vShim; BxDTShim_t DTRead16vShim; BxDTShim_t DTRead32vShim; BxDTShim_t DTReadRMW8vShim; BxDTShim_t DTReadRMW16vShim; BxDTShim_t DTReadRMW32vShim; BxDTShim_t DTWriteRMW8vShim; BxDTShim_t DTWriteRMW16vShim; BxDTShim_t DTWriteRMW32vShim; BxDTShim_t DTSetFlagsOSZAPCPtr; BxDTShim_t DTIndBrHandler; BxDTShim_t DTDirBrHandler; #endif // status and control flags register set Bit32u lf_flags_status; Boolean lf_pf; bx_flags_reg_t eflags; bx_lf_flags_entry oszapc; bx_lf_flags_entry oszap; Bit32u prev_esp; #define BX_INHIBIT_INTERRUPTS 0x01 #define BX_INHIBIT_DEBUG 0x02 // What events to inhibit at any given time. Certain instructions // inhibit interrupts, some debug exceptions and single-step traps. unsigned inhibit_mask; /* user segment register set */ bx_segment_reg_t sregs[6]; /* system segment registers */ #if BX_CPU_LEVEL >= 2 bx_global_segment_reg_t gdtr; /* global descriptor table register */ bx_global_segment_reg_t idtr; /* interrupt descriptor table register */ #endif bx_segment_reg_t ldtr; /* interrupt descriptor table register */ bx_segment_reg_t tr; /* task register */ /* debug registers 0-7 (unimplemented) */ #if BX_CPU_LEVEL >= 3 Bit32u dr0; Bit32u dr1; Bit32u dr2; Bit32u dr3; Bit32u dr6; Bit32u dr7; #endif /* TR3 - TR7 (Test Register 3-7), unimplemented */ /* Control registers */ #if BX_CPU_LEVEL >= 2 bx_cr0_t cr0; Bit32u cr1; Bit32u cr2; Bit32u cr3; #endif #if BX_CPU_LEVEL >= 4 Bit32u cr4; #endif // pointer to the address space that this processor uses. BX_MEM_C *mem; Boolean EXT; /* 1 if processing external interrupt or exception * or if not related to current instruction, * 0 if current CS:IP caused exception */ unsigned errorno; /* signal exception during instruction emulation */ Bit32u debug_trap; // holds DR6 value to be set as well volatile Boolean async_event; volatile Boolean INTR; // for accessing registers by index number Bit16u *_16bit_base_reg[8]; Bit16u *_16bit_index_reg[8]; Bit32u empty_register; // for decoding instructions; accessing seg reg's by index unsigned sreg_mod00_rm16[8]; unsigned sreg_mod01_rm16[8]; unsigned sreg_mod10_rm16[8]; unsigned sreg_mod01_rm32[8]; unsigned sreg_mod10_rm32[8]; unsigned sreg_mod0_base32[8]; unsigned sreg_mod1or2_base32[8]; // for exceptions jmp_buf jmp_buf_env; Bit8u curr_exception[2]; static const Boolean is_exception_OK[3][3]; bx_segment_reg_t save_cs; bx_segment_reg_t save_ss; Bit32u save_eip; Bit32u save_esp; // For prefetch'ing instructions Bit32u bytesleft; Bit8u *fetch_ptr; Bit32u prev_linear_page; Bit32u prev_phy_page; Bit32u max_phy_addr; #if BX_DEBUGGER Bit8u break_point; #ifdef MAGIC_BREAKPOINT Bit8u magic_break; #endif Bit8u stop_reason; Bit8u trace; Bit8u mode_break; /* BW */ Boolean debug_vm; /* BW contains current mode*/ Bit8u show_eip; /* BW record eip at special instr f.ex eip */ Bit8u show_flag; /* BW shows instr class executed */ bx_guard_found_t guard_found; #endif // for paging #if BX_USE_TLB struct { bx_TLB_entry entry[BX_TLB_SIZE]; } TLB; #endif struct { Bit32u paddress1; // physical address after translation of 1st len1 bytes of data Bit32u paddress2; // physical address after translation of 2nd len2 bytes of data Bit32u len1; // number of bytes in page 1 Bit32u len2; // number of bytes in page 2 unsigned pages; // number of pages access spans (1 or 2) } address_xlation; // for lazy flags processing BX_SMF Boolean get_OF(void); BX_SMF Boolean get_SF(void); BX_SMF Boolean get_ZF(void); BX_SMF Boolean get_AF(void); BX_SMF Boolean get_PF(void); BX_SMF Boolean get_CF(void); // constructors & destructors... BX_CPU_C(); ~BX_CPU_C(void); void init (BX_MEM_C *addrspace); // prototypes for CPU instructions... BX_SMF void ADD_EbGb(BxInstruction_t *); BX_SMF void ADD_EdGd(BxInstruction_t *); BX_SMF void ADD_GbEb(BxInstruction_t *); BX_SMF void ADD_GdEd(BxInstruction_t *); BX_SMF void ADD_ALIb(BxInstruction_t *); BX_SMF void ADD_EAXId(BxInstruction_t *); BX_SMF void OR_EbGb(BxInstruction_t *); BX_SMF void OR_EdGd(BxInstruction_t *); BX_SMF void OR_EwGw(BxInstruction_t *); BX_SMF void OR_GbEb(BxInstruction_t *); BX_SMF void OR_GdEd(BxInstruction_t *); BX_SMF void OR_GwEw(BxInstruction_t *); BX_SMF void OR_ALIb(BxInstruction_t *); BX_SMF void OR_EAXId(BxInstruction_t *); BX_SMF void OR_AXIw(BxInstruction_t *); BX_SMF void PUSH_CS(BxInstruction_t *); BX_SMF void PUSH_DS(BxInstruction_t *); BX_SMF void POP_DS(BxInstruction_t *); BX_SMF void PUSH_ES(BxInstruction_t *); BX_SMF void POP_ES(BxInstruction_t *); BX_SMF void PUSH_FS(BxInstruction_t *); BX_SMF void POP_FS(BxInstruction_t *); BX_SMF void PUSH_GS(BxInstruction_t *); BX_SMF void POP_GS(BxInstruction_t *); BX_SMF void PUSH_SS(BxInstruction_t *); BX_SMF void POP_SS(BxInstruction_t *); BX_SMF void ADC_EbGb(BxInstruction_t *); BX_SMF void ADC_EdGd(BxInstruction_t *); BX_SMF void