///////////////////////////////////////////////////////////////////////// // $Id: segment_ctrl_pro.cc,v 1.32 2005-03-12 18:38:56 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR void BX_CPP_AttrRegparmN(2) BX_CPU_C::load_seg_reg(bx_segment_reg_t *seg, Bit16u new_value) { #if BX_CPU_LEVEL >= 3 if (v8086_mode()) { /* ??? don't need to set all these fields */ seg->selector.value = new_value; seg->selector.rpl = 3; seg->cache.valid = 1; seg->cache.p = 1; seg->cache.dpl = 3; seg->cache.segment = 1; /* regular segment */ if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]) { seg->cache.u.segment.executable = 1; /* code segment */ #if BX_SUPPORT_ICACHE BX_CPU_THIS_PTR iCache.fetchModeMask = createFetchModeMask(BX_CPU_THIS); #endif invalidate_prefetch_q(); } else seg->cache.u.segment.executable = 0; /* data segment */ seg->cache.u.segment.c_ed = 0; /* expand up */ seg->cache.u.segment.r_w = 1; /* writeable */ seg->cache.u.segment.a = 1; /* accessed */ seg->cache.u.segment.base = new_value << 4; seg->cache.u.segment.limit = 0xffff; seg->cache.u.segment.limit_scaled = 0xffff; seg->cache.u.segment.g = 0; /* byte granular */ seg->cache.u.segment.d_b = 0; /* default 16bit size */ #if BX_SUPPORT_X86_64 seg->cache.u.segment.l = 0; /* default 16bit size */ #endif seg->cache.u.segment.avl = 0; return; } #endif #if BX_CPU_LEVEL >= 2 if (protected_mode()) { if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]) { if ((new_value & 0xfffc) == 0) { /* null selector */ #if BX_SUPPORT_X86_64 // allow SS = 0 in 64 bit mode with cpl != 3 if (BX_CPU_THIS_PTR msr.lma && CPL != 3) { seg->selector.index = 0; seg->selector.ti = 0; seg->selector.rpl = 0; seg->selector.value = 0; seg->cache.valid = 0; /* invalidate null selector */ return; } #endif BX_ERROR(("load_seg_reg: SS: new_value == 0")); exception(BX_GP_EXCEPTION, 0, 0); return; } bx_descriptor_t descriptor; Bit32u dword1, dword2; Bit16u index = new_value >> 3; Bit8u ti = (new_value >> 2) & 0x01; Bit8u rpl = (new_value & 0x03); /* examine AR byte of destination selector for legal values: */ if (ti == 0) { /* GDT */ if ((index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit) { BX_ERROR(("load_seg_reg: GDT: %s: index(%04x*8+7) > limit(%06x)", BX_CPU_THIS_PTR strseg(seg), (unsigned) index, (unsigned) BX_CPU_THIS_PTR gdtr.limit)); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); return; } access_linear(BX_CPU_THIS_PTR gdtr.base + index*8, 4, 0, BX_READ, &dword1); access_linear(BX_CPU_THIS_PTR gdtr.base + index*8 + 4, 4, 0, BX_READ, &dword2); } else { /* LDT */ if (BX_CPU_THIS_PTR ldtr.cache.valid==0) { /* ??? */ BX_ERROR(("load_seg_reg: LDT invalid")); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); return; } if ((index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit) { BX_ERROR(("load_seg_reg ss: LDT: index > limit")); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); return; } access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8, 4, 0, BX_READ, &dword1); access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8 + 4, 4, 0, BX_READ, &dword2); } /* selector's RPL must = CPL, else #GP(selector) */ if (rpl != CPL) { BX_ERROR(("load_seg_reg(): rpl != CPL")); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); return; } parse_descriptor(dword1, dword2, &descriptor); if (descriptor.valid==0) { BX_ERROR(("load_seg_reg(): valid bit cleared")); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); return; } /* AR byte must indicate a writable data segment else #GP(selector) */ if ( (descriptor.segment==0) || descriptor.u.segment.executable || descriptor.u.segment.r_w==0 ) { BX_ERROR(("load_seg_reg(): not writable data segment")); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); } /* DPL in the AR byte must equal CPL else #GP(selector) */ if (descriptor.dpl != CPL) { BX_ERROR(("load_seg_reg(): dpl != CPL")); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); } /* segment must be marked PRESENT else #SS(selector) */ if (descriptor.p == 0) { BX_ERROR(("load_seg_reg(): not present")); exception(BX_SS_EXCEPTION, new_value & 0xfffc, 0); } /* load SS with selector, load SS cache with descriptor */ BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = new_value; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = index; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = ti; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = rpl; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = descriptor; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 1; /* now set accessed bit in descriptor */ dword2 |= 0x0100; if (ti == 0) { /* GDT */ access_linear(BX_CPU_THIS_PTR gdtr.base + index*8 + 4, 4, 0, BX_WRITE, &dword2); } else { /* LDT */ access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8 + 4, 4, 0, BX_WRITE, &dword2); } return; } else if ( (seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]) || (seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]) #if BX_CPU_LEVEL >= 3 || (seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]) || (seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS]) #endif ) { Bit16u index; Bit8u ti; Bit8u rpl; bx_descriptor_t descriptor; Bit32u dword1, dword2; if ((new_value & 0xfffc) == 0) { /* null selector */ seg->selector.index = 0; seg->selector.ti = 0; seg->selector.rpl = 0; seg->selector.value = 0; seg->cache.valid = 0; /* invalidate null selector */ return; } index = new_value >> 3; ti = (new_value >> 2) & 0x01; rpl = (new_value & 0x03); /* selector index must be within descriptor limits, else #GP(selector) */ if (ti == 0) { /* GDT */ if ((index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit) { BX_ERROR(("load_seg_reg: GDT: %s: index(%04x) > limit(%06x)", BX_CPU_THIS_PTR strseg(seg), (unsigned) index, (unsigned) BX_CPU_THIS_PTR gdtr.limit)); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); return; } access_linear(BX_CPU_THIS_PTR gdtr.base + index*8, 4, 0, BX_READ, &dword1); access_linear(BX_CPU_THIS_PTR gdtr.base + index*8 + 4, 4, 0, BX_READ, &dword2); } else { /* LDT */ if (BX_CPU_THIS_PTR ldtr.cache.valid==0) { BX_ERROR(("load_seg_reg: LDT invalid")); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); return; } if ((index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit) { BX_ERROR(("load_seg_reg ds,es: LDT: index > limit")); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); return; } access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8, 4, 0, BX_READ, &dword1); access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8 + 4, 4, 0, BX_READ, &dword2); } parse_descriptor(dword1, dword2, &descriptor); if (descriptor.valid==0) { BX_ERROR(("load_seg_reg(): valid bit cleared")); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); return; } /* AR byte must indicate data or readable code segment else #GP(selector) */ if ( descriptor.segment==0 || (descriptor.u.segment.executable==1 && descriptor.u.segment.r_w==0) ) { BX_ERROR(("load_seg_reg(): not data or readable code")); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); return; } /* If data or non-conforming code, then both the RPL and the CPL * must be less than or equal to DPL in AR byte else #GP(selector) */ if ( descriptor.u.segment.executable==0 || descriptor.u.segment.c_ed==0 ) { if ((rpl > descriptor.dpl) || (CPL > descriptor.dpl)) { BX_ERROR(("load_seg_reg: RPL & CPL must be <= DPL")); exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0); return; } } /* segment must be marked PRESENT else #NP(selector) */ if (descriptor.p == 0) { BX_ERROR(("load_seg_reg: segment not present")); exception(BX_NP_EXCEPTION, new_value & 0xfffc, 0); return; } /* load segment register with selector */ /* load segment register-cache with descriptor */ seg->selector.value = new_value; seg->selector.index = index; seg->selector.ti = ti; seg->selector.rpl = rpl; seg->cache = descriptor; seg->cache.valid = 1; /* now set accessed bit in descriptor */ /* wmr: don't bother if it's already set (thus allowing */ /* GDT to be in read-only pages like real hdwe does) */ if (!