///////////////////////////////////////////////////////////////////////// // $Id: access.cc,v 1.35 2002-11-13 21:00:03 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_USE_CPU_SMF #define this (BX_CPU(0)) #endif #if BX_SUPPORT_X86_64 #define IsLongMode() (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) #define LPFOf(laddr) ((laddr) & BX_CONST64(0xfffffffffffff000)) #else #define IsLongMode() (0) #define LPFOf(laddr) ((laddr) & 0xfffff000) #endif void BX_CPU_C::write_virtual_checks(bx_segment_reg_t *seg, bx_address offset, unsigned length) { Bit32u upper_limit; #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { seg->cache.valid |= SegAccessWOK; return; } #endif if ( protected_mode() ) { if ( seg->cache.valid==0 ) { BX_ERROR(("seg = %s", BX_CPU_THIS_PTR strseg(seg))); BX_ERROR(("seg->selector.value = %04x", (unsigned) seg->selector.value)); BX_ERROR(("write_virtual_checks: valid bit = 0")); BX_ERROR(("CS: %04x", (unsigned) BX_CPU_THIS_PTR sregs[1].selector.value)); BX_ERROR(("IP: %04x", (unsigned) BX_CPU_THIS_PTR prev_eip)); exception(BX_GP_EXCEPTION, 0, 0); return; } if (seg->cache.p == 0) { /* not present */ BX_INFO(("write_virtual_checks(): segment not present")); exception(int_number(seg), 0, 0); return; } switch ( seg->cache.type ) { case 0: case 1: // read only case 4: case 5: // read only, expand down case 8: case 9: // execute only case 10: case 11: // execute/read case 12: case 13: // execute only, conforming case 14: case 15: // execute/read-only, conforming BX_INFO(("write_virtual_checks(): no write access to seg")); exception(int_number(seg), 0, 0); return; case 2: case 3: /* read/write */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_INFO(("write_virtual_checks(): write beyond limit, r/w")); exception(int_number(seg), 0, 0); return; } if (seg->cache.u.segment.limit_scaled >= 7) { // Mark cache as being OK type for succeeding writes. The limit // checks still needs to be done though, but is more simple. We // could probably also optimize that out with a flag for the case // when limit is the maximum 32bit value. Limit should accomodate // at least a dword, since we subtract from it in the simple // limit check in other functions, and we don't want the value to roll. // Only normal segments (not expand down) are handled this way. seg->cache.valid |= SegAccessWOK; } break; case 6: case 7: /* read write, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if ( (offset <= seg->cache.u.segment.limit_scaled) || (offset > upper_limit) || ((upper_limit - offset) < (length - 1)) ) { BX_INFO(("write_virtual_checks(): write beyond limit, r/w ED")); exception(int_number(seg), 0, 0); return; } break; } return; } else { /* real mode */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { //BX_INFO(("write_virtual_checks() SEG EXCEPTION: %x:%x + %x", // (unsigned) seg->selector.value, (unsigned) offset, (unsigned) length)); if (seg == & BX_CPU_THIS_PTR sregs[2]) exception(BX_SS_EXCEPTION, 0, 0); else exception(BX_GP_EXCEPTION, 0, 0); } if (seg->cache.u.segment.limit_scaled >= 7) { // Mark cache as being OK type for succeeding writes. See notes above. seg->cache.valid |= SegAccessWOK; } } } void BX_CPU_C::read_virtual_checks(bx_segment_reg_t *seg, bx_address offset, unsigned length) { Bit32u upper_limit; #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { seg->cache.valid |= SegAccessROK; return; } #endif if ( protected_mode() ) { if ( seg->cache.valid==0 ) { BX_ERROR(("seg = %s", BX_CPU_THIS_PTR strseg(seg))); BX_ERROR(("seg->selector.value = %04x", (unsigned) seg->selector.value)); //BX_ERROR(("read_virtual_checks: valid bit = 0")); //BX_ERROR(("CS: %04x", (unsigned) // BX_CPU_THIS_PTR sregs[1].selector.value)); //BX_ERROR(("IP: %04x", (unsigned) BX_CPU_THIS_PTR prev_eip)); //debug(EIP); exception(BX_GP_EXCEPTION, 0, 0); return; } if (seg->cache.p == 0) { /* not present */ BX_INFO(("read_virtual_checks(): segment not present")); exception(int_number(seg), 0, 