///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2015 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR // X86 Registers Which Affect Paging: // ================================== // // CR0: // bit 31: PG, Paging (386+) // bit 16: WP, Write Protect (486+) // 0: allow supervisor level writes into user level RO pages // 1: inhibit supervisor level writes into user level RO pages // // CR3: // bit 31..12: PDBR, Page Directory Base Register (386+) // bit 4: PCD, Page level Cache Disable (486+) // Controls caching of current page directory. Affects only the processor's // internal caches (L1 and L2). // This flag ignored if paging disabled (PG=0) or cache disabled (CD=1). // Values: // 0: Page Directory can be cached // 1: Page Directory not cached // bit 3: PWT, Page level Writes Transparent (486+) // Controls write-through or write-back caching policy of current page // directory. Affects only the processor's internal caches (L1 and L2). // This flag ignored if paging disabled (PG=0) or cache disabled (CD=1). // Values: // 0: write-back caching enabled // 1: write-through caching enabled // // CR4: // bit 4: PSE, Page Size Extension (Pentium+) // 0: 4KByte pages (typical) // 1: 4MByte or 2MByte pages // bit 5: PAE, Physical Address Extension (Pentium Pro+) // 0: 32bit physical addresses // 1: 36bit physical addresses // bit 7: PGE, Page Global Enable (Pentium Pro+) // The global page feature allows frequently used or shared pages // to be marked as global (PDE or PTE bit 8). Global pages are // not flushed from TLB on a task switch or write to CR3. // Values: // 0: disables global page feature // 1: enables global page feature // // page size extention and physical address size extention matrix (legacy mode) // ============================================================================== // CR0.PG CR4.PAE CR4.PSE PDPE.PS PDE.PS | page size physical address size // ============================================================================== // 0 X X R X | -- paging disabled // 1 0 0 R X | 4K 32bits // 1 0 1 R 0 | 4K 32bits // 1 0 1 R 1 | 4M 32bits // 1 1 X R 0 | 4K 36bits // 1 1 X R 1 | 2M 36bits // page size extention and physical address size extention matrix (long mode) // ============================================================================== // CR0.PG CR4.PAE CR4.PSE PDPE.PS PDE.PS | page size physical address size // ============================================================================== // 1 1 X 0 0 | 4K 52bits // 1 1 X 0 1 | 2M 52bits // 1 1 X 1 - | 1G 52bits // Page Directory/Table Entry Fields Defined: // ========================================== // NX: No Execute // This bit controls the ability to execute code from all physical // pages mapped by the table entry. // 0: Code can be executed from the mapped physical pages // 1: Code cannot be executed // The NX bit can only be set when the no-execute page-protection // feature is enabled by setting EFER.NXE=1, If EFER.NXE=0, the // NX bit is treated as reserved. In this case, #PF occurs if the // NX bit is not cleared to zero. // // G: Global flag // Indiciates a global page when set. When a page is marked // global and the PGE flag in CR4 is set, the page table or // directory entry for the page is not invalidated in the TLB // when CR3 is loaded or a task switch occurs. Only software // clears and sets this flag. For page directory entries that // point to page tables, this flag is ignored and the global // characteristics of a page are set in the page table entries. // // PS: Page Size flag // Only used in page directory entries. When PS=0, the page // size is 4KBytes and the page directory entry points to a // page table. When PS=1, the page size is 4MBytes for // normal 32-bit addressing and 2MBytes if extended physical // addressing. // // PAT: Page-Attribute Table // This bit is only present in the lowest level of the page // translation hierarchy. The PAT bit is the high-order bit // of a 3-bit index into the PAT register. The other two // bits involved in forming the index are the PCD and PWT // bits. // // D: Dirty bit: // Processor sets the Dirty bit in the 2nd-level page table before a // write operation to an address mapped by that page table entry. // Dirty bit in directory entries is undefined. // // A: Accessed bit: // Processor sets the Accessed bits in both levels of page tables before // a read/write operation to a page. // // PCD: Page level Cache Disable // Controls caching of individual pages or page tables. // This allows a per-page based mechanism to disable caching, for // those pages which contained memory mapped IO, or otherwise // should not be cached. Processor ignores this flag if paging // is not used (CR0.PG=0) or the cache disable bit is set (CR0.CD=1). // Values: // 0: page or page table can be cached // 1: page or page table is not cached (prevented) // // PWT: Page level Write Through // Controls the write-through or write-back caching policy of individual // pages or page tables. Processor ignores this flag if paging // is not used (CR0.PG=0) or the cache disable bit is set (CR0.CD=1). // Values: // 0: write-back caching // 1: write-through caching // // U/S: User/Supervisor level // 0: Supervisor level - for the OS, drivers, etc. // 1: User level - application code and data // // R/W: Read/Write access // 0: read-only access // 1: read/write access // // P: Present // 0: Not present // 1: Present // ========================================== // Combined page directory/page table protection: // ============================================== // There is one column for the combined effect on a 386 // and one column for the combined effect on a 486+ CPU. // The 386 CPU behavior is not supported by Bochs. // // +----------------+-----------------+----------------+----------------+ // | Page Directory| Page Table | Combined 386 | Combined 486+ | // |Privilege Type | Privilege Type | Privilege Type| Privilege Type| // |----------------+-----------------+----------------+----------------| // |User R | User R | User R | User R | // |User R | User RW | User R | User R | // |User RW | User R | User R | User R | // |User RW | User RW | User RW | User RW | // |User R | Supervisor R | User R | Supervisor RW | // |User R | Supervisor RW | User R | Supervisor RW | // |User RW | Supervisor R | User R | Supervisor RW | // |User RW | Supervisor RW | User RW | Supervisor RW | // |Supervisor R | User R | User R | Supervisor RW | // |Supervisor R | User RW | User R | Supervisor RW | // |Supervisor RW | User R | User R | Supervisor RW | // |Supervisor RW | User RW | User RW | Supervisor RW | // |Supervisor R | Supervisor R | Supervisor RW | Supervisor RW | // |Supervisor R | Supervisor RW | Supervisor RW | Supervisor RW | // |Supervisor RW | Supervisor R | Supervisor RW | Supervisor RW | // |Supervisor RW | Supervisor RW | Supervisor RW | Supervisor RW | // +----------------+-----------------+----------------+----------------+ // Page Fault Error Code Format: // ============================= // // bits 31..4: Reserved // bit 3: RSVD (Pentium Pro+) // 0: fault caused by reserved bits set to 1 in a page directory // when the PSE or PAE flags in CR4 are set to 1 // 1: fault was not caused by reserved bit violation // bit 2: U/S (386+) // 0: fault originated when in supervior mode // 1: fault originated when in user mode // bit 1: R/W (386+) // 0: access causing the fault was a read // 1: access causing the fault was a write // bit 0: P (386+) // 0: fault caused by a nonpresent page // 1: fault caused by a page level protection violation // Some paging related notes: // ========================== // // - When the processor is running in supervisor level, all pages are both // readable and writable (write-protect ignored). When running at user // level, only pages which belong to the user level are accessible; // read/write & read-only are readable, read/write are writable. // // - If the Present bit is 0 in either level of page table, an // access which uses these entries will generate a page fault. // // - (A)ccess bit is used to report read or write access to a page // or 2nd level page table. // // - (D)irty bit is used to report write access to a page. // // - Processor running at CPL=0,1,2 maps to U/S=0 // Processor running at CPL=3 maps to U/S=1 #if BX_SUPPORT_X86_64 #define BX_INVALID_TLB_ENTRY BX_CONST64(0xffffffffffffffff) #else #define BX_INVALID_TLB_ENTRY 0xffffffff #endif // bit [11] of the TLB lpf used for TLB_NoHostPtr valid indication #define TLB_LPFOf(laddr) AlignedAccessLPFOf(laddr, 0x7ff) #if BX_CPU_LEVEL >= 4 # define BX_PRIV_CHECK_SIZE 32 #else # define BX_PRIV_CHECK_SIZE 16 #endif // The 'priv_check' array is used to decide if the current access // has the proper paging permissions. An index is formed, based // on parameters such as the access type and level, the write protect // flag and values cached in the TLB. The format of the index into this // array is: // // |4 |3 |2 |1 |0 | // |wp|us|us|rw|rw| // | | | | | // | | | | +---> r/w of current access // | | +--+------> u/s,r/w