ADC_GbEb(BxInstruction_t *); BX_SMF void ADC_GdEd(BxInstruction_t *); BX_SMF void ADC_ALIb(BxInstruction_t *); BX_SMF void ADC_EAXId(BxInstruction_t *); BX_SMF void SBB_EbGb(BxInstruction_t *); BX_SMF void SBB_EdGd(BxInstruction_t *); BX_SMF void SBB_GbEb(BxInstruction_t *); BX_SMF void SBB_GdEd(BxInstruction_t *); BX_SMF void SBB_ALIb(BxInstruction_t *); BX_SMF void SBB_EAXId(BxInstruction_t *); BX_SMF void AND_EbGb(BxInstruction_t *); BX_SMF void AND_EdGd(BxInstruction_t *); BX_SMF void AND_EwGw(BxInstruction_t *); BX_SMF void AND_GbEb(BxInstruction_t *); BX_SMF void AND_GdEd(BxInstruction_t *); BX_SMF void AND_GwEw(BxInstruction_t *); BX_SMF void AND_ALIb(BxInstruction_t *); BX_SMF void AND_EAXId(BxInstruction_t *); BX_SMF void AND_AXIw(BxInstruction_t *); BX_SMF void DAA(BxInstruction_t *); BX_SMF void SUB_EbGb(BxInstruction_t *); BX_SMF void SUB_EdGd(BxInstruction_t *); BX_SMF void SUB_GbEb(BxInstruction_t *); BX_SMF void SUB_GdEd(BxInstruction_t *); BX_SMF void SUB_ALIb(BxInstruction_t *); BX_SMF void SUB_EAXId(BxInstruction_t *); BX_SMF void DAS(BxInstruction_t *); BX_SMF void XOR_EbGb(BxInstruction_t *); BX_SMF void XOR_EdGd(BxInstruction_t *); BX_SMF void XOR_EwGw(BxInstruction_t *); BX_SMF void XOR_GbEb(BxInstruction_t *); BX_SMF void XOR_GdEd(BxInstruction_t *); BX_SMF void XOR_GwEw(BxInstruction_t *); BX_SMF void XOR_ALIb(BxInstruction_t *); BX_SMF void XOR_EAXId(BxInstruction_t *); BX_SMF void XOR_AXIw(BxInstruction_t *); BX_SMF void AAA(BxInstruction_t *); BX_SMF void CMP_EbGb(BxInstruction_t *); BX_SMF void CMP_EdGd(BxInstruction_t *); BX_SMF void CMP_GbEb(BxInstruction_t *); BX_SMF void CMP_GdEd(BxInstruction_t *); BX_SMF void CMP_ALIb(BxInstruction_t *); BX_SMF void CMP_EAXId(BxInstruction_t *); BX_SMF void AAS(BxInstruction_t *); BX_SMF void PUSHAD32(BxInstruction_t *); BX_SMF void PUSHAD16(BxInstruction_t *); BX_SMF void POPAD32(BxInstruction_t *); BX_SMF void POPAD16(BxInstruction_t *); BX_SMF void BOUND_GvMa(BxInstruction_t *); BX_SMF void ARPL_EwGw(BxInstruction_t *); BX_SMF void PUSH_Id(BxInstruction_t *); BX_SMF void PUSH_Iw(BxInstruction_t *); BX_SMF void IMUL_GdEdId(BxInstruction_t *); BX_SMF void INSB_YbDX(BxInstruction_t *); BX_SMF void INSW_YvDX(BxInstruction_t *); BX_SMF void OUTSB_DXXb(BxInstruction_t *); BX_SMF void OUTSW_DXXv(BxInstruction_t *); BX_SMF void TEST_EbGb(BxInstruction_t *); BX_SMF void TEST_EdGd(BxInstruction_t *); BX_SMF void TEST_EwGw(BxInstruction_t *); BX_SMF void XCHG_EbGb(BxInstruction_t *); BX_SMF void XCHG_EdGd(BxInstruction_t *); BX_SMF void XCHG_EwGw(BxInstruction_t *); BX_SMF void MOV_EbGb(BxInstruction_t *); BX_SMF void MOV_EdGd(BxInstruction_t *); BX_SMF void MOV_EwGw(BxInstruction_t *); BX_SMF void MOV_GbEb(BxInstruction_t *); BX_SMF void MOV_GdEd(BxInstruction_t *); BX_SMF void MOV_GwEw(BxInstruction_t *); BX_SMF void MOV_EwSw(BxInstruction_t *); BX_SMF void LEA_GdM(BxInstruction_t *); BX_SMF void LEA_GwM(BxInstruction_t *); BX_SMF void MOV_SwEw(BxInstruction_t *); BX_SMF void POP_Ev(BxInstruction_t *); BX_SMF void CBW(BxInstruction_t *); BX_SMF void CWD(BxInstruction_t *); BX_SMF void CALL32_Ap(BxInstruction_t *); BX_SMF void CALL16_Ap(BxInstruction_t *); BX_SMF void FWAIT(BxInstruction_t *); BX_SMF void PUSHF_Fv(BxInstruction_t *); BX_SMF void POPF_Fv(BxInstruction_t *); BX_SMF void SAHF(BxInstruction_t *); BX_SMF void LAHF(BxInstruction_t *); BX_SMF void MOV_ALOb(BxInstruction_t *); BX_SMF void MOV_EAXOd(BxInstruction_t *); BX_SMF void MOV_AXOw(BxInstruction_t *); BX_SMF void MOV_ObAL(BxInstruction_t *); BX_SMF void MOV_OdEAX(BxInstruction_t *); BX_SMF void MOV_OwAX(BxInstruction_t *); BX_SMF void MOVSB_XbYb(BxInstruction_t *); BX_SMF void MOVSW_XvYv(BxInstruction_t *); BX_SMF void CMPSB_XbYb(BxInstruction_t *); BX_SMF void CMPSW_XvYv(BxInstruction_t *); BX_SMF void TEST_ALIb(BxInstruction_t *); BX_SMF void TEST_EAXId(BxInstruction_t *); BX_SMF void TEST_AXIw(BxInstruction_t *); BX_SMF void STOSB_YbAL(BxInstruction_t *); BX_SMF void STOSW_YveAX(BxInstruction_t *); BX_SMF void LODSB_ALXb(BxInstruction_t *); BX_SMF void LODSW_eAXXv(BxInstruction_t *); BX_SMF void SCASB_ALXb(BxInstruction_t *); BX_SMF void SCASW_eAXXv(BxInstruction_t *); BX_SMF void RETnear32(BxInstruction_t *); BX_SMF void RETnear16(BxInstruction_t *); BX_SMF void LES_GvMp(BxInstruction_t *); BX_SMF void LDS_GvMp(BxInstruction_t *); BX_SMF void MOV_EbIb(BxInstruction_t *); BX_SMF void MOV_EdId(BxInstruction_t *); BX_SMF void MOV_EwIw(BxInstruction_t *); BX_SMF void ENTER_IwIb(BxInstruction_t *); BX_SMF void LEAVE(BxInstruction_t *); BX_SMF void RETfar32(BxInstruction_t *); BX_SMF void RETfar16(BxInstruction_t *); BX_SMF void INT1(BxInstruction_t *); BX_SMF void INT3(BxInstruction_t *); BX_SMF void INT_Ib(BxInstruction_t *); BX_SMF void INTO(BxInstruction_t *); BX_SMF void