0); return; } switch ( seg->cache.type ) { case 0: case 1: /* read only */ case 10: case 11: /* execute/read */ case 14: case 15: /* execute/read-only, conforming */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_INFO(("read_virtual_checks(): write beyond limit")); exception(int_number(seg), 0, 0); return; } if (seg->cache.u.segment.limit_scaled >= 7) { // Mark cache as being OK type for succeeding writes. See notes for // write checks; similar code. seg->cache.valid |= SegAccessROK; } break; case 2: case 3: /* read/write */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_INFO(("read_virtual_checks(): write beyond limit")); exception(int_number(seg), 0, 0); return; } if (seg->cache.u.segment.limit_scaled >= 7) { // Mark cache as being OK type for succeeding writes. See notes for // write checks; similar code. seg->cache.valid |= SegAccessROK; } break; case 4: case 5: /* read only, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if ( (offset <= seg->cache.u.segment.limit_scaled) || (offset > upper_limit) || ((upper_limit - offset) < (length - 1)) ) { BX_INFO(("read_virtual_checks(): write beyond limit")); exception(int_number(seg), 0, 0); return; } break; case 6: case 7: /* read write, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if ( (offset <= seg->cache.u.segment.limit_scaled) || (offset > upper_limit) || ((upper_limit - offset) < (length - 1)) ) { BX_INFO(("read_virtual_checks(): write beyond limit")); exception(int_number(seg), 0, 0); return; } break; case 8: case 9: /* execute only */ case 12: case 13: /* execute only, conforming */ /* can't read or write an execute-only segment */ BX_INFO(("read_virtual_checks(): execute only")); exception(int_number(seg), 0, 0); return; break; } return; } else { /* real mode */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { //BX_ERROR(("read_virtual_checks() SEG EXCEPTION: %x:%x + %x", // (unsigned) seg->selector.value, (unsigned) offset, (unsigned) length)); if (seg == & BX_CPU_THIS_PTR sregs[2]) exception(BX_SS_EXCEPTION, 0, 0); else exception(BX_GP_EXCEPTION, 0, 0); } if (seg->cache.u.segment.limit_scaled >= 7) { // Mark cache as being OK type for succeeding writes. See notes for // write checks; similar code. seg->cache.valid |= SegAccessROK; } return; } } char * BX_CPU_C::strseg(bx_segment_reg_t *seg) { if (seg == &BX_CPU_THIS_PTR sregs[0]) return("ES"); else if (seg == & BX_CPU_THIS_PTR sregs[1]) return("CS"); else if (seg == & BX_CPU_THIS_PTR sregs[2]) return("SS"); else if (seg == &BX_CPU_THIS_PTR sregs[3]) return("DS"); else if (seg == &BX_CPU_THIS_PTR sregs[4]) return("FS"); else if (seg == &BX_CPU_THIS_PTR sregs[5]) return("GS"); else { BX_ERROR(("undefined segment passed to strseg()!")); return("??"); } } void BX_CPU_C::write_virtual_byte(unsigned s, bx_address offset, Bit8u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if ( IsLongMode() || (offset <= seg->cache.u.segment.limit_scaled) ) { unsigned pl; accessOK: laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(CPU_ID, laddr, 1, BX_WRITE); pl = (CPL==3); #if BX_SupportGuest2HostTLB { bx_address lpf; Bit32u tlbIndex, pageOffset; pageOffset = laddr & 0xfff; tlbIndex = BX_TLB_INDEX_OF(laddr); lpf = LPFOf(laddr); if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf))) { Bit32u accessBits; Bit32u hostPageAddr; Bit8u *hostAddr; // See if the TLB entry privilege level allows us write access // from this CPL. hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr; hostAddr = (Bit8u*) (hostPageAddr | pageOffset); accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits; if ( accessBits & (1 << (2 | pl)) ) { #if BX_SupportICache Bit32u *pageStamp; pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[ BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12]; #endif // Current write access has privilege. if (hostPageAddr #if BX_SupportICache && (*pageStamp & ICacheWriteStampMask) #endif ) { *hostAddr = *data; #if BX_SupportICache (*pageStamp)--; #endif return; } } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 1, pl, BX_WRITE, (void *) data); return; } } write_virtual_checks(seg, offset, 1); goto accessOK; } void BX_CPU_C::write_virtual_word(unsigned s, bx_address offset, Bit16u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if ( IsLongMode() || (offset < seg->cache.u.segment.limit_scaled) ) { unsigned pl; accessOK: laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(CPU_ID, laddr, 2, BX_WRITE); pl = (CPL==3); #if BX_SupportGuest2HostTLB { bx_address lpf; Bit32u tlbIndex, pageOffset; pageOffset = laddr & 0xfff; if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages. tlbIndex = BX_TLB_INDEX_OF(laddr); lpf = LPFOf(laddr); if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) ) { Bit32u accessBits; Bit32u hostPageAddr; Bit16u *hostAddr; // See if the TLB entry privilege level allows us write access // from this CPL. hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr; hostAddr = (Bit16u*) (hostPageAddr | pageOffset); accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits; if ( accessBits & (1 << (2 | pl)) ) { #if BX_SupportICache Bit32u *pageStamp; pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[ BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12]; #endif // Current write access has privilege. if (hostPageAddr #if BX_SupportICache && (*pageStamp & ICacheWriteStampMask) #endif ) { WriteHostWordToLittleEndian(hostAddr, *data); #if BX_SupportICache (*pageStamp)--; #endif return; } } } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 2, pl, BX_WRITE, (void *) data); return; } } write_virtual_checks(seg, offset, 2); goto accessOK; } void BX_CPU_C::write_virtual_dword(unsigned s, bx_address offset, Bit32u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if ( IsLongMode() || (offset < (seg->cache.u.segment.limit_scaled-2)) ) { unsigned pl; accessOK: laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(CPU_ID, laddr, 4, BX_WRITE); pl = (CPL==3); #if BX_SupportGuest2HostTLB { bx_address lpf; Bit32u tlbIndex, pageOffset; pageOffset = laddr & 0xfff; if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages. tlbIndex = BX_TLB_INDEX_OF(laddr); lpf = LPFOf(laddr); if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) ) { Bit32u accessBits; Bit32u hostPageAddr; Bit32u *hostAddr; // See if the TLB entry privilege level allows us write access // from this CPL. hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr; hostAddr = (Bit32u*) (hostPageAddr | pageOffset); accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits; if ( accessBits & (1 << (2 | pl)) ) { #if BX_SupportICache Bit32u *pageStamp; pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[ BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12]; #endif // Current write access has privilege. if (hostPageAddr #if BX_SupportICache && (*pageStamp & ICacheWriteStampMask) #endif ) { WriteHostDWordToLittleEndian(hostAddr, *data); #if BX_SupportICache (*pageStamp)--; #endif return; } } } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 4, pl, BX_WRITE, (void *) data); return; } } write_virtual_checks(seg, offset, 4); goto accessOK; } void BX_CPU_C::read_virtual_byte(unsigned s, bx_address offset, Bit8u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessROK) { if ( IsLongMode() || (offset <= seg->cache.u.segment.limit_scaled) ) { unsigned pl; accessOK: laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(CPU_ID, laddr, 1, BX_READ); pl = (CPL==3); #if BX_SupportGuest2HostTLB { bx_address lpf; Bit32u tlbIndex, pageOffset; pageOffset = laddr & 0xfff; tlbIndex = BX_TLB_INDEX_OF(laddr); lpf = LPFOf(laddr); if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us read access // from this CPL. Bit32u accessBits; Bit32u hostPageAddr; Bit8u *hostAddr; hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr; hostAddr = (Bit8u*) (hostPageAddr | pageOffset); accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits; if ( accessBits & (1<cache.valid & SegAccessROK) { if ( IsLongMode() || (offset < seg->cache.u.segment.limit_scaled) ) { unsigned pl; accessOK: laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(CPU_ID, laddr, 2, BX_READ); pl = (CPL==3); #if BX_SupportGuest2HostTLB { bx_address lpf; Bit32u tlbIndex, pageOffset; pageOffset = laddr & 0xfff; if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages. tlbIndex = BX_TLB_INDEX_OF(laddr); lpf = LPFOf(laddr); if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us read access // from this CPL. Bit32u accessBits; Bit32u hostPageAddr; Bit16u *hostAddr; hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr; hostAddr = (Bit16u*) (hostPageAddr | pageOffset); accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits; if ( accessBits & (1<cache.valid & SegAccessROK) { if ( IsLongMode() || (offset < (seg->cache.u.segment.limit_scaled-2)) ) { unsigned pl; accessOK: laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(CPU_ID, laddr, 4, BX_READ); pl = (CPL==3); #if BX_SupportGuest2HostTLB { bx_address lpf; Bit32u tlbIndex, pageOffset; pageOffset = laddr & 0xfff; if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages. tlbIndex = BX_TLB_INDEX_OF(laddr); lpf = LPFOf(laddr); if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us read access // from this CPL. Bit32u accessBits; Bit32u hostPageAddr; Bit32u *hostAddr; hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr; hostAddr = (Bit32u*) (hostPageAddr | pageOffset); accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits; if ( accessBits & (1<cache.valid & SegAccessWOK) { if ( IsLongMode() || (offset <= seg->cache.u.segment.limit_scaled) ) { unsigned pl; accessOK: laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(CPU_ID, laddr, 1, BX_READ); pl = (CPL==3); #if BX_SupportGuest2HostTLB { bx_address lpf; Bit32u tlbIndex, pageOffset; pageOffset = laddr & 0xfff; tlbIndex = BX_TLB_INDEX_OF(laddr); lpf = LPFOf(laddr); if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) ) { Bit32u accessBits; Bit32u hostPageAddr; Bit8u *hostAddr; // See if the TLB entry privilege level allows us write access // from this CPL. hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr; hostAddr = (Bit8u*) (hostPageAddr | pageOffset); accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits; if ( accessBits & (1 << (2 | pl)) ) { #if BX_SupportICache Bit32u *pageStamp; pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[ BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12]; #endif // Current write access has privilege. if (hostPageAddr #if BX_SupportICache && (*pageStamp & ICacheWriteStampMask) #endif ) { *data = *hostAddr; BX_CPU_THIS_PTR address_xlation.pages = (Bit32u) hostAddr; #if BX_SupportICache (*pageStamp)--; #endif return; } } } } #endif // BX_SupportGuest2HostTLB // Accelerated attempt falls through to long path. Do it the // old fashioned way... access_linear(laddr, 1, pl, BX_RW, (void *) data); return; } } write_virtual_checks(seg, offset, 1); goto accessOK; } void BX_CPU_C::read_RMW_virtual_word(unsigned s, bx_address offset, Bit16u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if ( IsLongMode() || (offset < seg->cache.u.segment.limit_scaled) ) { unsigned pl; accessOK: laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(CPU_ID, laddr, 2, BX_READ); pl = (CPL==3); #if BX_SupportGuest2HostTLB { bx_address lpf; Bit32u tlbIndex, pageOffset; pageOffset = laddr & 0xfff; if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages. tlbIndex = BX_TLB_INDEX_OF(laddr); lpf = LPFOf(laddr); if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) ) { Bit32u accessBits; Bit32u hostPageAddr; Bit16u *hostAddr; // See if the TLB entry privilege level allows us write access // from this CPL. hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr; hostAddr = (Bit16u*) (hostPageAddr | pageOffset); accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits; if ( accessBits & (1 << (2 | pl)) ) { #if BX_SupportICache