combined of page dir & table (cached) // | +------------> u/s of current access // +---------------> Current CR0.WP value /* 0xff0bbb0b */ static const Bit8u priv_check[BX_PRIV_CHECK_SIZE] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, #if BX_CPU_LEVEL >= 4 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1 #endif }; #define BX_PAGING_PHY_ADDRESS_RESERVED_BITS \ (BX_PHY_ADDRESS_RESERVED_BITS & BX_CONST64(0xfffffffffffff)) #define PAGE_DIRECTORY_NX_BIT (BX_CONST64(0x8000000000000000)) #define BX_CR3_PAGING_MASK (BX_CONST64(0x000ffffffffff000)) // Each entry in the TLB cache has 3 entries: // // lpf: Linear Page Frame (page aligned linear address of page) // bits 32..12 Linear page frame // bit 11 0: TLB HostPtr access allowed, 1: not allowed // bit 10...0 Invalidate index // // ppf: Physical Page Frame (page aligned phy address of page) // // hostPageAddr: // Host Page Frame address used for direct access to // the mem.vector[] space allocated for the guest physical // memory. If this is zero, it means that a pointer // to the host space could not be generated, likely because // that page of memory is not standard memory (it might // be memory mapped IO, ROM, etc). // // accessBits: // // bit 31: Page is a global page. // // The following bits are used for a very efficient permissions // check. The goal is to be able, using only the current privilege // level and access type, to determine if the page tables allow the // access to occur or at least should rewalk the page tables. On // the first read access, permissions are set to only read, so a // rewalk is necessary when a subsequent write fails the tests. // This allows for the dirty bit to be set properly, but for the // test to be efficient. Note that the CR0.WP flag is not present. // The values in the following flags is based on the current CR0.WP // value, necessitating a TLB flush when CR0.WP changes. // // The test bit: // OK = 1 << ((E<<2) | (W<<1) | U) // // where E:1=Execute, 0=Data; // W:1=Write, 0=Read; // U:1=CPL3, 0=CPL0-2 // // Thus for reads, it is: // OK = 0x01 << ( U ) // for writes: // OK = 0x04 << ( U ) // for code fetches: // OK = 0x10 << ( U ) // // bit 5: Execute from User privilege is OK // bit 4: Execute from System privilege is OK // bit 3: Write from User privilege is OK // bit 2: Write from System privilege is OK // bit 1: Read from User privilege is OK // bit 0: Read from System privilege is OK // // Note, that the TLB should have TLB_NoHostPtr bit set in the lpf when // direct access through host pointer is NOT allowed for the page. // A memory operation asking for a direct access through host pointer // will not set TLB_NoHostPtr bit in its lpf and thus get TLB miss // result when the direct access is not allowed. // #define TLB_NoHostPtr (0x800) /* set this bit when direct access is NOT allowed */ #define TLB_GlobalPage (0x80000000) #define TLB_SysReadOK (0x01) #define TLB_UserReadOK (0x02) #define TLB_SysWriteOK (0x04) #define TLB_UserWriteOK (0x08) #define TLB_SysExecuteOK (0x10) #define TLB_UserExecuteOK (0x20) #include "cpustats.h" // ============================================================== void BX_CPU_C::TLB_flush(void) { INC_TLBFLUSH_STAT(tlbGlobalFlushes); invalidate_prefetch_q(); invalidate_stack_cache(); for (unsigned n=0; n= 5 BX_CPU_THIS_PTR TLB.split_large = 0; // flush whole TLB #endif #if BX_SUPPORT_MONITOR_MWAIT // invalidating of the TLB might change translation for monitored page // and cause subsequent MWAIT instruction to wait forever BX_CPU_THIS_PTR monitor.reset_monitor(); #endif } #if BX_CPU_LEVEL >= 6 void BX_CPU_C::TLB_flushNonGlobal(void) { INC_TLBFLUSH_STAT(tlbNonGlobalFlushes); invalidate_prefetch_q(); invalidate_stack_cache(); BX_CPU_THIS_PTR TLB.split_large = 0; Bit32u lpf_mask = 0; for (unsigned n=0; naccessBits & TLB_GlobalPage)) { tlbEntry->lpf = BX_INVALID_TLB_ENTRY; tlbEntry->accessBits = 0; } else { lpf_mask |= tlbEntry->lpf_mask; } } if (lpf_mask > 0xfff) BX_CPU_THIS_PTR TLB.split_large = 1; #if BX_SUPPORT_MONITOR_MWAIT // invalidating of the TLB might change translation for monitored page // and cause subsequent MWAIT instruction to wait forever BX_CPU_THIS_PTR monitor.reset_monitor(); #endif } #endif void BX_CPU_C::TLB_invlpg(bx_address laddr) { invalidate_prefetch_q(); invalidate_stack_cache(); BX_DEBUG(("TLB_invlpg(0x" FMT_ADDRX "): invalidate TLB entry", laddr)); #if BX_CPU_LEVEL >= 5 if (BX_CPU_THIS_PTR TLB.split_large) { Bit32u lpf_mask = 0; BX_CPU_THIS_PTR TLB.split_large = 0; // make sure INVLPG handles correctly large pages for (unsigned n=0; nlpf_mask; if ((laddr & ~entry_lpf_mask) == (tlbEntry->lpf & ~entry_lpf_mask)) { tlbEntry->lpf = BX_INVALID_TLB_ENTRY; tlbEntry->accessBits = 0; } else { lpf_mask |= entry_lpf_mask; } } if (lpf_mask > 0xfff) BX_CPU_THIS_PTR TLB.split_large = 1; } else #endif { unsigned TLB_index = BX_TLB_INDEX_OF(laddr, 0); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index]; if (TLB_LPFOf(tlbEntry->lpf) == lpf) { tlbEntry->lpf = BX_INVALID_TLB_ENTRY; tlbEntry->accessBits = 0; } } #if BX_SUPPORT_MONITOR_MWAIT // invalidating of the TLB entry might change translation for monitored // page and cause subsequent MWAIT instruction to wait forever BX_CPU_THIS_PTR monitor.reset_monitor(); #endif } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::INVLPG(bxInstruction_c* i) { // CPL is always 0 in real mode if (/* !real_mode() && */ CPL!=0) { BX_ERROR(("%s: priveledge check failed, generate #GP(0)", i->getIaOpcodeNameShort())); exception(BX_GP_EXCEPTION, 0); } bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); bx_address laddr = get_laddr(i->seg(), eaddr); #if BX_SUPPORT_VMX if (BX_CPU_THIS_PTR in_vmx_guest) { if (VMEXIT(VMX_VM_EXEC_CTRL2_INVLPG_VMEXIT)) VMexit(VMX_VMEXIT_INVLPG, laddr); } #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_INVLPG)) Svm_Vmexit(SVM_VMEXIT_INVLPG, BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? laddr : 0); } #endif #if BX_SUPPORT_X86_64 if (IsCanonical(laddr)) #endif { BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_INVLPG, laddr); TLB_invlpg(laddr); } BX_NEXT_TRACE(i); } // error checking order - page not present, reserved bits, protection #define ERROR_NOT_PRESENT 0x00 #define ERROR_PROTECTION 0x01 #define ERROR_RESERVED 0x08 #define ERROR_CODE_ACCESS 0x10 void BX_CPU_C::page_fault(unsigned fault, bx_address laddr, unsigned user, unsigned rw) { unsigned isWrite = rw & 1; Bit32u error_code = fault | (user << 2) | (isWrite << 1); #if BX_CPU_LEVEL >= 6 if (rw == BX_EXECUTE) { if (BX_CPU_THIS_PTR cr4.get_SMEP()) error_code |= ERROR_CODE_ACCESS; // I/D = 1 if (BX_CPU_THIS_PTR cr4.get_PAE() && BX_CPU_THIS_PTR efer.get_NXE()) error_code |= ERROR_CODE_ACCESS; } #endif #if BX_SUPPORT_SVM SvmInterceptException(BX_HARDWARE_EXCEPTION, BX_PF_EXCEPTION, error_code, 1, laddr); // before the CR2 was modified #endif #if BX_SUPPORT_VMX VMexit_Event(BX_HARDWARE_EXCEPTION, BX_PF_EXCEPTION, error_code, 1, laddr); // before the CR2 was modified #endif BX_CPU_THIS_PTR cr2 = laddr; #if BX_SUPPORT_X86_64 BX_DEBUG(("page fault for address %08x%08x @ %08x%08x", GET32H(laddr), GET32L(laddr), GET32H(RIP), GET32L(RIP))); #else BX_DEBUG(("page fault for address %08x @ %08x", laddr, EIP)); #endif exception(BX_PF_EXCEPTION, error_code); } #define BX_LEVEL_PML4 3 #define BX_LEVEL_PDPTE 2 #define BX_LEVEL_PDE 1 #define BX_LEVEL_PTE 0 static const char *bx_paging_level[4] = { "PTE", "PDE", "PDPE", "PML4" }; // keep it 4 letters #if BX_CPU_LEVEL >= 6 // Format of a Long Mode Non-Leaf Entry // ----------------------------------------------------------- // 00 | Present (P) // 01 | R/W // 02 | U/S // 03 | Page-Level Write-Through (PWT) // 04 | Page-Level Cache-Disable (PCD) // 05 | Accessed (A) // 06 | (ignored) // 07 | Page Size (PS), must be 0 if no Large Page on the level // 11-08 | (ignored) // PA-12 | Physical address of 4-KByte aligned page-directory-pointer table // 51-PA | Reserved (must be zero) // 62-52 | (ignored) // 63 | Execute-Disable (XD) (if EFER.NXE=1, reserved otherwise) // ----------------------------------------------------------- #define PAGING_PAE_RESERVED_BITS (BX_PAGING_PHY_ADDRESS_RESERVED_BITS) // in legacy PAE mode bits [62:52] are reserved. bit 63 is NXE #define PAGING_LEGACY_PAE_RESERVED_BITS \ (BX_PAGING_PHY_ADDRESS_RESERVED_BITS | BX_CONST64(0x7ff0000000000000)) // Format of a PDPTE that References a 1-GByte Page // ----------------------------------------------------------- // 00 | Present (P) // 01 | R/W // 02 | U/S // 03 | Page-Level Write-Through (PWT) // 04 | Page-Level Cache-Disable (PCD) // 05 | Accessed (A) // 06 | (ignored) // 07 | Page Size, must be 1 to indicate a 1-GByte Page // 08 | Global (G) (if CR4.PGE=1, ignored otherwise) // 11-09 | (ignored) // 12 | PAT (if PAT is supported, reserved otherwise) // 29-13 | Reserved (must be zero) // PA-30 | Physical address of the 1-Gbyte Page // 51-PA | Reserved (must be zero) // 62-52 | (ignored) // 63 | Execute-Disable (XD) (if EFER.NXE=1, reserved otherwise) // ----------------------------------------------------------- #define