IRET32(BxInstruction_t *); BX_SMF void IRET16(BxInstruction_t *); BX_SMF void AAM(BxInstruction_t *); BX_SMF void AAD(BxInstruction_t *); BX_SMF void SALC(BxInstruction_t *); BX_SMF void XLAT(BxInstruction_t *); BX_SMF void LOOPNE_Jb(BxInstruction_t *); BX_SMF void LOOPE_Jb(BxInstruction_t *); BX_SMF void LOOP_Jb(BxInstruction_t *); BX_SMF void JCXZ_Jb(BxInstruction_t *); BX_SMF void IN_ALIb(BxInstruction_t *); BX_SMF void IN_eAXIb(BxInstruction_t *); BX_SMF void OUT_IbAL(BxInstruction_t *); BX_SMF void OUT_IbeAX(BxInstruction_t *); BX_SMF void CALL_Aw(BxInstruction_t *); BX_SMF void CALL_Ad(BxInstruction_t *); BX_SMF void JMP_Jd(BxInstruction_t *); BX_SMF void JMP_Jw(BxInstruction_t *); BX_SMF void JMP_Ap(BxInstruction_t *); BX_SMF void IN_ALDX(BxInstruction_t *); BX_SMF void IN_eAXDX(BxInstruction_t *); BX_SMF void OUT_DXAL(BxInstruction_t *); BX_SMF void OUT_DXeAX(BxInstruction_t *); BX_SMF void HLT(BxInstruction_t *); BX_SMF void CMC(BxInstruction_t *); BX_SMF void CLC(BxInstruction_t *); BX_SMF void STC(BxInstruction_t *); BX_SMF void CLI(BxInstruction_t *); BX_SMF void STI(BxInstruction_t *); BX_SMF void CLD(BxInstruction_t *); BX_SMF void STD(BxInstruction_t *); BX_SMF void LAR_GvEw(BxInstruction_t *); BX_SMF void LSL_GvEw(BxInstruction_t *); BX_SMF void CLTS(BxInstruction_t *); BX_SMF void INVD(BxInstruction_t *); BX_SMF void WBINVD(BxInstruction_t *); BX_SMF void MOV_CdRd(BxInstruction_t *); BX_SMF void MOV_DdRd(BxInstruction_t *); BX_SMF void MOV_RdCd(BxInstruction_t *); BX_SMF void MOV_RdDd(BxInstruction_t *); BX_SMF void MOV_TdRd(BxInstruction_t *); BX_SMF void MOV_RdTd(BxInstruction_t *); BX_SMF void JCC_Jd(BxInstruction_t *); BX_SMF void JCC_Jw(BxInstruction_t *); BX_SMF void SETO_Eb(BxInstruction_t *); BX_SMF void SETNO_Eb(BxInstruction_t *); BX_SMF void SETB_Eb(BxInstruction_t *); BX_SMF void SETNB_Eb(BxInstruction_t *); BX_SMF void SETZ_Eb(BxInstruction_t *); BX_SMF void SETNZ_Eb(BxInstruction_t *); BX_SMF void SETBE_Eb(BxInstruction_t *); BX_SMF void SETNBE_Eb(BxInstruction_t *); BX_SMF void SETS_Eb(BxInstruction_t *); BX_SMF void SETNS_Eb(BxInstruction_t *); BX_SMF void SETP_Eb(BxInstruction_t *); BX_SMF void SETNP_Eb(BxInstruction_t *); BX_SMF void SETL_Eb(BxInstruction_t *); BX_SMF void SETNL_Eb(BxInstruction_t *); BX_SMF void SETLE_Eb(BxInstruction_t *); BX_SMF void SETNLE_Eb(BxInstruction_t *); BX_SMF void CPUID(BxInstruction_t *); BX_SMF void BT_EvGv(BxInstruction_t *); BX_SMF void SHLD_EdGd(BxInstruction_t *); BX_SMF void SHLD_EwGw(BxInstruction_t *); BX_SMF void BTS_EvGv(BxInstruction_t *); BX_SMF void SHRD_EwGw(BxInstruction_t *); BX_SMF void SHRD_EdGd(BxInstruction_t *); BX_SMF void IMUL_GdEd(BxInstruction_t *); BX_SMF void LSS_GvMp(BxInstruction_t *); BX_SMF void BTR_EvGv(BxInstruction_t *); BX_SMF void LFS_GvMp(BxInstruction_t *); BX_SMF void LGS_GvMp(BxInstruction_t *); BX_SMF void MOVZX_GdEb(BxInstruction_t *); BX_SMF void MOVZX_GwEb(BxInstruction_t *); BX_SMF void MOVZX_GdEw(BxInstruction_t *); BX_SMF void MOVZX_GwEw(BxInstruction_t *); BX_SMF void BTC_EvGv(BxInstruction_t *); BX_SMF void BSF_GvEv(BxInstruction_t *); BX_SMF void BSR_GvEv(BxInstruction_t *); BX_SMF void MOVSX_GdEb(BxInstruction_t *); BX_SMF void MOVSX_GwEb(BxInstruction_t *); BX_SMF void MOVSX_GdEw(BxInstruction_t *); BX_SMF void MOVSX_GwEw(BxInstruction_t *); BX_SMF void BSWAP_EAX(BxInstruction_t *); BX_SMF void BSWAP_ECX(BxInstruction_t *); BX_SMF void BSWAP_EDX(BxInstruction_t *); BX_SMF void BSWAP_EBX(BxInstruction_t *); BX_SMF void BSWAP_ESP(BxInstruction_t *); BX_SMF void BSWAP_EBP(BxInstruction_t *); BX_SMF void BSWAP_ESI(BxInstruction_t *); BX_SMF void BSWAP_EDI(BxInstruction_t *); BX_SMF void ADD_EbIb(BxInstruction_t *); BX_SMF void ADC_EbIb(BxInstruction_t *); BX_SMF void SBB_EbIb(BxInstruction_t *); BX_SMF void SUB_EbIb(BxInstruction_t *); BX_SMF void CMP_EbIb(BxInstruction_t *); BX_SMF void XOR_EbIb(BxInstruction_t *); BX_SMF void OR_EbIb(BxInstruction_t *); BX_SMF void AND_EbIb(BxInstruction_t *); BX_SMF void ADD_EdId(BxInstruction_t *); BX_SMF void OR_EdId(BxInstruction_t *); BX_SMF void OR_EwIw(BxInstruction_t *); BX_SMF void ADC_EdId(BxInstruction_t *); BX_SMF void SBB_EdId(BxInstruction_t *); BX_SMF void AND_EdId(BxInstruction_t *); BX_SMF void AND_EwIw(BxInstruction_t *); BX_SMF void SUB_EdId(BxInstruction_t *); BX_SMF void XOR_EdId(BxInstruction_t *); BX_SMF void XOR_EwIw(BxInstruction_t *); BX_SMF void CMP_EdId(BxInstruction_t *); BX_SMF void ROL_Eb(BxInstruction_t *); BX_SMF void ROR_Eb(BxInstruction_t *); BX_SMF void RCL_Eb(BxInstruction_t *); BX_SMF void RCR_Eb(BxInstruction_t *); BX_SMF void SHL_Eb(BxInstruction_t *); BX_SMF void SHR_Eb(BxInstruction_t *); BX_SMF void SAR_Eb(BxInstruction_t *); BX_SMF void ROL_Ed(BxInstruction_t *); BX_SMF void ROL_Ew(BxInstruction_t *); BX_SMF