Bit32u *pageStamp; pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[ BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12]; #endif // Current write access has privilege. if (hostPageAddr #if BX_SupportICache && (*pageStamp & ICacheWriteStampMask) #endif ) { ReadHostWordFromLittleEndian(hostAddr, *data); BX_CPU_THIS_PTR address_xlation.pages = (Bit32u) hostAddr; #if BX_SupportICache (*pageStamp)--; #endif return; } } } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 2, pl, BX_RW, (void *) data); return; } } write_virtual_checks(seg, offset, 2); goto accessOK; } void BX_CPU_C::read_RMW_virtual_dword(unsigned s, bx_address offset, Bit32u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if ( IsLongMode() || (offset < (seg->cache.u.segment.limit_scaled-2)) ) { unsigned pl; accessOK: laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(CPU_ID, laddr, 4, BX_READ); pl = (CPL==3); #if BX_SupportGuest2HostTLB { bx_address lpf; Bit32u tlbIndex, pageOffset; pageOffset = laddr & 0xfff; if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages. tlbIndex = BX_TLB_INDEX_OF(laddr); lpf = LPFOf(laddr); if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) ) { Bit32u accessBits; Bit32u hostPageAddr; Bit32u *hostAddr; // See if the TLB entry privilege level allows us write access // from this CPL. hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr; hostAddr = (Bit32u*) (hostPageAddr | pageOffset); accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits; if ( accessBits & (1 << (2 | pl)) ) { #if BX_SupportICache Bit32u *pageStamp; pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[ BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12]; #endif // Current write access has privilege. if (hostPageAddr #if BX_SupportICache && (*pageStamp & ICacheWriteStampMask) #endif ) { ReadHostDWordFromLittleEndian(hostAddr, *data); BX_CPU_THIS_PTR address_xlation.pages = (Bit32u) hostAddr; #if BX_SupportICache (*pageStamp)--; #endif return; } } } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 4, pl, BX_RW, (void *) data); return; } } write_virtual_checks(seg, offset, 4); goto accessOK; } void BX_CPU_C::write_RMW_virtual_byte(Bit8u val8) { BX_INSTR_MEM_DATA(CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 1, BX_WRITE); if (BX_CPU_THIS_PTR address_xlation.pages > 2) { // Pages > 2 means it stores a host address for direct access. Bit8u * hostAddr = (Bit8u *) BX_CPU_THIS_PTR address_xlation.pages; * hostAddr = val8; } else { // address_xlation.pages must be 1 BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val8); } } void BX_CPU_C::write_RMW_virtual_word(Bit16u val16) { BX_INSTR_MEM_DATA(CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 2, BX_WRITE); if (BX_CPU_THIS_PTR address_xlation.pages > 2) { // Pages > 2 means it stores a host address for direct access. Bit16u *hostAddr = (Bit16u *) BX_CPU_THIS_PTR address_xlation.pages; WriteHostWordToLittleEndian(hostAddr, val16); } else if (BX_CPU_THIS_PTR address_xlation.pages == 1) { BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress1, 2, &val16); } else { #ifdef BX_LITTLE_ENDIAN BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val16); BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress2, 1, ((Bit8u *) &val16) + 1); #else BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress1, 1, ((Bit8u *) &val16) + 1); BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress2, 1, &val16); #endif } } void BX_CPU_C::write_RMW_virtual_dword(Bit32u val32) { BX_INSTR_MEM_DATA(CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 4, BX_WRITE); if (BX_CPU_THIS_PTR address_xlation.pages > 2) { // Pages > 2 means it stores a host address for direct access. Bit32u *hostAddr = (Bit32u *) BX_CPU_THIS_PTR address_xlation.pages; WriteHostDWordToLittleEndian(hostAddr, val32); } else if (BX_CPU_THIS_PTR address_xlation.pages == 1) { BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress1, 4, &val32); } else { #ifdef