PAGING_PAE_PDPTE1G_RESERVED_BITS \ (BX_PAGING_PHY_ADDRESS_RESERVED_BITS | BX_CONST64(0x3FFFE000)) // Format of a PAE PDE that Maps a 2-MByte Page // ----------------------------------------------------------- // 00 | Present (P) // 01 | R/W // 02 | U/S // 03 | Page-Level Write-Through (PWT) // 04 | Page-Level Cache-Disable (PCD) // 05 | Accessed (A) // 06 | Dirty (D) // 07 | Page Size (PS), must be 1 to indicate a 2-MByte Page // 08 | Global (G) (if CR4.PGE=1, ignored otherwise) // 11-09 | (ignored) // 12 | PAT (if PAT is supported, reserved otherwise) // 20-13 | Reserved (must be zero) // PA-21 | Physical address of the 2-MByte page // 51-PA | Reserved (must be zero) // 62-52 | ignored in long mode, reserved (must be 0) in legacy PAE mode // 63 | Execute-Disable (XD) (if EFER.NXE=1, reserved otherwise) // ----------------------------------------------------------- #define PAGING_PAE_PDE2M_RESERVED_BITS \ (BX_PAGING_PHY_ADDRESS_RESERVED_BITS | BX_CONST64(0x001FE000)) // Format of a PAE PTE that Maps a 4-KByte Page // ----------------------------------------------------------- // 00 | Present (P) // 01 | R/W // 02 | U/S // 03 | Page-Level Write-Through (PWT) // 04 | Page-Level Cache-Disable (PCD) // 05 | Accessed (A) // 06 | Dirty (D) // 07 | PAT (if PAT is supported, reserved otherwise) // 08 | Global (G) (if CR4.PGE=1, ignored otherwise) // 11-09 | (ignored) // PA-12 | Physical address of the 4-KByte page // 51-PA | Reserved (must be zero) // 62-52 | ignored in long mode, reserved (must be 0) in legacy PAE mode // 63 | Execute-Disable (XD) (if EFER.NXE=1, reserved otherwise) // ----------------------------------------------------------- int BX_CPU_C::check_entry_PAE(const char *s, Bit64u entry, Bit64u reserved, unsigned rw, bx_bool *nx_fault) { if (!(entry & 0x1)) { BX_DEBUG(("PAE %s: entry not present", s)); return ERROR_NOT_PRESENT; } if (entry & reserved) { BX_DEBUG(("PAE %s: reserved bit is set 0x" FMT_ADDRX64, s, entry)); return ERROR_RESERVED | ERROR_PROTECTION; } if (entry & PAGE_DIRECTORY_NX_BIT) { if (rw == BX_EXECUTE) { BX_DEBUG(("PAE %s: non-executable page fault occured", s)); *nx_fault = 1; } } return -1; } #if BX_SUPPORT_MEMTYPE BX_CPP_INLINE Bit32u calculate_pcd_pwt(Bit32u entry) { Bit32u pcd_pwt = (entry >> 3) & 0x3; // PCD, PWT are stored in bits 3 and 4 return pcd_pwt; } // extract PCD, PWT and PAT pat bits from page table entry BX_CPP_INLINE Bit32u calculate_pat(Bit32u entry, Bit32u lpf_mask) { Bit32u pcd_pwt = calculate_pcd_pwt(entry); // PAT is stored in bit 12 for large pages and in bit 7 for small pages Bit32u pat = ((lpf_mask < 0x1000) ? (entry >> 7) : (entry >> 12)) & 0x1; return pcd_pwt | (pat << 2); } #endif #if BX_SUPPORT_X86_64 // Translate a linear address to a physical address in long mode bx_phy_address BX_CPU_C::translate_linear_long_mode(bx_address laddr, Bit32u &lpf_mask, unsigned user, unsigned rw) { bx_phy_address ppf = BX_CPU_THIS_PTR cr3 & BX_CR3_PAGING_MASK; bx_phy_address entry_addr[4]; Bit64u entry[4]; BxMemtype entry_memtype[4] = { 0 }; bx_bool nx_fault = 0; int leaf; Bit64u offset_mask = BX_CONST64(0x0000ffffffffffff); lpf_mask = 0xfff; Bit32u combined_access = 0x06; Bit64u curr_entry = BX_CPU_THIS_PTR cr3; Bit64u reserved = PAGING_PAE_RESERVED_BITS; if (! BX_CPU_THIS_PTR efer.get_NXE()) reserved |= PAGE_DIRECTORY_NX_BIT; for (leaf = BX_LEVEL_PML4;; --leaf) { entry_addr[leaf] = ppf + ((laddr >> (9 + 9*leaf)) & 0xff8); #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) { if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_EPT_ENABLE)) entry_addr[leaf] = translate_guest_physical(entry_addr[leaf], laddr, 1, 1, BX_READ); } #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest && SVM_NESTED_PAGING_ENABLED) { entry_addr[leaf] = nested_walk(entry_addr[leaf], BX_RW, 1); } #endif #if BX_SUPPORT_MEMTYPE entry_memtype[leaf] = resolve_memtype(memtype_by_mtrr(entry_addr[leaf]), memtype_by_pat(calculate_pcd_pwt((Bit32u) curr_entry))); #endif access_read_physical(entry_addr[leaf], 8, &entry[leaf]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[leaf], 8, entry_memtype[leaf], BX_READ, (BX_PTE_ACCESS + leaf), (Bit8u*)(&entry[leaf])); offset_mask >>= 9; curr_entry = entry[leaf]; int fault = check_entry_PAE(bx_paging_level[leaf], curr_entry, reserved, rw, &nx_fault); if (fault >= 0) page_fault(fault, laddr, user, rw); combined_access &= curr_entry; // U/S and R/W ppf = curr_entry & BX_CONST64(0x000ffffffffff000); if (leaf == BX_LEVEL_PTE) break; if (curr_entry & 0x80) { if (leaf > (BX_LEVEL_PDE + !!is_cpu_extension_supported(BX_ISA_1G_PAGES))) { BX_DEBUG(("PAE %s: PS bit set !", bx_paging_level[leaf])); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, user, rw); } ppf &= BX_CONST64(0x000fffffffffe000); if (ppf & offset_mask) { BX_DEBUG(("PAE %s: reserved bit is set: 0x" FMT_ADDRX64, bx_paging_level[leaf], curr_entry)); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, user, rw); } lpf_mask = (Bit32u) offset_mask; break; } } bx_bool isWrite = (rw & 1); // write or r-m-w unsigned priv_index = (BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4 (user<<3) | // bit 3 (combined_access | isWrite); // bit 2,1,0 if (!priv_check[priv_index] || nx_fault) page_fault(ERROR_PROTECTION, laddr, user, rw); if (BX_CPU_THIS_PTR cr4.get_SMEP() && rw == BX_EXECUTE && !user) { if (combined_access & 0x4) // User page page_fault(ERROR_PROTECTION, laddr, user, rw); } // SMAP protections are disabled if EFLAGS.AC=1 if (BX_CPU_THIS_PTR cr4.get_SMAP() && ! BX_CPU_THIS_PTR get_AC() && rw != BX_EXECUTE && ! user) { if (combined_access & 0x4) // User page page_fault(ERROR_PROTECTION, laddr, user, rw); } if (BX_CPU_THIS_PTR cr4.get_PGE()) combined_access |= (entry[leaf] & 0x100); // G #if BX_SUPPORT_MEMTYPE combined_access |= (memtype_by_pat(calculate_pat((Bit32u) entry[leaf], lpf_mask)) << 9); #endif // Update A/D bits if needed update_access_dirty_PAE(entry_addr, entry, entry_memtype, BX_LEVEL_PML4, leaf, isWrite); return (ppf | combined_access); } #endif void BX_CPU_C::update_access_dirty_PAE(bx_phy_address *entry_addr, Bit64u *entry, BxMemtype *entry_memtype, unsigned max_level, unsigned leaf, unsigned write) { // Update A bit if needed for (unsigned level=max_level; level > leaf; level--) { if (!(entry[level] & 0x20)) { entry[level] |= 0x20; access_write_physical(entry_addr[level], 8, &entry[level]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[level], 8, entry_memtype[level], BX_WRITE, (BX_PTE_ACCESS + level), (Bit8u*)(&entry[level])); } } // Update A/D bits if needed if (!(entry[leaf] & 0x20) || (write && !(entry[leaf] & 0x40))) { entry[leaf] |= (0x20 | (write<<6)); // Update A and possibly D bits access_write_physical(entry_addr[leaf], 8, &entry[leaf]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[leaf], 8, entry_memtype[leaf], BX_WRITE, (BX_PTE_ACCESS + leaf), (Bit8u*)(&entry[leaf])); } } // Format of Legacy PAE PDPTR entry (PDPTE) // ----------------------------------------------------------- // 00 | Present (P) // 02-01 | Reserved (must be zero) // 03 | Page-Level Write-Through (PWT) (486+), 0=reserved otherwise // 04 | Page-Level Cache-Disable (PCD) (486+), 0=reserved otherwise // 08-05 | Reserved (must be zero) // 11-09 | (ignored) // PA-12 | Physical address of 4-KByte aligned page directory // 63-PA | Reserved (must be zero) // ----------------------------------------------------------- #define PAGING_PAE_PDPTE_RESERVED_BITS \ (BX_PAGING_PHY_ADDRESS_RESERVED_BITS | BX_CONST64(0xFFF00000000001E6)) bx_bool BX_CPP_AttrRegparmN(1) BX_CPU_C::CheckPDPTR(bx_phy_address cr3_val) { // with Nested Paging PDPTRs are not loaded for guest page tables but // accessed on demand as part of the guest page walk #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest && SVM_NESTED_PAGING_ENABLED) return 1; #endif cr3_val &= 0xffffffe0; #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) { if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_EPT_ENABLE)) cr3_val = translate_guest_physical(cr3_val, 0, 0, 1, BX_READ); } #endif Bit64u pdptr[4]; unsigned n; for (n=0; n<4; n++) { // read and check PDPTE entries bx_phy_address pdpe_entry_addr = (bx_phy_address) (cr3_val | (n << 3)); access_read_physical(pdpe_entry_addr, 8, &(pdptr[n])); BX_NOTIFY_PHY_MEMORY_ACCESS(pdpe_entry_addr, 8, BX_MEMTYPE_INVALID, BX_READ, (BX_PDPTR0_ACCESS + n), (Bit8u*) &(pdptr[n])); if (pdptr[n] & 0x1) { if (pdptr[n] & PAGING_PAE_PDPTE_RESERVED_BITS) return 0; } } // load new PDPTRs for (n=0; n<4; n++) BX_CPU_THIS_PTR PDPTR_CACHE.entry[n] = pdptr[n]; return 1; /* PDPTRs are fine */ } #if BX_SUPPORT_VMX >= 2 bx_bool BX_CPP_AttrRegparmN(1) BX_CPU_C::CheckPDPTR(Bit64u *pdptr) { for (unsigned n=0; n<4; n++) { if (pdptr[n] & 0x1) { if (pdptr[n] & PAGING_PAE_PDPTE_RESERVED_BITS) return 0; } } return 1; /* PDPTRs are fine */ } #endif bx_phy_address BX_CPU_C::translate_linear_load_PDPTR(bx_address laddr, unsigned user, unsigned rw) { unsigned index = (laddr >> 30) & 0x3; Bit64u pdptr; #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest && SVM_NESTED_PAGING_ENABLED) { bx_phy_address cr3_val = BX_CPU_THIS_PTR cr3 & 0xffffffe0; cr3_val = nested_walk(cr3_val, BX_RW, 1); bx_phy_address pdpe_entry_addr = (bx_phy_address) (cr3_val | (index << 3)); access_read_physical(pdpe_entry_addr, 8, &pdptr); BX_NOTIFY_PHY_MEMORY_ACCESS(pdpe_entry_addr, 8, BX_MEMTYPE_INVALID, BX_READ, (BX_PDPTR0_ACCESS + index), (Bit8u*) &pdptr); if (pdptr & 0x1) { if (pdptr & PAGING_PAE_PDPTE_RESERVED_BITS) { BX_DEBUG(("PAE PDPTE%d entry reserved bits set: 0x" FMT_ADDRX64, index, pdptr)); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, user, rw); } } } else #endif { pdptr = BX_CPU_THIS_PTR PDPTR_CACHE.entry[index]; } if (! (pdptr & 0x1)) { BX_DEBUG(("PAE PDPTE entry not present !")); page_fault(ERROR_NOT_PRESENT, laddr, user, rw); } return pdptr; } // Translate a linear address to a physical address in PAE paging mode bx_phy_address BX_CPU_C::translate_linear_PAE(bx_address laddr, Bit32u &lpf_mask, unsigned user, unsigned rw) { bx_phy_address entry_addr[2]; Bit64u entry[2]; BxMemtype entry_memtype[2] = { 0 }; bx_bool nx_fault = 0; int leaf; lpf_mask = 0xfff; Bit32u combined_access = 0x06; Bit64u reserved = PAGING_LEGACY_PAE_RESERVED_BITS; if (! BX_CPU_THIS_PTR efer.get_NXE()) reserved |= PAGE_DIRECTORY_NX_BIT; Bit64u pdpte = translate_linear_load_PDPTR(laddr, user, rw); bx_phy_address ppf = pdpte & BX_CONST64(0x000ffffffffff000); Bit64u curr_entry = pdpte; for (leaf = BX_LEVEL_PDE;; --leaf) { entry_addr[leaf] = ppf + ((laddr >> (9 + 9*leaf)) & 0xff8); #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) { if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_EPT_ENABLE)) entry_addr[leaf] = translate_guest_physical(entry_addr[leaf], laddr, 1, 1, BX_READ); } #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest && SVM_NESTED_PAGING_ENABLED) { entry_addr[leaf] = nested_walk(entry_addr[leaf], BX_RW, 1); } #endif #if BX_SUPPORT_MEMTYPE entry_memtype[leaf] = resolve_memtype(memtype_by_mtrr(entry_addr[leaf]), memtype_by_pat(calculate_pcd_pwt((Bit32u) curr_entry))); #endif access_read_physical(entry_addr[leaf], 8, &entry[leaf]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[leaf], 8, entry_memtype[leaf], BX_READ, (BX_PTE_ACCESS + leaf), (Bit8u*)(&entry[leaf])); curr_entry = entry[leaf]; int fault = check_entry_PAE(bx_paging_level[leaf], curr_entry, reserved, rw, &nx_fault); if (fault >= 0) page_fault(fault, laddr, user, rw); combined_access &= curr_entry; // U/S and R/W ppf = curr_entry & BX_CONST64(0x000ffffffffff000); if (leaf == BX_LEVEL_PTE) break; // Ignore CR4.PSE in PAE mode if (curr_entry & 0x80) { if (curr_entry & PAGING_PAE_PDE2M_RESERVED_BITS) { BX_DEBUG(("PAE PDE2M: reserved bit is set PDE=0x" FMT_ADDRX64, curr_entry)); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, user, rw); } // Make up the physical page frame address ppf = (bx_phy_address)(curr_entry & BX_CONST64(0x000fffffffe00000)); lpf_mask = 0x1fffff; break; } } bx_bool isWrite = (rw & 1); // write or r-m-w unsigned priv_index = (BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4 (user<<3) | // bit 3 (combined_access | isWrite); // bit 2,1,0 if (!priv_check[priv_index] || nx_fault) page_fault(ERROR_PROTECTION, laddr, user, rw); if (BX_CPU_THIS_PTR cr4.get_SMEP() && rw == BX_EXECUTE && !user) { if (combined_access & 0x4) // User page page_fault(ERROR_PROTECTION, laddr, user, rw); } // SMAP protections are disabled if EFLAGS.AC=1 if (BX_CPU_THIS_PTR cr4.get_SMAP() && ! BX_CPU_THIS_PTR get_AC() && rw != BX_EXECUTE && ! user) { if (combined_access & 0x4) // User page page_fault(ERROR_PROTECTION, laddr, user, rw); } if (BX_CPU_THIS_PTR cr4.get_PGE()) combined_access |= (entry[leaf] & 0x100); // G #if BX_SUPPORT_MEMTYPE combined_access |= (memtype_by_pat(calculate_pat((Bit32u) entry[leaf], lpf_mask)) << 9); #endif // Update A/D bits if needed update_access_dirty_PAE(entry_addr, entry, entry_memtype, BX_LEVEL_PDE, leaf, isWrite); return (ppf | combined_access); } #endif // Format of a PDE that Maps a 4-MByte Page // ----------------------------------------------------------- // 00 | Present (P) // 01 | R/W // 02 | U/S // 03 | Page-Level Write-Through (PWT) // 04 | Page-Level Cache-Disable (PCD) // 05 | Accessed (A) // 06 | Dirty (D) // 07 | Page size, must be 1 to indicate 4-Mbyte page // 08 | Global (G) (if CR4.PGE=1, ignored otherwise) // 11-09 | (ignored) // 12 | PAT (if PAT is supported, reserved otherwise) // PA-13 | Bits PA-32 of physical address of the 4-MByte page // 21-PA | Reserved (must be zero) // 31-22 | Bits 31-22 of physical address of the 4-MByte page // ----------------------------------------------------------- #define PAGING_PDE4M_RESERVED_BITS \ (((1 << (41-BX_PHY_ADDRESS_WIDTH))-1) << (13 + BX_PHY_ADDRESS_WIDTH - 32)) // Translate a linear address to a physical address in legacy paging mode bx_phy_address BX_CPU_C::translate_linear_legacy(bx_address laddr, Bit32u &lpf_mask, unsigned user, unsigned rw) { bx_phy_address entry_addr[2], ppf = (Bit32u) BX_CPU_THIS_PTR cr3 & BX_CR3_PAGING_MASK; Bit32u entry[2]; BxMemtype entry_memtype[2] = { 0 }; int leaf; lpf_mask = 0xfff; Bit32u combined_access = 0x06; Bit32u curr_entry = (Bit32u) BX_CPU_THIS_PTR cr3; for (leaf = BX_LEVEL_PDE;; --leaf) { entry_addr[leaf] = ppf + ((laddr >> (10 + 10*leaf)) & 0xffc); #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) { if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_EPT_ENABLE)) entry_addr[leaf] = translate_guest_physical(entry_addr[leaf], laddr, 1, 1, BX_READ); } #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest && SVM_NESTED_PAGING_ENABLED) { entry_addr[leaf] = nested_walk(entry_addr[leaf], BX_RW, 1); } #endif #if BX_SUPPORT_MEMTYPE entry_memtype[leaf] = resolve_memtype(memtype_by_mtrr(entry_addr[leaf]), memtype_by_pat(calculate_pcd_pwt(curr_entry))); #endif access_read_physical(entry_addr[leaf], 4, &entry[leaf]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[leaf], 4, entry_memtype[leaf], BX_READ, (BX_PTE_ACCESS + leaf), (Bit8u*)(&entry[leaf])); curr_entry = entry[leaf]; if (!(curr_entry & 0x1)) { BX_DEBUG(("%s: entry not present", bx_paging_level[leaf])); page_fault(ERROR_NOT_PRESENT, laddr, user, rw); } combined_access &= curr_entry; // U/S and R/W ppf = curr_entry & 0xfffff000; if (leaf == BX_LEVEL_PTE) break; #if BX_CPU_LEVEL >= 5 if ((curr_entry & 0x80) != 0 && BX_CPU_THIS_PTR cr4.get_PSE()) { // 4M paging, only if CR4.PSE enabled, ignore PDE.PS otherwise if (curr_entry & PAGING_PDE4M_RESERVED_BITS) { BX_DEBUG(("PSE PDE4M: reserved bit is set: PDE=0x%08x", entry[BX_LEVEL_PDE])); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, user, rw); } // make up the physical frame number ppf = (curr_entry & 0xffc00000); #if BX_PHY_ADDRESS_WIDTH > 32 ppf |= ((bx_phy_address)(curr_entry & 0x003fe000)) << 19; #endif lpf_mask = 0x3fffff; break; } #endif } bx_bool isWrite = (rw & 1); // write or r-m-w unsigned priv_index = #if BX_CPU_LEVEL >= 4 (BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4 #endif (user<<3) | // bit 3 (combined_access | isWrite); // bit 2,1,0 if (!priv_check[priv_index]) page_fault(ERROR_PROTECTION, laddr, user, rw); #if BX_CPU_LEVEL >= 6 if (BX_CPU_THIS_PTR cr4.get_SMEP() && rw == BX_EXECUTE && !user) { if (combined_access & 0x4) // User page page_fault(ERROR_PROTECTION, laddr, user, rw); } // SMAP protections are disabled if EFLAGS.AC=1 if (BX_CPU_THIS_PTR cr4.get_SMAP() && ! BX_CPU_THIS_PTR get_AC() && rw != BX_EXECUTE && ! user) { if (combined_access & 0x4) // User page page_fault(ERROR_PROTECTION, laddr, user, rw); } if (BX_CPU_THIS_PTR cr4.get_PGE()) combined_access |= (entry[leaf] & 0x100); // G #if BX_SUPPORT_MEMTYPE combined_access |= (memtype_by_pat(calculate_pat(entry[leaf], lpf_mask)) << 9); #endif #endif update_access_dirty(entry_addr, entry, entry_memtype, leaf, isWrite); return (ppf | combined_access); } void BX_CPU_C::update_access_dirty(bx_phy_address *entry_addr, Bit32u *entry, BxMemtype *entry_memtype, unsigned leaf, unsigned write) { if (leaf == BX_LEVEL_PTE) { // Update PDE A bit if needed if (!(entry[BX_LEVEL_PDE] & 0x20)) { entry[BX_LEVEL_PDE] |= 0x20; access_write_physical(entry_addr[BX_LEVEL_PDE], 4, &entry[BX_LEVEL_PDE]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[BX_LEVEL_PDE], 4, entry_memtype[BX_LEVEL_PDE], BX_WRITE, BX_PDE_ACCESS, (Bit8u*)(&entry[BX_LEVEL_PDE])); } } // Update A/D bits if needed if (!(entry[leaf] & 0x20) || (write && !