void ROR_Ed(BxInstruction_t *); BX_SMF void ROR_Ew(BxInstruction_t *); BX_SMF void RCL_Ed(BxInstruction_t *); BX_SMF void RCL_Ew(BxInstruction_t *); BX_SMF void RCR_Ed(BxInstruction_t *); BX_SMF void RCR_Ew(BxInstruction_t *); BX_SMF void SHL_Ed(BxInstruction_t *); BX_SMF void SHL_Ew(BxInstruction_t *); BX_SMF void SHR_Ed(BxInstruction_t *); BX_SMF void SHR_Ew(BxInstruction_t *); BX_SMF void SAR_Ed(BxInstruction_t *); BX_SMF void SAR_Ew(BxInstruction_t *); BX_SMF void TEST_EbIb(BxInstruction_t *); BX_SMF void NOT_Eb(BxInstruction_t *); BX_SMF void NEG_Eb(BxInstruction_t *); BX_SMF void MUL_ALEb(BxInstruction_t *); BX_SMF void IMUL_ALEb(BxInstruction_t *); BX_SMF void DIV_ALEb(BxInstruction_t *); BX_SMF void IDIV_ALEb(BxInstruction_t *); BX_SMF void TEST_EdId(BxInstruction_t *); BX_SMF void TEST_EwIw(BxInstruction_t *); BX_SMF void NOT_Ed(BxInstruction_t *); BX_SMF void NOT_Ew(BxInstruction_t *); BX_SMF void NEG_Ed(BxInstruction_t *); BX_SMF void MUL_EAXEd(BxInstruction_t *); BX_SMF void IMUL_EAXEd(BxInstruction_t *); BX_SMF void DIV_EAXEd(BxInstruction_t *); BX_SMF void IDIV_EAXEd(BxInstruction_t *); BX_SMF void INC_Eb(BxInstruction_t *); BX_SMF void DEC_Eb(BxInstruction_t *); BX_SMF void INC_Ed(BxInstruction_t *); BX_SMF void DEC_Ed(BxInstruction_t *); BX_SMF void CALL_Ed(BxInstruction_t *); BX_SMF void CALL_Ew(BxInstruction_t *); BX_SMF void CALL32_Ep(BxInstruction_t *); BX_SMF void CALL16_Ep(BxInstruction_t *); BX_SMF void JMP_Ed(BxInstruction_t *); BX_SMF void JMP_Ew(BxInstruction_t *); BX_SMF void JMP32_Ep(BxInstruction_t *); BX_SMF void JMP16_Ep(BxInstruction_t *); BX_SMF void PUSH_Ed(BxInstruction_t *); BX_SMF void PUSH_Ew(BxInstruction_t *); BX_SMF void SLDT_Ew(BxInstruction_t *); BX_SMF void STR_Ew(BxInstruction_t *); BX_SMF void LLDT_Ew(BxInstruction_t *); BX_SMF void LTR_Ew(BxInstruction_t *); BX_SMF void VERR_Ew(BxInstruction_t *); BX_SMF void VERW_Ew(BxInstruction_t *); BX_SMF void SGDT_Ms(BxInstruction_t *); BX_SMF void SIDT_Ms(BxInstruction_t *); BX_SMF void LGDT_Ms(BxInstruction_t *); BX_SMF void LIDT_Ms(BxInstruction_t *); BX_SMF void SMSW_Ew(BxInstruction_t *); BX_SMF void LMSW_Ew(BxInstruction_t *); BX_SMF void BT_EvIb(BxInstruction_t *); BX_SMF void BTS_EvIb(BxInstruction_t *); BX_SMF void BTR_EvIb(BxInstruction_t *); BX_SMF void BTC_EvIb(BxInstruction_t *); BX_SMF void ESC0(BxInstruction_t *); BX_SMF void ESC1(BxInstruction_t *); BX_SMF void ESC2(BxInstruction_t *); BX_SMF void ESC3(BxInstruction_t *); BX_SMF void ESC4(BxInstruction_t *); BX_SMF void ESC5(BxInstruction_t *); BX_SMF void ESC6(BxInstruction_t *); BX_SMF void ESC7(BxInstruction_t *); BX_SMF void fpu_execute(BxInstruction_t *i); BX_SMF void fpu_init(void); BX_SMF void CMPXCHG_XBTS(BxInstruction_t *); BX_SMF void CMPXCHG_IBTS(BxInstruction_t *); BX_SMF void CMPXCHG_EbGb(BxInstruction_t *); BX_SMF void CMPXCHG_EdGd(BxInstruction_t *); BX_SMF void CMPXCHG8B(BxInstruction_t *); BX_SMF void XADD_EbGb(BxInstruction_t *); BX_SMF void XADD_EdGd(BxInstruction_t *); BX_SMF void RETnear32_Iw(BxInstruction_t *); BX_SMF void RETnear16_Iw(BxInstruction_t *); BX_SMF void RETfar32_Iw(BxInstruction_t *); BX_SMF void RETfar16_Iw(BxInstruction_t *); BX_SMF void LOADALL(BxInstruction_t *); BX_SMF void CMOV_GdEd(BxInstruction_t *); BX_SMF void CMOV_GwEw(BxInstruction_t *); BX_SMF void ADD_EwGw(BxInstruction_t *); BX_SMF void ADD_GwEw(BxInstruction_t *); BX_SMF void ADD_AXIw(BxInstruction_t *); BX_SMF void ADC_EwGw(BxInstruction_t *); BX_SMF void ADC_GwEw(BxInstruction_t *); BX_SMF void ADC_AXIw(BxInstruction_t *); BX_SMF void SBB_EwGw(BxInstruction_t *); BX_SMF void SBB_GwEw(BxInstruction_t *); BX_SMF void SBB_AXIw(BxInstruction_t *); BX_SMF void SBB_EwIw(BxInstruction_t *); BX_SMF void SUB_EwGw(BxInstruction_t *); BX_SMF void SUB_GwEw(BxInstruction_t *); BX_SMF void SUB_AXIw(BxInstruction_t *); BX_SMF void CMP_EwGw(BxInstruction_t *); BX_SMF void CMP_GwEw(BxInstruction_t *); BX_SMF void CMP_AXIw(BxInstruction_t *); BX_SMF void CWDE(BxInstruction_t *); BX_SMF void CDQ(BxInstruction_t *); BX_SMF void XADD_EwGw(BxInstruction_t *); BX_SMF void ADD_EwIw(BxInstruction_t *); BX_SMF void ADC_EwIw(BxInstruction_t *); BX_SMF void SUB_EwIw(BxInstruction_t *); BX_SMF void CMP_EwIw(BxInstruction_t *); BX_SMF void NEG_Ew(BxInstruction_t *); BX_SMF void INC_Ew(BxInstruction_t *); BX_SMF void DEC_Ew(BxInstruction_t *); BX_SMF void CMPXCHG_EwGw(BxInstruction_t *); BX_SMF void MUL_AXEw(BxInstruction_t *); BX_SMF void IMUL_AXEw(BxInstruction_t *); BX_SMF void DIV_AXEw(BxInstruction_t *); BX_SMF void IDIV_AXEw(BxInstruction_t *); BX_SMF void IMUL_GwEwIw(BxInstruction_t *); BX_SMF void IMUL_GwEw(BxInstruction_t *); BX_SMF void NOP(BxInstruction_t *); BX_SMF void MOV_RLIb(BxInstruction_t *); BX_SMF void MOV_RHIb(BxInstruction_t *); BX_SMF void