(dword2 & 0x0100)) { dword2 |= 0x0100; if (ti == 0) { /* GDT */ access_linear(BX_CPU_THIS_PTR gdtr.base + index*8 + 4, 4, 0, BX_WRITE, &dword2); } else { /* LDT */ access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8 + 4, 4, 0, BX_WRITE, &dword2); } } return; } else { BX_PANIC(("load_seg_reg(): invalid segment register passed!")); return; } } /* real mode */ /* www.x86.org: According to Intel, each time any segment register is loaded in real mode, the base address is calculated as 16 times the segment value, while the access rights and size limit attributes are given fixed, "real-mode compatible" values. This is not true. In fact, only the CS descriptor caches for the 286, 386, and 486 get loaded with fixed values each time the segment register is loaded. Loading CS, or any other segment register in real mode, on later Intel processors doesn't change the access rights or the segment size limit attributes stored in the descriptor cache registers. For these segments, the access rights and segment size limit attributes from any previous setting are honored. */ /* ??? */ if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]) { BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = new_value; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = 1; /* regular segment */ BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = 1; /* code segment */ BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = 0; /* expand up */ BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = 1; /* writeable */ BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = 1; /* accessed */ BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = new_value << 4; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xffff; #if BX_CPU_LEVEL >= 3 BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = 0; /* byte granular */ BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 0; /* default 16bit size */ #if BX_SUPPORT_X86_64 BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.l = 0; /* default 16bit size */ #endif BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0; #endif #if BX_SUPPORT_ICACHE BX_CPU_THIS_PTR iCache.fetchModeMask = createFetchModeMask(BX_CPU_THIS); #endif invalidate_prefetch_q(); } else { /* SS, DS, ES, FS, GS */ seg->selector.value = new_value; seg->cache.valid = 1; seg->cache.p = 1; // set this??? seg->cache.u.segment.base = new_value << 4; seg->cache.segment = 1; /* regular segment */ seg->cache.u.segment.a = 1; /* accessed */ /* set G, D_B, AVL bits here ??? */ } #else /* 8086 */ seg->selector.value = new_value; seg->cache.u.segment.base = new_value << 4; #endif } #if BX_SUPPORT_X86_64 void BX_CPU_C::loadSRegLMNominal(unsigned segI, unsigned selector, bx_address base, unsigned dpl) { bx_segment_reg_t *seg = & BX_CPU_THIS_PTR sregs[segI]; // Load a segment register in long-mode with nominal values, // so descriptor cache values are compatible with existing checks. seg->cache.u.segment.base = base; // (KPL) I doubt we need limit_scaled. If we do, it should be // of type bx_addr and be maxed to 64bits, not 32. seg->cache.u.segment.limit_scaled = 0xffffffff; seg->cache.valid = 1; seg->cache.dpl = dpl; // (KPL) Not sure if we need this. seg->selector.value = selector; } #endif #if BX_CPU_LEVEL >= 2 void BX_CPP_AttrRegparmN(2) BX_CPU_C::parse_selector(Bit16u raw_selector, bx_selector_t *selector) { selector->value = raw_selector; selector->index = raw_selector >> 3; selector->ti = (raw_selector >> 2) & 0x01; selector->rpl = raw_selector & 0x03; } #endif void BX_CPP_AttrRegparmN(3) BX_CPU_C::parse_descriptor(Bit32u