(entry[leaf] & 0x40))) { entry[leaf] |= (0x20 | (write<<6)); // Update A and possibly D bits access_write_physical(entry_addr[leaf], 4, &entry[leaf]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[leaf], 4, entry_memtype[leaf], BX_WRITE, (BX_PTE_ACCESS + leaf), (Bit8u*)(&entry[leaf])); } } // Translate a linear address to a physical address bx_phy_address BX_CPU_C::translate_linear(bx_TLB_entry *tlbEntry, bx_address laddr, unsigned user, unsigned rw) { #if BX_SUPPORT_X86_64 if (! long_mode()) laddr &= 0xffffffff; #endif bx_phy_address paddress, ppf, poffset = PAGE_OFFSET(laddr); unsigned isWrite = rw & 1; // write or r-m-w unsigned isExecute = (rw == BX_EXECUTE); INC_TLB_STAT(tlbLookups); bx_address lpf = LPFOf(laddr); // already looked up TLB for code access if (! isExecute && TLB_LPFOf(tlbEntry->lpf) == lpf) { paddress = tlbEntry->ppf | poffset; if (tlbEntry->accessBits & (1 << (/*(isExecute<<2) |*/ (isWrite<<1) | user))) return paddress; // The current access does not have permission according to the info // in our TLB cache entry. Re-walk the page tables, in case there is // updated information in the memory image, and let the long path code // generate an exception if one is warranted. } INC_TLB_STAT(tlbMisses); Bit32u lpf_mask = 0xfff; // 4K pages Bit32u combined_access = 0x06; if(BX_CPU_THIS_PTR cr0.get_PG()) { BX_DEBUG(("page walk for address 0x" FMT_LIN_ADDRX, laddr)); #if BX_CPU_LEVEL >= 6 #if BX_SUPPORT_X86_64 if (long_mode()) paddress = translate_linear_long_mode(laddr, lpf_mask, user, rw); else #endif if (BX_CPU_THIS_PTR cr4.get_PAE()) paddress = translate_linear_PAE(laddr, lpf_mask, user, rw); else #endif paddress = translate_linear_legacy(laddr, lpf_mask, user, rw); // translate_linear functions return combined U/S, R/W bits, Global Page bit // and also effective page tables memory type in lower 12 bits of the physical address. // Bit 1 - R/W bit // Bit 2 - U/S bit // Bit 9,10,11 - Effective Memory Table from page tables combined_access = paddress & lpf_mask; paddress = (paddress & ~((Bit64u) lpf_mask)) | (laddr & lpf_mask); #if BX_CPU_LEVEL >= 5 if (lpf_mask > 0xfff) BX_CPU_THIS_PTR TLB.split_large = 1; #endif } else { // no paging paddress = (bx_phy_address) laddr; combined_access |= (BX_MEMTYPE_WB << 9); // act as memory type by paging is WB } // Calculate physical memory address and fill in TLB cache entry #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) { if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_EPT_ENABLE)) { paddress = translate_guest_physical(paddress, laddr, 1, 0, rw); } } #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest && SVM_NESTED_PAGING_ENABLED) { paddress = nested_walk(paddress, rw, 0); } #endif paddress = A20ADDR(paddress); ppf = PPFOf(paddress); // direct memory access is NOT allowed by default tlbEntry->lpf = lpf | TLB_NoHostPtr; tlbEntry->lpf_mask = lpf_mask; tlbEntry->ppf = ppf; tlbEntry->accessBits = 0; tlbEntry->accessBits |= TLB_SysReadOK; if (isWrite) tlbEntry->accessBits |= TLB_SysWriteOK; if (isExecute) tlbEntry->accessBits |= TLB_SysExecuteOK; if (! BX_CPU_THIS_PTR cr0.get_PG() #if BX_SUPPORT_VMX >= 2 && ! (BX_CPU_THIS_PTR in_vmx_guest && SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_EPT_ENABLE)) #endif #if BX_SUPPORT_SVM && ! (BX_CPU_THIS_PTR in_svm_guest && SVM_NESTED_PAGING_ENABLED) #endif ) { tlbEntry->accessBits |= TLB_UserReadOK | TLB_UserWriteOK | TLB_UserExecuteOK; } else { if ((combined_access & 4) != 0) { // User Page if (user) { tlbEntry->accessBits |= TLB_UserReadOK; if (isWrite) tlbEntry->accessBits |= TLB_UserWriteOK; if (isExecute) tlbEntry->accessBits |= TLB_UserExecuteOK; } #if BX_CPU_LEVEL >= 6 if (BX_CPU_THIS_PTR cr4.get_SMEP()) tlbEntry->accessBits &= ~TLB_SysExecuteOK; if (BX_CPU_THIS_PTR cr4.get_SMAP()) tlbEntry->accessBits &= ~(TLB_SysReadOK | TLB_SysWriteOK); #endif } } #if BX_CPU_LEVEL >= 6 if (combined_access & 0x100) // Global bit tlbEntry->accessBits |= TLB_GlobalPage; #endif // Attempt to get a host pointer to this physical page. Put that // pointer in the TLB cache. Note if the request is vetoed, NULL // will be returned, and it's OK to OR zero in anyways. tlbEntry->hostPageAddr = BX_CPU_THIS_PTR getHostMemAddr(ppf, rw); if (tlbEntry->hostPageAddr) { // All access allowed also via direct pointer #if BX_X86_DEBUGGER if (! hwbreakpoint_check(laddr, BX_HWDebugMemW, BX_HWDebugMemRW)) #endif tlbEntry->lpf = lpf; // allow direct access with HostPtr } #if BX_SUPPORT_MEMTYPE tlbEntry->memtype = resolve_memtype(memtype_by_mtrr(tlbEntry->ppf), combined_access >> 9 /* effective page tables memory type */); #endif return paddress; } const char *get_memtype_name(BxMemtype memtype) { static const char *mem_type_string[9] = { "UC", "WC", "RESERVED2", "RESERVED3", "WT", "WP", "WB", "UC-", "INVALID" }; if (memtype > BX_MEMTYPE_INVALID) memtype = BX_MEMTYPE_INVALID; return mem_type_string[memtype]; } #if BX_SUPPORT_MEMTYPE BxMemtype BX_CPP_AttrRegparmN(1) BX_CPU_C::memtype_by_mtrr(bx_phy_address pAddr) { #if BX_CPU_LEVEL >= 6 if (is_cpu_extension_supported(BX_ISA_MTRR)) { const Bit32u BX_MTRR_DEFTYPE_FIXED_MTRR_ENABLE_MASK = (1 << 10); const Bit32u BX_MTRR_ENABLE_MASK = (1 << 11); if (BX_CPU_THIS_PTR msr.mtrr_deftype & BX_MTRR_ENABLE_MASK) { // fixed range MTRR take priority over variable range MTRR when enabled if (pAddr < 0x100000 && (BX_CPU_THIS_PTR msr.mtrr_deftype & BX_MTRR_DEFTYPE_FIXED_MTRR_ENABLE_MASK)) { if (pAddr < 0x80000) { unsigned index = (pAddr >> 16) & 0x7; return (BxMemtype) BX_CPU_THIS_PTR msr.mtrrfix64k.ubyte(index); } if (pAddr < 0xc0000) { unsigned index = ((pAddr - 0x80000) >> 14) & 0xf; return (BxMemtype) BX_CPU_THIS_PTR msr.mtrrfix16k[index >> 3].ubyte(index & 0x7); } else { unsigned index = (pAddr - 0xc0000) >> 12; return (BxMemtype) BX_CPU_THIS_PTR msr.mtrrfix4k [index >> 3].ubyte(index & 0x7); } } int memtype = -1; for (unsigned i=0; i < BX_NUM_VARIABLE_RANGE_MTRRS; i++) { Bit64u base = BX_CPU_THIS_PTR msr.mtrrphys[i*2]; Bit64u mask = BX_CPU_THIS_PTR msr.mtrrphys[i*2 + 1]; if ((mask & BX_MTRR_ENABLE_MASK) == 0) continue; mask = PPFOf(mask); if ((pAddr & mask) == (base & mask)) { // // Matched variable MTRR, check overlap rules: // - if two or more variable memory ranges match and the memory types are identical, // then that memory type is used. // - if two or more variable memory ranges match and one of the memory types is UC, // the UC memory type used. // - if two or more variable memory ranges match and the memory types are WT and WB, // the WT memory type is used. // - For overlaps not defined by the above rules, processor behavior is undefined. // BxMemtype curr_memtype = BxMemtype(base & 0xff); if (curr_memtype == BX_MEMTYPE_UC) return BX_MEMTYPE_UC; if (memtype == -1) { memtype = curr_memtype; // first match } else if (memtype != (int) curr_memtype) { if (curr_memtype == BX_MEMTYPE_WT && memtype == BX_MEMTYPE_WB) memtype = BX_MEMTYPE_WT; else if (curr_memtype == BX_MEMTYPE_WB && memtype == BX_MEMTYPE_WT) memtype = BX_MEMTYPE_WT; else memtype = BX_MEMTYPE_INVALID; } } } if (memtype != -1) return BxMemtype(memtype); // didn't match any variable range MTRR, return default memory type return BxMemtype(BX_CPU_THIS_PTR msr.mtrr_deftype & 0xff); } // return UC memory type when MTRRs are not enabled return BX_MEMTYPE_UC; } #endif // return INVALID memory type when MTRRs are not supported return BX_MEMTYPE_INVALID; } BxMemtype BX_CPP_AttrRegparmN(1) BX_CPU_C::memtype_by_pat(unsigned pat) { return (BxMemtype) BX_CPU_THIS_PTR msr.pat.ubyte(pat); } BxMemtype BX_CPP_AttrRegparmN(2) BX_CPU_C::resolve_memtype(BxMemtype mtrr_memtype, BxMemtype pat_memtype) { if (BX_CPU_THIS_PTR cr0.get_CD()) return BX_MEMTYPE_UC; if (mtrr_memtype == BX_MEMTYPE_INVALID) // will result in ignore of MTRR memory type mtrr_memtype = BX_MEMTYPE_WB; switch(pat_memtype) { case BX_MEMTYPE_UC: case BX_MEMTYPE_WC: return pat_memtype; case BX_MEMTYPE_WT: case BX_MEMTYPE_WP: if (mtrr_memtype == BX_MEMTYPE_WC) return BX_MEMTYPE_UC; return (mtrr_memtype < pat_memtype) ? mtrr_memtype : pat_memtype; case BX_MEMTYPE_WB: return mtrr_memtype; case BX_MEMTYPE_UC_WEAK: return (mtrr_memtype == BX_MEMTYPE_WC) ? BX_MEMTYPE_WC : BX_MEMTYPE_UC; default: BX_PANIC(("unexpected PAT memory type: %u", (unsigned) pat_memtype)); } return BX_MEMTYPE_INVALID; // keep compiler happy } #endif #if BX_SUPPORT_SVM void BX_CPU_C::nested_page_fault(unsigned fault, bx_phy_address guest_paddr, unsigned rw, unsigned is_page_walk) { unsigned isWrite = rw & 1; Bit64u error_code = fault | (1 << 2) | (isWrite << 1); if (rw == BX_EXECUTE) error_code |= ERROR_CODE_ACCESS; // I/D = 1 if (is_page_walk) error_code |= BX_CONST64(1) << 32; else error_code |= BX_CONST64(1) << 33; Svm_Vmexit(SVM_VMEXIT_NPF, error_code, guest_paddr); } bx_phy_address BX_CPU_C::nested_walk_long_mode(bx_phy_address guest_paddr, unsigned rw, bx_bool is_page_walk) { bx_phy_address entry_addr[4]; Bit64u entry[4]; BxMemtype entry_memtype[4] = { BX_MEMTYPE_INVALID }; bx_bool nx_fault = 0; int leaf; SVM_CONTROLS *ctrls = &BX_CPU_THIS_PTR vmcb.ctrls; SVM_HOST_STATE *host_state = &BX_CPU_THIS_PTR vmcb.host_state; bx_phy_address ppf = ctrls->ncr3 & BX_CR3_PAGING_MASK; Bit64u offset_mask = BX_CONST64(0x0000ffffffffffff); unsigned combined_access = 0x06; Bit64u reserved = PAGING_PAE_RESERVED_BITS; if (! host_state->efer.get_NXE()) reserved |= PAGE_DIRECTORY_NX_BIT; for (leaf = BX_LEVEL_PML4;; --leaf) { entry_addr[leaf] = ppf + ((guest_paddr >> (9 + 9*leaf)) & 0xff8); access_read_physical(entry_addr[leaf], 8, &entry[leaf]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[leaf], 8, BX_MEMTYPE_INVALID, BX_READ, (BX_PTE_ACCESS + leaf), (Bit8u*)(&entry[leaf])); offset_mask >>= 9; Bit64u curr_entry = entry[leaf]; int fault = check_entry_PAE(bx_paging_level[leaf], curr_entry, reserved, rw, &nx_fault); if (fault >= 0) nested_page_fault(fault, guest_paddr, rw, is_page_walk); combined_access &= curr_entry; // U/S and R/W ppf = curr_entry & BX_CONST64(0x000ffffffffff000); if (leaf == BX_LEVEL_PTE) break; if (curr_entry & 0x80) { if (leaf > (BX_LEVEL_PDE + !!is_cpu_extension_supported(BX_ISA_1G_PAGES))) { BX_DEBUG(("Nested PAE Walk %s: PS bit set !", bx_paging_level[leaf])); nested_page_fault(ERROR_RESERVED | ERROR_PROTECTION, guest_paddr, rw, is_page_walk); } ppf &= BX_CONST64(0x000fffffffffe000); if (ppf & offset_mask) { BX_DEBUG(("Nested PAE Walk %s: reserved bit is set: 0x" FMT_ADDRX64, bx_paging_level[leaf], curr_entry)); nested_page_fault(ERROR_RESERVED | ERROR_PROTECTION, guest_paddr, rw, is_page_walk); } break; } } bx_bool isWrite = (rw & 1); // write or r-m-w unsigned priv_index = (1<<3) /* user */ | (combined_access | isWrite); if (!priv_check[priv_index] || nx_fault) nested_page_fault(ERROR_PROTECTION, guest_paddr, rw, is_page_walk); // Update A/D bits if needed update_access_dirty_PAE(entry_addr, entry, entry_memtype, BX_LEVEL_PML4, leaf, isWrite); // Make up the physical page frame address return ppf | (bx_phy_address)(guest_paddr & offset_mask); } bx_phy_address BX_CPU_C::nested_walk_PAE(bx_phy_address guest_paddr, unsigned rw, bx_bool is_page_walk) { bx_phy_address entry_addr[2]; Bit64u entry[2]; BxMemtype entry_memtype[2] = { BX_MEMTYPE_INVALID }; bx_bool nx_fault = 0; int leaf; unsigned combined_access = 0x06; SVM_CONTROLS *ctrls = &BX_CPU_THIS_PTR vmcb.ctrls; SVM_HOST_STATE *host_state = &BX_CPU_THIS_PTR vmcb.host_state; bx_phy_address ncr3 = ctrls->ncr3 & 0xffffffe0; unsigned index = (guest_paddr >> 30) & 0x3; Bit64u pdptr; bx_phy_address pdpe_entry_addr = (bx_phy_address) (ncr3 | (index << 3)); access_read_physical(pdpe_entry_addr, 8, &pdptr); BX_NOTIFY_PHY_MEMORY_ACCESS(pdpe_entry_addr, 8, BX_MEMTYPE_INVALID, BX_READ, (BX_PDPTR0_ACCESS + index), (Bit8u*) &pdptr); if (! (pdptr & 0x1)) { BX_DEBUG(("Nested PAE Walk PDPTE%d entry not present !", index)); nested_page_fault(ERROR_NOT_PRESENT, guest_paddr, rw, is_page_walk); } if (pdptr & PAGING_PAE_PDPTE_RESERVED_BITS) { BX_DEBUG(("Nested PAE Walk PDPTE%d entry reserved bits set: 0x" FMT_ADDRX64, index, pdptr)); nested_page_fault(ERROR_RESERVED | ERROR_PROTECTION, guest_paddr, rw, is_page_walk); } Bit64u reserved = PAGING_LEGACY_PAE_RESERVED_BITS; if (! host_state->efer.get_NXE()) reserved |= PAGE_DIRECTORY_NX_BIT; bx_phy_address ppf = pdptr & BX_CONST64(0x000ffffffffff000); for (leaf = BX_LEVEL_PDE;; --leaf) { entry_addr[leaf] = ppf + ((guest_paddr >> (9 + 9*leaf)) & 0xff8); access_read_physical(entry_addr[leaf], 8, &entry[leaf]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[leaf], 8, BX_MEMTYPE_INVALID, BX_READ, (BX_PTE_ACCESS + leaf), (Bit8u*)(&entry[leaf])); Bit64u curr_entry = entry[leaf]; int fault = check_entry_PAE(bx_paging_level[leaf], curr_entry, reserved, rw, &nx_fault); if (fault >= 0) nested_page_fault(fault, guest_paddr, rw, is_page_walk); combined_access &= curr_entry; // U/S and R/W ppf = curr_entry & BX_CONST64(0x000ffffffffff000); if (leaf == BX_LEVEL_PTE) break; // Ignore CR4.PSE in PAE mode if (curr_entry & 0x80) { if (curr_entry & PAGING_PAE_PDE2M_RESERVED_BITS) { BX_DEBUG(("PAE PDE2M: reserved bit is set PDE=0x" FMT_ADDRX64, curr_entry)); nested_page_fault(ERROR_RESERVED | ERROR_PROTECTION, guest_paddr, rw, is_page_walk); } // Make up the physical page frame address ppf = (bx_phy_address)((curr_entry & BX_CONST64(0x000fffffffe00000)) | (guest_paddr & 0x001ff000)); break; } } bx_bool isWrite = (rw & 1); // write or r-m-w unsigned priv_index = (1<<3) /* user */ | (combined_access | isWrite); if (!priv_check[priv_index] || nx_fault) nested_page_fault(ERROR_PROTECTION, guest_paddr, rw, is_page_walk); // Update A/D bits if needed update_access_dirty_PAE(entry_addr, entry, entry_memtype, BX_LEVEL_PDE, leaf, isWrite); Bit32u page_offset = PAGE_OFFSET(guest_paddr); return ppf | page_offset; } bx_phy_address BX_CPU_C::nested_walk_legacy(bx_phy_address guest_paddr, unsigned rw, bx_bool is_page_walk) { bx_phy_address entry_addr[2]; Bit32u entry[2]; BxMemtype entry_memtype[2] = { BX_MEMTYPE_INVALID }; int leaf; SVM_CONTROLS *ctrls = &BX_CPU_THIS_PTR vmcb.ctrls; SVM_HOST_STATE *host_state = &BX_CPU_THIS_PTR vmcb.host_state; bx_phy_address ppf = ctrls->ncr3 & BX_CR3_PAGING_MASK; unsigned combined_access = 0x06; for (leaf = BX_LEVEL_PDE;; --leaf) { entry_addr[leaf] = ppf + ((guest_paddr >> (10 + 10*leaf)) & 0xffc); access_read_physical(entry_addr[leaf], 4, &entry[leaf]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[leaf], 4, BX_MEMTYPE_INVALID, BX_READ, (BX_PTE_ACCESS + leaf), (Bit8u*)(&entry[leaf])); Bit32u curr_entry = entry[leaf]; if (!(curr_entry & 0x1)) { BX_DEBUG(("Nested %s Walk: entry not present", bx_paging_level[leaf])); nested_page_fault(ERROR_NOT_PRESENT, guest_paddr, rw, is_page_walk); } combined_access &= curr_entry; // U/S and R/W ppf = curr_entry & 0xfffff000; if (leaf == BX_LEVEL_PTE) break; if ((curr_entry & 0x80) != 0 && host_state->cr4.get_PSE()) { // 4M paging, only if CR4.PSE enabled, ignore PDE.PS otherwise if (curr_entry & PAGING_PDE4M_RESERVED_BITS) { BX_DEBUG(("Nested PSE Walk PDE4M: reserved bit is set: PDE=0x%08x", entry[BX_LEVEL_PDE])); nested_page_fault(ERROR_RESERVED | ERROR_PROTECTION, guest_paddr, rw, is_page_walk); } // make up the physical frame number ppf = (curr_entry & 0xffc00000) | (guest_paddr & 0x003ff000); #if BX_PHY_ADDRESS_WIDTH > 32 ppf |= ((bx_phy_address)(curr_entry & 0x003fe000)) << 19; #endif break; } } bx_bool isWrite = (rw & 1); // write or r-m-w unsigned priv_index = (1<<3) /* user */ | (combined_access | isWrite); if (!priv_check[priv_index]) nested_page_fault(ERROR_PROTECTION, guest_paddr, rw, is_page_walk); update_access_dirty(entry_addr, entry, entry_memtype, leaf, isWrite); Bit32u page_offset = PAGE_OFFSET(guest_paddr); return ppf | page_offset; } bx_phy_address BX_CPU_C::nested_walk(bx_phy_address guest_paddr, unsigned rw, bx_bool is_page_walk) { SVM_HOST_STATE *host_state = &BX_CPU_THIS_PTR vmcb.host_state; BX_DEBUG(("Nested walk for guest paddr 0x" FMT_PHY_ADDRX, guest_paddr)); if (host_state->efer.get_LMA()) return nested_walk_long_mode(guest_paddr, rw, is_page_walk); else if (host_state->cr4.get_PAE()) return nested_walk_PAE(guest_paddr, rw, is_page_walk); else return nested_walk_legacy(guest_paddr, rw, is_page_walk); } #endif #if BX_SUPPORT_VMX >= 2 /* EPT access type */ #define BX_EPT_READ 0x01 #define BX_EPT_WRITE 0x02 #define BX_EPT_EXECUTE 0x04 /* EPT access mask */ #define BX_EPT_ENTRY_NOT_PRESENT 0x00 #define BX_EPT_ENTRY_READ_ONLY 0x01 #define BX_EPT_ENTRY_WRITE_ONLY 0x02 #define BX_EPT_ENTRY_READ_WRITE 0x03 #define BX_EPT_ENTRY_EXECUTE_ONLY 0x04 #define BX_EPT_ENTRY_READ_EXECUTE 0x05 #define BX_EPT_ENTRY_WRITE_EXECUTE 0x06 #define BX_EPT_ENTRY_READ_WRITE_EXECUTE 0x07 #define BX_SUPPRESS_EPT_VIOLATION_EXCEPTION BX_CONST64(0x8000000000000000) #define BX_VMX_EPT_ACCESS_DIRTY_ENABLED (BX_CPU_THIS_PTR vmcs.eptptr & 0x40) // Format of a EPT Entry // ----------------------------------------------------------- // 00 | Read access // 01 | Write access // 02 | Execute Access // 05-03 | EPT Memory type (for leaf entries, reserved otherwise) // 06 | Ignore PAT memory type (for leaf entries, reserved otherwise) // 07 | Page Size, must be 1 to indicate a Large Page // 08 | Accessed bit (if supported, ignored otherwise) // 09 | Dirty bit (for leaf entries, if supported, ignored otherwise) // 11-10 | (ignored) // PA-12 | Physical address // 51-PA | Reserved (must be zero) // 63-52 | (ignored) // ----------------------------------------------------------- #define PAGING_EPT_RESERVED_BITS (BX_PAGING_PHY_ADDRESS_RESERVED_BITS) bx_phy_address BX_CPU_C::translate_guest_physical(bx_phy_address guest_paddr, bx_address guest_laddr, bx_bool guest_laddr_valid, bx_bool is_page_walk, unsigned rw) { VMCS_CACHE *vm = &BX_CPU_THIS_PTR vmcs; bx_phy_address entry_addr[4], ppf = LPFOf(vm->eptptr); Bit64u entry[4]; int leaf; #if BX_SUPPORT_MEMTYPE // The MTRRs have no effect on the memory type used for an access to an EPT paging structures. BxMemtype eptptr_memtype = BX_CPU_THIS_PTR cr0.get_CD() ? (BX_MEMTYPE_UC) : BxMemtype(vm->eptptr & 0x7); #endif Bit32u combined_access = 0x7, access_mask = 0; Bit64u offset_mask = BX_CONST64(0x0000ffffffffffff); BX_DEBUG(("EPT walk for guest paddr 0x" FMT_PHY_ADDRX, guest_paddr)); // when EPT A/D enabled treat guest page table accesses as writes if (BX_VMX_EPT_ACCESS_DIRTY_ENABLED && is_page_walk && guest_laddr_valid) rw = BX_WRITE; if (rw == BX_EXECUTE) access_mask |= BX_EPT_EXECUTE; if (rw & 1) access_mask |= BX_EPT_WRITE; // write or r-m-w if (rw == BX_READ) access_mask |= BX_EPT_READ; Bit32u vmexit_reason = 0; for (leaf = BX_LEVEL_PML4;; --leaf) { entry_addr[leaf] = ppf + ((guest_paddr >> (9 + 9*leaf)) & 0xff8); access_read_physical(entry_addr[leaf], 8, &entry[leaf]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[leaf], 8, MEMTYPE(eptptr_memtype), BX_READ, (BX_EPT_PTE_ACCESS + leaf), (Bit8u*)(&entry[leaf])); offset_mask >>= 9; Bit64u curr_entry = entry[leaf]; Bit32u curr_access_mask = curr_entry & 0x7; combined_access &= curr_access_mask; if (curr_access_mask == BX_EPT_ENTRY_NOT_PRESENT) { BX_DEBUG(("EPT %s: not present", bx_paging_level[leaf])); vmexit_reason = VMX_VMEXIT_EPT_VIOLATION; break; } if (curr_access_mask == BX_EPT_ENTRY_WRITE_ONLY || curr_access_mask == BX_EPT_ENTRY_WRITE_EXECUTE) { BX_DEBUG(("EPT %s: EPT misconfiguration mask=%d", bx_paging_level[leaf], curr_access_mask)); vmexit_reason = VMX_VMEXIT_EPT_MISCONFIGURATION; break; } extern bx_bool isMemTypeValidMTRR(unsigned memtype); if (! isMemTypeValidMTRR((curr_entry >> 3) & 7)) { BX_DEBUG(("EPT %s: EPT misconfiguration memtype=%d", bx_paging_level[leaf], (unsigned)((curr_entry >> 3) & 7))); vmexit_reason = VMX_VMEXIT_EPT_MISCONFIGURATION; break; } if (curr_entry & PAGING_EPT_RESERVED_BITS) { BX_DEBUG(("EPT %s: reserved bit is set 0x" FMT_ADDRX64, bx_paging_level[leaf], curr_entry)); vmexit_reason = VMX_VMEXIT_EPT_MISCONFIGURATION; break; } ppf = curr_entry & BX_CONST64(0x000ffffffffff000); if (leaf == BX_LEVEL_PTE) break; if (curr_entry & 0x80) { if (leaf > (BX_LEVEL_PDE + !!is_cpu_extension_supported(BX_ISA_1G_PAGES))) { BX_DEBUG(("EPT %s: PS bit set !", bx_paging_level[leaf])); vmexit_reason = VMX_VMEXIT_EPT_MISCONFIGURATION; break; } ppf &= BX_CONST64(0x000fffffffffe000); if (ppf & offset_mask) { BX_DEBUG(("EPT %s: reserved bit is set: 0x" FMT_ADDRX64, bx_paging_level[leaf], curr_entry)); vmexit_reason = VMX_VMEXIT_EPT_MISCONFIGURATION; break; } // Make up the physical page frame address ppf += (bx_phy_address)(guest_paddr & offset_mask); break; } } if (!vmexit_reason && (access_mask & combined_access) != access_mask) { vmexit_reason = VMX_VMEXIT_EPT_VIOLATION; } if (vmexit_reason) { BX_ERROR(("VMEXIT: EPT %s for guest paddr 0x" FMT_PHY_ADDRX " laddr 0x" FMT_ADDRX, (vmexit_reason == VMX_VMEXIT_EPT_VIOLATION) ? "violation" : "misconfig", guest_paddr, guest_laddr)); Bit32u vmexit_qualification = 0; if (vmexit_reason == VMX_VMEXIT_EPT_VIOLATION) { // no VMExit qualification for EPT Misconfiguration VMExit vmexit_qualification = access_mask | (combined_access << 3); if (guest_laddr_valid) { vmexit_qualification |= (1<<7); if (! is_page_walk) vmexit_qualification |= (1<<8); } if (BX_CPU_THIS_PTR nmi_unblocking_iret) vmexit_qualification |= (1 << 12); if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_EPT_VIOLATION_EXCEPTION)) { if ((entry[leaf] & BX_SUPPRESS_EPT_VIOLATION_EXCEPTION) == 0) Virtualization_Exception(vmexit_qualification, guest_paddr, guest_laddr); } } VMwrite64(VMCS_64BIT_GUEST_PHYSICAL_ADDR, guest_paddr); VMwrite_natural(VMCS_GUEST_LINEAR_ADDR, guest_laddr); VMexit(vmexit_reason, vmexit_qualification); } if (BX_VMX_EPT_ACCESS_DIRTY_ENABLED) { // write access and Dirty-bit is not set in the leaf entry unsigned dirty_update = (rw & 1) && !(entry[leaf] & 0x200); if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_PML_ENABLE)) vmx_page_modification_logging(guest_paddr, dirty_update); update_ept_access_dirty(entry_addr, entry, MEMTYPE(eptptr_memtype), leaf, rw & 1); } Bit32u page_offset = PAGE_OFFSET(guest_paddr); return ppf | page_offset; } // Access bit 8, Dirty bit 9 void BX_CPU_C::update_ept_access_dirty(bx_phy_address *entry_addr, Bit64u *entry, BxMemtype eptptr_memtype, unsigned leaf, unsigned write) { // Update A bit if needed for (unsigned level=BX_LEVEL_PML4; level > leaf; level--) { if (!(entry[level] & 0x100)) { entry[level] |= 0x100; access_write_physical(entry_addr[level], 8, &entry[level]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[level], 8, MEMTYPE(eptptr_memtype), BX_WRITE, (BX_EPT_PTE_ACCESS + level), (Bit8u*)(&entry[level])); } } // Update A/D bits if needed if (!(entry[leaf] & 0x100) || (write && !(entry[leaf] & 0x200))) { entry[leaf] |= (0x100 | (write<<9)); // Update A and possibly D bits access_write_physical(entry_addr[leaf], 8, &entry[leaf]); BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[leaf], 8, MEMTYPE(eptptr_memtype), BX_WRITE, (BX_EPT_PTE_ACCESS + leaf), (Bit8u*)(&entry[leaf])); } } #endif #if BX_DEBUGGER || BX_DISASM || BX_INSTRUMENTATION || BX_GDBSTUB #if BX_DEBUGGER void dbg_print_paging_pte(int level, Bit64u entry) { dbg_printf("%4s: 0x%08x%08x", bx_paging_level[level], GET32H(entry), GET32L(entry)); if (entry & BX_CONST64(0x8000000000000000)) dbg_printf(" XD"); else dbg_printf(" "); if (level == BX_LEVEL_PTE) { dbg_printf(" %s %s %s", (entry & 0x0100) ? "G" : "g", (entry & 0x0080) ? "PAT" : "pat", (entry & 0x0040) ? "D" : "d"); } else { if (entry & 0x80) { dbg_printf(" PS %s %s %s", (entry & 0x0100) ? "G" : "g", (entry & 0x1000) ? "PAT" : "pat", (entry & 0x0040) ? "D" : "d"); } else { dbg_printf(" ps "); } } dbg_printf(" %s %s %s %s %s %s\n", (entry & 0x20) ? "A" : "a", (entry & 0x10) ? "PCD" : "pcd", (entry & 0x08) ? "PWT" : "pwt", (entry & 0x04) ? "U" : "S", (entry & 0x02) ? "W" : "R", (entry & 0x01) ? "P" : "p"); } #if BX_SUPPORT_VMX >= 2 void dbg_print_ept_paging_pte(int level, Bit64u entry) { dbg_printf("EPT %4s: 0x%08x%08x", bx_paging_level[level], GET32H(entry), GET32L(entry)); if (level != BX_LEVEL_PTE && (entry & 0x80)) dbg_printf(" PS"); else dbg_printf(" "); dbg_printf(" %s %s %s", (entry & 0x04) ? "E" : "e", (entry & 0x02) ? "W" : "w", (entry & 0x01) ? "R" : "r"); if (level == BX_LEVEL_PTE || (entry & 0x80)) { dbg_printf(" %s %s\n", (entry & 0x40) ? "IGNORE_PAT" : "ignore_pat", get_memtype_name(BxMemtype((entry >> 3) & 0x7))); } else { dbg_printf("\n"); } } #endif #endif // BX_DEBUGGER #if BX_SUPPORT_VMX >= 2 bx_bool BX_CPU_C::dbg_translate_guest_physical(bx_phy_address guest_paddr, bx_phy_address *phy, bx_bool verbose) { VMCS_CACHE *vm = &BX_CPU_THIS_PTR vmcs; bx_phy_address pt_address = LPFOf(vm->eptptr); Bit64u offset_mask = BX_CONST64(0x0000ffffffffffff); for (int level = 3; level >= 0; --level) { Bit64u pte; pt_address += ((guest_paddr >> (9 + 9*level)) & 0xff8); offset_mask >>= 9; BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, pt_address, 8, &pte); #if BX_DEBUGGER if (verbose) dbg_print_ept_paging_pte(level, pte); #endif switch(pte & 7) { case BX_EPT_ENTRY_NOT_PRESENT: case BX_EPT_ENTRY_WRITE_ONLY: case BX_EPT_ENTRY_WRITE_EXECUTE: return 0; } if (pte & BX_PAGING_PHY_ADDRESS_RESERVED_BITS) return 0; pt_address = bx_phy_address(pte & BX_CONST64(0x000ffffffffff000)); if (level == BX_LEVEL_PTE) break; if (pte & 0x80) { if (level > (BX_LEVEL_PDE + !!is_cpu_extension_supported(BX_ISA_1G_PAGES))) return 0; pt_address &= BX_CONST64(0x000fffffffffe000); if (pt_address & offset_mask) return 0; break; } } *phy = pt_address + (bx_phy_address)(guest_paddr & offset_mask); return 1; } #endif bx_bool BX_CPU_C::dbg_xlate_linear2phy(bx_address laddr, bx_phy_address *phy, bx_bool verbose) { bx_phy_address paddress; #if BX_SUPPORT_X86_64 if (! long_mode()) laddr &= 0xffffffff; #endif if (! BX_CPU_THIS_PTR cr0.get_PG()) { paddress = (bx_phy_address) laddr; } else { bx_phy_address pt_address = BX_CPU_THIS_PTR cr3 & BX_CR3_PAGING_MASK; // see if page is in the TLB first if (! verbose) { bx_address lpf = LPFOf(laddr); unsigned TLB_index = BX_TLB_INDEX_OF(lpf, 0); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index]; if (TLB_LPFOf(tlbEntry->lpf) == lpf) { paddress = tlbEntry->ppf | PAGE_OFFSET(laddr); *phy = paddress; return 1; } } #if BX_CPU_LEVEL >= 6 if (BX_CPU_THIS_PTR cr4.get_PAE()) { Bit64u offset_mask = BX_CONST64(0x0000ffffffffffff); int level = 3; if (! long_mode()) { pt_address = BX_CPU_THIS_PTR PDPTR_CACHE.entry[(laddr >> 30) & 3]; if (! (pt_address & 0x1)) goto page_fault; pt_address &= BX_CONST64(0x000ffffffffff000); offset_mask >>= 18; level = 1; } for (; level >= 0; --level) { Bit64u pte; pt_address += ((laddr >> (9 + 9*level)) & 0xff8); offset_mask >>= 9; #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) { if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_EPT_ENABLE)) { if (! dbg_translate_guest_physical(pt_address, &pt_address, verbose)) goto page_fault; } } #endif BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, pt_address, 8, &pte); #if BX_DEBUGGER if (verbose) dbg_print_paging_pte(level, pte); #endif if(!(pte & 1)) goto page_fault; if (pte & BX_PAGING_PHY_ADDRESS_RESERVED_BITS) goto page_fault; pt_address = bx_phy_address(pte & BX_CONST64(0x000ffffffffff000)); if (level == BX_LEVEL_PTE) break; if (pte & 0x80) { // large page pt_address &= BX_CONST64(0x000fffffffffe000); if (pt_address & offset_mask) goto page_fault; if (is_cpu_extension_supported(BX_ISA_1G_PAGES) && level == BX_LEVEL_PDPTE) break; if (level == BX_LEVEL_PDE) break; goto page_fault; } } paddress = pt_address + (bx_phy_address)(laddr & offset_mask); } else // not PAE #endif { Bit32u offset_mask = 0xfff; for (int level = 1; level >= 0; --level) { Bit32u pte; pt_address += ((laddr >> (10 + 10*level)) & 0xffc); #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) { if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_EPT_ENABLE)) { if (! dbg_translate_guest_physical(pt_address, &pt_address, verbose)) goto page_fault; } } #endif BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, pt_address, 4, &pte); #if BX_DEBUGGER if (verbose) dbg_print_paging_pte(level, pte); #endif if (!