MOV_RXIw(BxInstruction_t *); BX_SMF void MOV_ERXId(BxInstruction_t *); BX_SMF void INC_RX(BxInstruction_t *); BX_SMF void DEC_RX(BxInstruction_t *); BX_SMF void INC_ERX(BxInstruction_t *); BX_SMF void DEC_ERX(BxInstruction_t *); BX_SMF void PUSH_RX(BxInstruction_t *); BX_SMF void POP_RX(BxInstruction_t *); BX_SMF void PUSH_ERX(BxInstruction_t *); BX_SMF void POP_ERX(BxInstruction_t *); BX_SMF void POP_Ew(BxInstruction_t *); BX_SMF void POP_Ed(BxInstruction_t *); BX_SMF void XCHG_RXAX(BxInstruction_t *); BX_SMF void XCHG_ERXEAX(BxInstruction_t *); // mch added BX_SMF void INVLPG(BxInstruction_t *); BX_SMF void wait_for_interrupt(); BX_SMF void RSM(BxInstruction_t *); BX_SMF void WRMSR(BxInstruction_t *); BX_SMF void RDTSC(BxInstruction_t *); BX_SMF void RDMSR(BxInstruction_t *); BX_SMF void SetCR0(Bit32u val_32); BX_SMF void dynamic_translate(void); BX_SMF void dynamic_init(void); BX_SMF unsigned FetchDecode(Bit8u *, BxInstruction_t *, unsigned, Boolean); BX_SMF void UndefinedOpcode(BxInstruction_t *); BX_SMF void BxError(BxInstruction_t *i); BX_SMF void BxResolveError(BxInstruction_t *i); BX_SMF void Resolve16Mod0Rm0(BxInstruction_t *); BX_SMF void Resolve16Mod0Rm1(BxInstruction_t *); BX_SMF void Resolve16Mod0Rm2(BxInstruction_t *); BX_SMF void Resolve16Mod0Rm3(BxInstruction_t *); BX_SMF void Resolve16Mod0Rm4(BxInstruction_t *); BX_SMF void Resolve16Mod0Rm5(BxInstruction_t *); BX_SMF void Resolve16Mod0Rm7(BxInstruction_t *); BX_SMF void Resolve16Mod1or2Rm0(BxInstruction_t *); BX_SMF void Resolve16Mod1or2Rm1(BxInstruction_t *); BX_SMF void Resolve16Mod1or2Rm2(BxInstruction_t *); BX_SMF void Resolve16Mod1or2Rm3(BxInstruction_t *); BX_SMF void Resolve16Mod1or2Rm4(BxInstruction_t *); BX_SMF void Resolve16Mod1or2Rm5(BxInstruction_t *); BX_SMF void Resolve16Mod1or2Rm6(BxInstruction_t *); BX_SMF void Resolve16Mod1or2Rm7(BxInstruction_t *); BX_SMF void Resolve32Mod0Rm0(BxInstruction_t *); BX_SMF void Resolve32Mod0Rm1(BxInstruction_t *); BX_SMF void Resolve32Mod0Rm2(BxInstruction_t *); BX_SMF void Resolve32Mod0Rm3(BxInstruction_t *); BX_SMF void Resolve32Mod0Rm6(BxInstruction_t *); BX_SMF void Resolve32Mod0Rm7(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Rm0(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Rm1(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Rm2(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Rm3(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Rm5(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Rm6(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Rm7(BxInstruction_t *); BX_SMF void Resolve32Mod0Base0(BxInstruction_t *); BX_SMF void Resolve32Mod0Base1(BxInstruction_t *); BX_SMF void Resolve32Mod0Base2(BxInstruction_t *); BX_SMF void Resolve32Mod0Base3(BxInstruction_t *); BX_SMF void Resolve32Mod0Base4(BxInstruction_t *); BX_SMF void Resolve32Mod0Base5(BxInstruction_t *); BX_SMF void Resolve32Mod0Base6(BxInstruction_t *); BX_SMF void Resolve32Mod0Base7(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Base0(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Base1(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Base2(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Base3(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Base4(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Base5(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Base6(BxInstruction_t *); BX_SMF void Resolve32Mod1or2Base7(BxInstruction_t *); BX_SMF void REP(void (*)(void)); BX_SMF void REP_ZF(void (*)(void), unsigned rep_prefix); #if BX_DEBUGGER BX_SMF void dbg_take_irq(void); BX_SMF void dbg_force_interrupt(unsigned vector); BX_SMF void dbg_take_dma(void); BX_SMF Boolean dbg_get_cpu(bx_dbg_cpu_t *cpu); BX_SMF Boolean dbg_set_cpu(bx_dbg_cpu_t *cpu); BX_SMF Boolean dbg_set_reg(unsigned reg, Bit32u val); BX_SMF Bit32u dbg_get_reg(unsigned reg); BX_SMF Boolean dbg_get_sreg(bx_dbg_sreg_t *sreg, unsigned sreg_no); BX_SMF unsigned dbg_query_pending(void); BX_SMF Bit32u dbg_get_descriptor_l(bx_descriptor_t *); BX_SMF Bit32u dbg_get_descriptor_h(bx_descriptor_t *); BX_SMF Bit32u dbg_get_eflags(void); BX_SMF Boolean dbg_is_begin_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr, Bit32u is_32); BX_SMF Boolean dbg_is_end_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr, Bit32u is_32); #endif #if BX_DEBUGGER || BX_DISASM || BX_INSTRUMENTATION BX_SMF void dbg_xlate_linear2phy(Bit32u linear, Bit32u *phy, Boolean *valid); #endif BX_SMF void atexit(void); // now for some ancillary functions... BX_SMF void cpu_loop(Bit32s max_instr_count); BX_SMF void decode_exgx16(unsigned need_fetch); BX_SMF void decode_exgx32(unsigned need_fetch); BX_SMF void prefetch(void); BX_SMF void revalidate_prefetch_q(void); BX_SMF void invalidate_prefetch_q(void); BX_SMF void