dword1, Bit32u dword2, bx_descriptor_t *temp) { Bit8u AR_byte; AR_byte = dword2 >> 8; temp->p = (AR_byte >> 7) & 0x01; temp->dpl = (AR_byte >> 5) & 0x03; temp->segment = (AR_byte >> 4) & 0x01; temp->type = (AR_byte & 0x0f); temp->valid = 0; /* start out invalid */ if (temp->segment) { /* data/code segment descriptors */ temp->u.segment.executable = (AR_byte >> 3) & 0x01; temp->u.segment.c_ed = (AR_byte >> 2) & 0x01; temp->u.segment.r_w = (AR_byte >> 1) & 0x01; temp->u.segment.a = (AR_byte >> 0) & 0x01; temp->u.segment.limit = (dword1 & 0xffff); temp->u.segment.base = (dword1 >> 16) | ((dword2 & 0xFF) << 16); #if BX_CPU_LEVEL >= 3 temp->u.segment.limit |= (dword2 & 0x000F0000); temp->u.segment.g = (dword2 & 0x00800000) > 0; temp->u.segment.d_b = (dword2 & 0x00400000) > 0; #if BX_SUPPORT_X86_64 temp->u.segment.l = (dword2 & 0x00200000) > 0; #endif temp->u.segment.avl = (dword2 & 0x00100000) > 0; temp->u.segment.base |= (dword2 & 0xFF000000); if (temp->u.segment.g) { if ( (temp->u.segment.executable==0) && (temp->u.segment.c_ed) ) temp->u.segment.limit_scaled = (temp->u.segment.limit << 12); else temp->u.segment.limit_scaled = (temp->u.segment.limit << 12) | 0x0fff; } else #endif temp->u.segment.limit_scaled = temp->u.segment.limit; temp->valid = 1; } else { // system & gate segment descriptors switch ( temp->type ) { case 0: // reserved case 8: // reserved case 10: // reserved case 13: // reserved temp->valid = 0; break; case 1: // 286 TSS (available) case 3: // 286 TSS (busy) temp->u.tss286.base = (dword1 >> 16) | ((dword2 & 0xff) << 16); temp->u.tss286.limit = (dword1 & 0xffff); temp->valid = 1; break; case 2: // LDT descriptor temp->u.ldt.base = (dword1 >> 16) | ((dword2 & 0xFF) << 16); #if BX_CPU_LEVEL >= 3 temp->u.ldt.base |= (dword2 & 0xff000000); #endif temp->u.ldt.limit = (dword1 & 0xffff); temp->valid = 1; break; case 4: // 286 call gate case 6: // 286 interrupt gate case 7: // 286 trap gate /* word count only used for call gate */ temp->u.gate286.word_count = dword2 & 0x1f; temp->u.gate286.dest_selector = dword1 >> 16; temp->u.gate286.dest_offset = dword1 & 0xffff; temp->valid = 1; break; case 5: // 286/386 task gate temp->u.taskgate.tss_selector = dword1 >> 16; temp->valid = 1; break; #if BX_CPU_LEVEL >= 3 case 9: // 386 TSS (available) case 11: // 386 TSS (busy) temp->u.tss386.base = (dword1 >> 16) | ((dword2 & 0xff) << 16) | (dword2 & 0xff000000); temp->u.tss386.limit = (dword1 & 0x0000ffff) | (dword2 & 0x000f0000); temp->u.tss386.g = (dword2 & 0x00800000) > 0; temp->u.tss386.avl = (dword2 & 0x00100000) > 0; if (temp->u.tss386.g) temp->u.tss386.limit_scaled = (temp->u.tss386.limit << 12) | 0x0fff; else temp->u.tss386.limit_scaled = temp->u.tss386.limit; temp->valid = 1; break; case 12: // 386 call gate case 14: // 386 interrupt gate case 15: // 386 trap gate // word count only used for call gate temp->u.gate386.dword_count = dword2 & 0x1f; temp->u.gate386.dest_selector = dword1 >> 16; temp->u.gate386.dest_offset = (dword2 & 0xffff0000) | (dword1 & 0x0000ffff); temp->valid = 1; break; #endif default: BX_PANIC(("parse_descriptor(): case %u unfinished", (unsigned) temp->type)); temp->valid = 0; } } } void BX_CPP_AttrRegparmN(2) BX_CPU_C::load_ldtr(bx_selector_t *selector, bx_descriptor_t *descriptor) { /* check for null selector, if so invalidate LDTR */ if ( (selector->value & 0xfffc)==0 ) { BX_CPU_THIS_PTR ldtr.selector = *selector; BX_CPU_THIS_PTR ldtr.cache.valid = 0; return; } if (!descriptor) BX_PANIC(("load_ldtr(): descriptor == NULL !")); BX_CPU_THIS_PTR ldtr.cache = *descriptor; /* whole structure copy */ BX_CPU_THIS_PTR ldtr.selector = *selector; if (BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit < 7) { BX_PANIC(("load_ldtr(): ldtr.limit < 7")); } BX_CPU_THIS_PTR ldtr.cache.valid = 1; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::load_cs(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl) { BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector = *selector; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache = *descriptor; /* caller may request different CPL then in selector */ BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = cpl; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 1; /* ??? */ // (BW) Added cpl to the selector value. BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = (0xfffc & BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value) | cpl; #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR msr.lma) { if (descriptor->u.segment.l) { BX_CPU_THIS_PTR cpu_mode = BX_MODE_LONG_64; loadSRegLMNominal(BX_SEG_REG_CS, selector->value, 0, cpl); } else { BX_CPU_THIS_PTR cpu_mode = BX_MODE_LONG_COMPAT; } } #endif #if BX_SUPPORT_ICACHE BX_CPU_THIS_PTR iCache.fetchModeMask = createFetchModeMask(BX_CPU_THIS); #endif // Loading CS will invalidate the EIP fetch window. invalidate_prefetch_q(); } void BX_CPP_AttrRegparmN(3) BX_CPU_C::load_ss(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl) { BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = *selector; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = *descriptor; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = cpl; #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { loadSRegLMNominal(BX_SEG_REG_SS, selector->value, 0, cpl); return; } #endif if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value & 0xfffc) == 0 ) BX_PANIC(("load_ss(): null selector passed")); if ( !BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid ) { BX_PANIC(("load_ss(): invalid selector/descriptor passed.")); } } #if BX_CPU_LEVEL >= 2 void BX_CPP_AttrRegparmN(3) BX_CPU_C::fetch_raw_descriptor(bx_selector_t *selector, Bit32u *dword1, Bit32u *dword2, Bit8u exception_no) { if (selector->ti == 0) { /* GDT */ if ((selector->index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit) { BX_INFO(("-----------------------------------")); BX_INFO(("selector->index*8 + 7 = %u", (unsigned) selector->index*8 + 7)); BX_INFO(("gdtr.limit = %u", (unsigned) BX_CPU_THIS_PTR gdtr.limit)); BX_INFO(("fetch_raw_descriptor: GDT: index > limit")); debug(BX_CPU_THIS_PTR prev_eip); BX_INFO(("-----------------------------------")); exception(exception_no, selector->value & 0xfffc, 0); return; } access_linear(BX_CPU_THIS_PTR gdtr.base + selector->index*8, 4, 0, BX_READ, dword1); access_linear(BX_CPU_THIS_PTR gdtr.base + selector->index*8 + 4, 4, 0, BX_READ, dword2); } else { /* LDT */ if (BX_CPU_THIS_PTR ldtr.cache.valid==0) { BX_PANIC(("fetch_raw_descriptor: LDTR.valid=0")); } if ((selector->index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit) { BX_ERROR(("fetch_raw_descriptor: LDT: index (%x)%x > limit (%x)", (selector->index*8 + 7), selector->index, BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit)); exception(exception_no, selector->value & 0xfffc, 0); return; } access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8, 4, 0, BX_READ, dword1); access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8 + 4, 4, 0, BX_READ, dword2); } } #endif bx_bool BX_CPP_AttrRegparmN(3) BX_CPU_C::fetch_raw_descriptor2(bx_selector_t *selector, Bit32u *dword1, Bit32u *dword2) { if (selector->ti == 0) { /* GDT */ if ((selector->index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit) return(0); access_linear(BX_CPU_THIS_PTR gdtr.base + selector->index*8, 4, 0, BX_READ, dword1); access_linear(BX_CPU_THIS_PTR gdtr.base + selector->index*8 + 4, 4, 0, BX_READ, dword2); return(1); } else { /* LDT */ if ((selector->index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit) return(0); access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8, 4, 0, BX_READ, dword1); access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8 + 4, 4, 0, BX_READ, dword2); return(1); } }