(pte & 1)) goto page_fault; pt_address = pte & 0xfffff000; #if BX_CPU_LEVEL >= 6 if (level == BX_LEVEL_PDE && (pte & 0x80) != 0 && BX_CPU_THIS_PTR cr4.get_PSE()) { offset_mask = 0x3fffff; pt_address = pte & 0xffc00000; #if BX_PHY_ADDRESS_WIDTH > 32 pt_address += ((bx_phy_address)(pte & 0x003fe000)) << 19; #endif break; } #endif } paddress = pt_address + (bx_phy_address)(laddr & offset_mask); } } #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) { if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_EPT_ENABLE)) { if (! dbg_translate_guest_physical(paddress, &paddress, verbose)) goto page_fault; } } #endif *phy = A20ADDR(paddress); return 1; page_fault: *phy = 0; return 0; } #endif int BX_CPU_C::access_write_linear(bx_address laddr, unsigned len, unsigned curr_pl, Bit32u ac_mask, void *data) { Bit32u pageOffset = PAGE_OFFSET(laddr); bx_TLB_entry *tlbEntry = BX_TLB_ENTRY_OF(laddr); #if BX_SUPPORT_X86_64 if (! IsCanonical(laddr)) { BX_ERROR(("access_write_linear(): canonical failure")); return -1; } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check() && (curr_pl == 3)) { if (pageOffset & ac_mask) { BX_ERROR(("access_write_linear(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0); } } #endif /* check for reference across multiple pages */ if ((pageOffset + len) <= 4096) { // Access within single page. BX_CPU_THIS_PTR address_xlation.paddress1 = translate_linear(tlbEntry, laddr, (curr_pl==3), BX_WRITE); BX_CPU_THIS_PTR address_xlation.pages = 1; #if BX_SUPPORT_MEMTYPE BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype(); #endif BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, BX_CPU_THIS_PTR address_xlation.paddress1, len, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) data); access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, len, data); #if BX_X86_DEBUGGER hwbreakpoint_match(laddr, len, BX_WRITE); #endif } else { // access across 2 pages BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset; BX_CPU_THIS_PTR address_xlation.len2 = len - BX_CPU_THIS_PTR address_xlation.len1; BX_CPU_THIS_PTR address_xlation.pages = 2; bx_address laddr2 = laddr + BX_CPU_THIS_PTR address_xlation.len1; #if BX_SUPPORT_X86_64 if (! long64_mode()) laddr2 &= 0xffffffff; /* handle linear address wrap in legacy mode */ else { if (! IsCanonical(laddr2)) { BX_ERROR(("access_write_linear(): canonical failure for second half of page split access")); return -1; } } #endif bx_TLB_entry *tlbEntry2 = BX_TLB_ENTRY_OF(laddr2); BX_CPU_THIS_PTR address_xlation.paddress1 = translate_linear(tlbEntry, laddr, (curr_pl == 3), BX_WRITE); BX_CPU_THIS_PTR address_xlation.paddress2 = translate_linear(tlbEntry2, laddr2, (curr_pl == 3), BX_WRITE); #if BX_SUPPORT_MEMTYPE BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype(); BX_CPU_THIS_PTR address_xlation.memtype2 = tlbEntry2->get_memtype(); #endif #ifdef BX_LITTLE_ENDIAN BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) data); access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, data); BX_NOTIFY_LIN_MEMORY_ACCESS(laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, tlbEntry2->get_memtype(), BX_WRITE, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1); access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1); #else // BX_BIG_ENDIAN BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, tlbEntry->get_memtype(), BX_WRITE, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1)); access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1)); BX_NOTIFY_LIN_MEMORY_ACCESS(laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, tlbEntry2->get_memtype(), BX_WRITE, (Bit8u*) data); access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, data); #endif #if BX_X86_DEBUGGER hwbreakpoint_match(laddr, BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE); hwbreakpoint_match(laddr2, BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE); #endif } return 0; } int BX_CPU_C::access_read_linear(bx_address laddr, unsigned len, unsigned curr_pl, unsigned xlate_rw, Bit32u ac_mask, void *data) { BX_ASSERT(xlate_rw == BX_READ || xlate_rw == BX_RW); Bit32u pageOffset = PAGE_OFFSET(laddr); #if BX_SUPPORT_X86_64 if (! IsCanonical(laddr)) { BX_ERROR(("access_read_linear(): canonical failure")); return -1; } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check() && (curr_pl == 3)) { if (pageOffset & ac_mask) { BX_ERROR(("access_read_linear(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0); } } #endif bx_TLB_entry *tlbEntry = BX_TLB_ENTRY_OF(laddr); /* check for reference across multiple pages */ if ((pageOffset + len) <= 4096) { // Access within single page. BX_CPU_THIS_PTR address_xlation.paddress1 = translate_linear(tlbEntry, laddr, (curr_pl == 3), xlate_rw); BX_CPU_THIS_PTR address_xlation.pages = 1; #if BX_SUPPORT_MEMTYPE BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype(); #endif access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress1, len, data); BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, BX_CPU_THIS_PTR address_xlation.paddress1, len, tlbEntry->get_memtype(), xlate_rw, (Bit8u*) data); #if BX_X86_DEBUGGER hwbreakpoint_match(laddr, len, xlate_rw); #endif } else { // access across 2 pages BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset; BX_CPU_THIS_PTR address_xlation.len2 = len - BX_CPU_THIS_PTR address_xlation.len1; BX_CPU_THIS_PTR address_xlation.pages = 2; bx_address laddr2 = laddr + BX_CPU_THIS_PTR address_xlation.len1; #if BX_SUPPORT_X86_64 if (! long64_mode()) laddr2 &= 0xffffffff; /* handle linear address wrap in legacy mode */ else { if (! IsCanonical(laddr2)) { BX_ERROR(("access_read_linear(): canonical failure for second half of page split access")); return -1; } } #endif bx_TLB_entry *tlbEntry2 = BX_TLB_ENTRY_OF(laddr2); BX_CPU_THIS_PTR address_xlation.paddress1 = translate_linear(tlbEntry, laddr, (curr_pl == 3), xlate_rw); BX_CPU_THIS_PTR address_xlation.paddress2 = translate_linear(tlbEntry2, laddr2, (curr_pl == 3), xlate_rw); #if BX_SUPPORT_MEMTYPE BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype(); BX_CPU_THIS_PTR address_xlation.memtype2 = tlbEntry2->get_memtype(); #endif #ifdef BX_LITTLE_ENDIAN access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, data); BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, tlbEntry->get_memtype(), xlate_rw, (Bit8u*) data); access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1); BX_NOTIFY_LIN_MEMORY_ACCESS(laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, tlbEntry2->get_memtype(), xlate_rw, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1); #else // BX_BIG_ENDIAN access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1)); BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, tlbEntry->get_memtype(), xlate_rw, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1)); access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, data); BX_NOTIFY_LIN_MEMORY_ACCESS(laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, tlbEntry2->get_memtype(), xlate_rw, (Bit8u*) data); #endif #if BX_X86_DEBUGGER hwbreakpoint_match(laddr, BX_CPU_THIS_PTR address_xlation.len1, xlate_rw); hwbreakpoint_match(laddr2, BX_CPU_THIS_PTR address_xlation.len2, xlate_rw); #endif } return 0; } void BX_CPU_C::access_write_physical(bx_phy_address paddr, unsigned len, void *data) { #if BX_SUPPORT_VMX && BX_SUPPORT_X86_64 if (is_virtual_apic_page(paddr)) { VMX_Virtual_Apic_Write(paddr, len, data); return; } #endif #if BX_SUPPORT_APIC if (BX_CPU_THIS_PTR lapic.is_selected(paddr)) { BX_CPU_THIS_PTR lapic.write(paddr, data, len); return; } #endif BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, paddr, len, data); } void BX_CPU_C::access_read_physical(bx_phy_address paddr, unsigned len, void *data) { #if BX_SUPPORT_VMX && BX_SUPPORT_X86_64 if (is_virtual_apic_page(paddr)) { paddr = VMX_Virtual_Apic_Read(paddr, len, data); } #endif #if BX_SUPPORT_APIC if (BX_CPU_THIS_PTR lapic.is_selected(paddr)) { BX_CPU_THIS_PTR lapic.read(paddr, data, len); return; } #endif BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, paddr, len, data); } bx_hostpageaddr_t BX_CPU_C::getHostMemAddr(bx_phy_address paddr, unsigned rw) { #if BX_SUPPORT_VMX && BX_SUPPORT_X86_64 if (is_virtual_apic_page(paddr)) return 0; // Do not allow direct access to virtual apic page #endif #if BX_SUPPORT_APIC if (BX_CPU_THIS_PTR lapic.is_selected(paddr)) return 0; // Vetoed! APIC address space #endif return (bx_hostpageaddr_t) BX_MEM(0)->getHostMemAddr(BX_CPU_THIS, paddr, rw); } #if BX_LARGE_RAMFILE bx_bool BX_CPU_C::check_addr_in_tlb_buffers(const Bit8u *addr, const Bit8u *end) { for (unsigned tlb_entry_num=0; tlb_entry_num < BX_TLB_SIZE; tlb_entry_num++) { if (((BX_CPU_THIS_PTR TLB.entry[tlb_entry_num].hostPageAddr)>=(const bx_hostpageaddr_t)addr) && ((BX_CPU_THIS_PTR TLB.entry[tlb_entry_num].hostPageAddr)<(const bx_hostpageaddr_t)end)) return true; } return false; } #endif