write_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length); BX_SMF void read_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length); BX_SMF void write_virtual_byte(unsigned seg, Bit32u offset, Bit8u *data); BX_SMF void write_virtual_word(unsigned seg, Bit32u offset, Bit16u *data); BX_SMF void write_virtual_dword(unsigned seg, Bit32u offset, Bit32u *data); BX_SMF void read_virtual_byte(unsigned seg, Bit32u offset, Bit8u *data); BX_SMF void read_virtual_word(unsigned seg, Bit32u offset, Bit16u *data); BX_SMF void read_virtual_dword(unsigned seg, Bit32u offset, Bit32u *data); BX_SMF void read_RMW_virtual_byte(unsigned seg, Bit32u offset, Bit8u *data); BX_SMF void read_RMW_virtual_word(unsigned seg, Bit32u offset, Bit16u *data); BX_SMF void read_RMW_virtual_dword(unsigned seg, Bit32u offset, Bit32u *data); BX_SMF void write_RMW_virtual_byte(Bit8u val8); BX_SMF void write_RMW_virtual_word(Bit16u val16); BX_SMF void write_RMW_virtual_dword(Bit32u val32); BX_SMF void access_linear(Bit32u address, unsigned length, unsigned pl, unsigned rw, void *data); BX_SMF Bit32u itranslate_linear(Bit32u laddress, unsigned pl); BX_SMF Bit32u dtranslate_linear(Bit32u laddress, unsigned pl, unsigned rw); BX_SMF void TLB_flush(void); BX_SMF void TLB_clear(void); BX_SMF void TLB_init(void); BX_SMF void set_INTR(Boolean value); BX_SMF char *strseg(bx_segment_reg_t *seg); BX_SMF void interrupt(Bit8u vector, Boolean is_INT, Boolean is_error_code, Bit16u error_code); #if BX_CPU_LEVEL >= 2 BX_SMF void exception(unsigned vector, Bit16u error_code, Boolean is_INT); #endif BX_SMF int int_number(bx_segment_reg_t *seg); BX_SMF void shutdown_cpu(void); BX_SMF void enable_paging(void); BX_SMF void disable_paging(void); BX_SMF void CR3_change(Bit32u value32); BX_SMF void reset(unsigned source); BX_SMF void jump_protected(BxInstruction_t *, Bit16u cs, Bit32u disp32); BX_SMF void call_protected(BxInstruction_t *, Bit16u cs, Bit32u disp32); BX_SMF void return_protected(BxInstruction_t *, Bit16u pop_bytes); BX_SMF void iret_protected(BxInstruction_t *); BX_SMF void validate_seg_regs(void); BX_SMF void stack_return_to_v86(Bit32u new_eip, Bit32u raw_cs_selector, Bit32u flags32); BX_SMF void stack_return_from_v86(BxInstruction_t *); BX_SMF void init_v8086_mode(void); BX_SMF void v8086_message(void); BX_SMF void task_switch(bx_selector_t *selector, bx_descriptor_t *descriptor, unsigned source, Bit32u dword1, Bit32u dword2); BX_SMF void get_SS_ESP_from_TSS(unsigned pl, Bit16u *ss, Bit32u *esp); BX_SMF void write_flags(Bit16u flags, Boolean change_IOPL, Boolean change_IF); BX_SMF void write_eflags(Bit32u eflags, Boolean change_IOPL, Boolean change_IF, Boolean change_VM, Boolean change_RF); BX_SMF Bit16u read_flags(void); BX_SMF Bit32u read_eflags(void); BX_SMF Bit8u inp8(Bit16u addr); BX_SMF void outp8(Bit16u addr, Bit8u value); BX_SMF Bit16u inp16(Bit16u addr); BX_SMF void outp16(Bit16u addr, Bit16u value); BX_SMF Bit32u inp32(Bit16u addr); BX_SMF void outp32(Bit16u addr, Bit32u value); BX_SMF Boolean allow_io(Bit16u addr, unsigned len); BX_SMF void enter_protected_mode(void); BX_SMF void enter_real_mode(void); BX_SMF void parse_selector(Bit16u raw_selector, bx_selector_t *selector); BX_SMF void parse_descriptor(Bit32u dword1, Bit32u dword2, bx_descriptor_t *temp); BX_SMF void load_ldtr(bx_selector_t *selector, bx_descriptor_t *descriptor); BX_SMF void load_cs(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl); BX_SMF void load_ss(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl); BX_SMF void fetch_raw_descriptor(bx_selector_t *selector, Bit32u *dword1, Bit32u *dword2, Bit8u exception); BX_SMF void load_seg_reg(bx_segment_reg_t *seg, Bit16u new_value); BX_SMF Boolean fetch_raw_descriptor2(bx_selector_t *selector, Bit32u *dword1, Bit32u *dword2); BX_SMF void push_16(Bit16u value16); BX_SMF void push_32(Bit32u value32); BX_SMF void pop_16(Bit16u *value16_ptr); BX_SMF void pop_32(Bit32u *value32_ptr); BX_SMF Boolean can_push(bx_descriptor_t *descriptor, Bit32u esp, Bit32u bytes); BX_SMF Boolean can_pop(Bit32u bytes); BX_SMF void sanity_checks(void); BX_SMF void debug(Bit32u offset); #if BX_X86_DEBUGGER // x86 hardware debug support BX_SMF Bit32u hwdebug_compare(Bit32u laddr, unsigned size, unsigned opa, unsigned opb); #endif BX_SMF BX_CPP_INLINE void set_CF(Boolean val); BX_SMF BX_CPP_INLINE void set_AF(Boolean val); BX_SMF BX_CPP_INLINE void set_ZF(Boolean val); BX_SMF BX_CPP_INLINE void set_SF(Boolean val); BX_SMF BX_CPP_INLINE void set_OF(Boolean val); BX_SMF BX_CPP_INLINE void set_PF(Boolean val); BX_SMF BX_CPP_INLINE void set_PF_base(Bit8u val); BX_SMF BX_CPP_INLINE void set_AX(Bit16u ax); BX_SMF BX_CPP_INLINE void set_BX(Bit16u bx); BX_SMF BX_CPP_INLINE void set_CX(Bit16u cx); BX_SMF BX_CPP_INLINE void set_DX(Bit16u dx); BX_SMF BX_CPP_INLINE void set_AL(Bit8u al); BX_SMF BX_CPP_INLINE void set_AH(Bit8u ah); BX_SMF BX_CPP_INLINE void set_BL(Bit8u bl); BX_SMF BX_CPP_INLINE void set_BH(Bit8u bh); BX_SMF BX_CPP_INLINE void set_CL(Bit8u cl); BX_SMF BX_CPP_INLINE void set_CH(Bit8u ch); BX_SMF BX_CPP_INLINE void set_DL(Bit8u dl); BX_SMF BX_CPP_INLINE void set_DH(Bit8u dh); BX_SMF BX_CPP_INLINE Bit8u get_AL(void); BX_SMF BX_CPP_INLINE Bit8u get_AH(void); BX_SMF BX_CPP_INLINE Bit8u get_BL(void); BX_SMF BX_CPP_INLINE Bit8u get_BH(void); BX_SMF BX_CPP_INLINE Bit8u get_CL(void); BX_SMF BX_CPP_INLINE Bit8u get_CH(void); BX_SMF BX_CPP_INLINE Bit8u get_DL(void); BX_SMF BX_CPP_INLINE Bit8u get_DH(void); BX_SMF BX_CPP_INLINE Bit16u get_AX(void); BX_SMF BX_CPP_INLINE Bit16u get_BX(void); BX_SMF BX_CPP_INLINE Bit16u get_CX(void); BX_SMF BX_CPP_INLINE Bit16u get_DX(void); #if BX_CPU_LEVEL >= 2 BX_SMF BX_CPP_INLINE Boolean real_mode(void); #endif #if BX_CPU_LEVEL >= 3 BX_SMF BX_CPP_INLINE Boolean protected_mode(void); BX_SMF BX_CPP_INLINE Boolean v8086_mode(void); #endif #if BX_SUPPORT_APIC bx_local_apic_c local_apic; Boolean int_from_local_apic; #endif }; #if BX_X86_DEBUGGER #define BX_HWDebugInstruction 0x00 #define BX_HWDebugMemW 0x01 #define BX_HWDebugIO 0x02 #define BX_HWDebugMemRW 0x03 #endif #if BX_SMP_PROCESSORS==1 // single processor simulation, so there's one of everything extern BX_CPU_C bx_cpu; #else // multiprocessor simulation, we need an array of cpus and memories extern BX_CPU_C *bx_cpu_array[BX_SMP_PROCESSORS]; #endif #if defined(NEED_CPU_REG_SHORTCUTS) BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_AX(Bit16u ax) { AX = ax; }; BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_BX(Bit16u bx) { BX = bx; }; BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_CX(Bit16u cx) { CX = cx; }; BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_DX(Bit16u dx) { DX = dx; }; BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_AL(Bit8u al) { AL = al; }; BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_AH(Bit8u ah) { AH = ah; }; BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_BL(Bit8u bl) { BL = bl; }; BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_BH(Bit8u bh) { BH = bh; }; BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_CL(Bit8u cl) { CL = cl; }; BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_CH(Bit8u ch) { CH = ch; }; BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_DL(Bit8u dl) { DL = dl; }; BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_DH(Bit8u dh) { DH = dh; }; BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_AL(void) { return(AL); }; BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_AH(void) { return(AH); }; BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_BL(void) { return(BL); }; BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_BH(void) { return(BH); }; BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_CL(void) { return(CL); }; BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_CH(void) { return(CH); }; BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_DL(void) { return(DL); }; BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_DH(void) { return(DH); }; BX_SMF BX_CPP_INLINE Bit16u BX_CPU_C_PREFIX get_AX(void) { return(AX); }; BX_SMF BX_CPP_INLINE Bit16u BX_CPU_C_PREFIX get_BX(void) { return(BX); }; BX_SMF BX_CPP_INLINE Bit16u BX_CPU_C_PREFIX get_CX(void) { return(CX); }; BX_SMF BX_CPP_INLINE Bit16u BX_CPU_C_PREFIX get_DX(void) { return(DX); }; #endif #if BX_CPU_LEVEL >= 2 BX_CPP_INLINE Boolean BX_CPU_C::real_mode(void) { return( !BX_CPU_THIS_PTR cr0.pe ); }; #endif #if BX_CPU_LEVEL == 2 BX_CPP_INLINE Boolean BX_CPU_C::protected_mode(void) { return( BX_CPU_THIS_PTR cr0.pe ); }; #endif #if BX_CPU_LEVEL >= 3 # if BX_SUPPORT_V8086_MODE BX_CPP_INLINE Boolean BX_CPU_C::v8086_mode(void) { return(BX_CPU_THIS_PTR eflags.vm); } BX_CPP_INLINE Boolean BX_CPU_C::protected_mode(void) { return(BX_CPU_THIS_PTR cr0.pe && !BX_CPU_THIS_PTR eflags.vm); } # else BX_CPP_INLINE Boolean BX_CPU_C::v8086_mode(void) { return(0); } BX_CPP_INLINE Boolean BX_CPU_C::protected_mode(void) { return(BX_CPU_THIS_PTR cr0.pe); } # endif #endif BX_CPP_INLINE void BX_CPU_C::set_CF(Boolean val) { BX_CPU_THIS_PTR lf_flags_status &= 0xfffff0; BX_CPU_THIS_PTR eflags.cf = val; } BX_CPP_INLINE void BX_CPU_C::set_AF(Boolean val) { BX_CPU_THIS_PTR lf_flags_status &= 0xfff0ff; BX_CPU_THIS_PTR eflags.af = val; } BX_CPP_INLINE void BX_CPU_C::set_ZF(Boolean val) { BX_CPU_THIS_PTR lf_flags_status &= 0xff0fff; BX_CPU_THIS_PTR eflags.zf = val; } BX_CPP_INLINE void BX_CPU_C::set_SF(Boolean val) { BX_CPU_THIS_PTR lf_flags_status &= 0xf0ffff; BX_CPU_THIS_PTR eflags.sf = val; } BX_CPP_INLINE void BX_CPU_C::set_OF(Boolean val) { BX_CPU_THIS_PTR lf_flags_status &= 0x0fffff; BX_CPU_THIS_PTR eflags.of = val; } BX_CPP_INLINE void BX_CPU_C::set_PF(Boolean val) { BX_CPU_THIS_PTR lf_flags_status &= 0xffff0f; BX_CPU_THIS_PTR lf_pf = val; } BX_CPP_INLINE void BX_CPU_C::set_PF_base(Bit8u val) { BX_CPU_THIS_PTR eflags.pf_byte = val; BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0xffff0f) | BX_LF_MASK_P; } #define SET_FLAGS_OSZAPC_8(op1, op2, result, ins) { \ BX_CPU_THIS_PTR oszapc.op1_8 = op1; \ BX_CPU_THIS_PTR oszapc.op2_8 = op2; \ BX_CPU_THIS_PTR oszapc.result_8 = result; \ BX_CPU_THIS_PTR oszapc.instr = ins; \ BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \ } #define SET_FLAGS_OSZAPC_8_CF(op1, op2, result, ins, last_CF) { \ BX_CPU_THIS_PTR oszapc.op1_8 = op1; \ BX_CPU_THIS_PTR oszapc.op2_8 = op2; \ BX_CPU_THIS_PTR oszapc.result_8 = result; \ BX_CPU_THIS_PTR oszapc.instr = ins; \ BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \ BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \ } #define SET_FLAGS_OSZAPC_16(op1, op2, result, ins) { \ BX_CPU_THIS_PTR oszapc.op1_16 = op1; \ BX_CPU_THIS_PTR oszapc.op2_16 = op2; \ BX_CPU_THIS_PTR oszapc.result_16 = result; \ BX_CPU_THIS_PTR oszapc.instr = ins; \ BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \ } #define SET_FLAGS_OSZAPC_16_CF(op1, op2, result, ins, last_CF) { \ BX_CPU_THIS_PTR oszapc.op1_16 = op1; \ BX_CPU_THIS_PTR oszapc.op2_16 = op2; \ BX_CPU_THIS_PTR oszapc.result_16 = result; \ BX_CPU_THIS_PTR oszapc.instr = ins; \ BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \ BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \ } #define SET_FLAGS_OSZAPC_32(op1, op2, result, ins) { \ BX_CPU_THIS_PTR oszapc.op1_32 = op1; \ BX_CPU_THIS_PTR oszapc.op2_32 = op2; \ BX_CPU_THIS_PTR oszapc.result_32 = result; \ BX_CPU_THIS_PTR oszapc.instr = ins; \ BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \ } #define SET_FLAGS_OSZAPC_32_CF(op1, op2, result, ins, last_CF) { \ BX_CPU_THIS_PTR oszapc.op1_32 = op1; \ BX_CPU_THIS_PTR oszapc.op2_32 = op2; \ BX_CPU_THIS_PTR oszapc.result_32 = result; \ BX_CPU_THIS_PTR oszapc.instr = ins; \ BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \ BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \ } #define SET_FLAGS_OSZAP_8(op1, op2, result, ins) { \ BX_CPU_THIS_PTR oszap.op1_8 = op1; \ BX_CPU_THIS_PTR oszap.op2_8 = op2; \ BX_CPU_THIS_PTR oszap.result_8 = result; \ BX_CPU_THIS_PTR oszap.instr = ins; \ BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \ } #define SET_FLAGS_OSZAP_16(op1, op2, result, ins) { \ BX_CPU_THIS_PTR oszap.op1_16 = op1; \ BX_CPU_THIS_PTR oszap.op2_16 = op2; \ BX_CPU_THIS_PTR oszap.result_16 = result; \ BX_CPU_THIS_PTR oszap.instr = ins; \ BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \ } #define SET_FLAGS_OSZAP_32(op1, op2, result, ins) { \ BX_CPU_THIS_PTR oszap.op1_32 = op1; \ BX_CPU_THIS_PTR oszap.op2_32 = op2; \ BX_CPU_THIS_PTR oszap.result_32 = result; \ BX_CPU_THIS_PTR oszap.instr = ins; \ BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \ } #define SET_FLAGS_OxxxxC(new_of, new_cf) { \ BX_CPU_THIS_PTR eflags.of = (Boolean) new_of; \ BX_CPU_THIS_PTR eflags.cf = (Boolean) new_cf; \ BX_CPU_THIS_PTR lf_flags_status &= 0x0ffff0; \ /* ??? could also mark other bits undefined here */ \ } extern const Boolean bx_parity_lookup[256]; #define BX_REPE_PREFIX 10 #define BX_REPNE_PREFIX 11 #define BX_TASK_FROM_JUMP 10 #define BX_TASK_FROM_CALL_OR_INT 11 #define BX_TASK_FROM_IRET 12 // // For decoding... // // If the Immediate bit is set, the lowest 3 bits of the attribute // specify which kinds of immediate data a required by instruction. #define BxImmediate 0x000f // bits 3..0: any immediate #define BxImmediate_Ib 0x0001 // 8 bits regardless #define BxImmediate_Ib_SE 0x0002 // sign extend to OS size #define BxImmediate_Iv 0x0003 // 16 or 32 depending on OS size #define BxImmediate_Iw 0x0004 // 16 bits regardless #define BxImmediate_IvIw 0x0005 // call_Ap #define BxImmediate_IwIb 0x0006 // enter_IwIb #define BxImmediate_O 0x0007 // mov_ALOb, mov_ObAL, mov_eAXOv, mov_OveAX #define BxImmediate_BrOff8 0x0008 // Relative branch offset byte #define BxImmediate_BrOff16 0x0009 // Relative branch offset word #define BxImmediate_BrOff32 BxImmediate_Iv #define BxPrefix 0x0010 // bit 4 #define BxAnother 0x0020 // bit 5 #define BxRepeatable 0x0040 // bit 6 #define BxRepeatableZF 0x0080 // bit 7 #define BxGroupN 0x0100 // bits 8 #define BxGroup1 BxGroupN #define BxGroup2 BxGroupN #define BxGroup3 BxGroupN #define BxGroup4 BxGroupN #define BxGroup5 BxGroupN #define BxGroup6 BxGroupN #define BxGroup7 BxGroupN #define BxGroup8 BxGroupN #define BxGroup9 BxGroupN #define BxGroupa BxGroupN #if BX_DEBUGGER typedef enum _show_flags { Flag_call = 0x1, Flag_ret = 0x2, Flag_int = 0x4, Flag_iret = 0x8, Flag_intsig = 0x10 } show_flags_t; #endif #endif // #ifndef BX_CPU_H