BX_LITTLE_ENDIAN BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, &val32); BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1); #else BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1)); BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, &val32); #endif } } void BX_CPU_C::write_virtual_qword(unsigned s, bx_address offset, Bit64u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if ( IsLongMode() || (offset <= (seg->cache.u.segment.limit_scaled-7)) ) { unsigned pl; accessOK: laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(CPU_ID, laddr, 8, BX_WRITE); pl = (CPL==3); #if BX_SupportGuest2HostTLB { bx_address lpf; Bit32u tlbIndex, pageOffset; pageOffset = laddr & 0xfff; if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages. tlbIndex = BX_TLB_INDEX_OF(laddr); lpf = LPFOf(laddr); if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) ) { Bit32u accessBits; Bit32u hostPageAddr; Bit64u *hostAddr; // See if the TLB entry privilege level allows us write access // from this CPL. hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr; hostAddr = (Bit64u*) (hostPageAddr | pageOffset); accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits; if ( accessBits & (1 << (2 | pl)) ) { #if BX_SupportICache Bit32u *pageStamp; pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[ BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12]; #endif // Current write access has privilege. if (hostPageAddr #if BX_SupportICache && (*pageStamp & ICacheWriteStampMask) #endif ) { WriteHostQWordToLittleEndian(hostAddr, *data); #if BX_SupportICache (*pageStamp)--; #endif return; } } } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 8, pl, BX_WRITE, (void *) data); return; } } write_virtual_checks(seg, offset, 8); goto accessOK; } void BX_CPU_C::read_virtual_qword(unsigned s, bx_address offset, Bit64u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessROK) { if ( IsLongMode() || (offset <= (seg->cache.u.segment.limit_scaled-7)) ) { unsigned pl; accessOK: laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(CPU_ID, laddr, 8, BX_READ); pl = (CPL==3); #if BX_SupportGuest2HostTLB { bx_address lpf; Bit32u tlbIndex, pageOffset; pageOffset = laddr & 0xfff; if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages. tlbIndex = BX_TLB_INDEX_OF(laddr); lpf = LPFOf(laddr); if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us read access // from this CPL. Bit32u accessBits; Bit32u hostPageAddr; Bit64u *hostAddr; hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr; hostAddr = (Bit64u*) (hostPageAddr | pageOffset); accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits; if ( accessBits & (1< 2) { // Pages > 2 means it stores a host address for direct access. Bit64u *hostAddr = (Bit64u *) BX_CPU_THIS_PTR address_xlation.pages; WriteHostQWordToLittleEndian(hostAddr, val64); } else if (BX_CPU_THIS_PTR address_xlation.pages == 1) { BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress1, 8, &val64); } else { #ifdef BX_LITTLE_ENDIAN BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, &val64); BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1); #else BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1)); BX_CPU_THIS_PTR mem->writePhysicalPage(this, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, &val64); #endif } } void BX_CPU_C::read_RMW_virtual_qword(unsigned s, bx_address offset, Bit64u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if ( IsLongMode() || (offset <= (seg->cache.u.segment.limit_scaled-7)) ) { unsigned pl; accessOK: laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(CPU_ID, laddr, 8, BX_READ); pl = (CPL==3); #if BX_SupportGuest2HostTLB { bx_address lpf; Bit32u tlbIndex, pageOffset; pageOffset = laddr & 0xfff; if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages. tlbIndex = BX_TLB_INDEX_OF(laddr); lpf = LPFOf(laddr); if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) ) { Bit32u accessBits; Bit32u hostPageAddr; Bit32u *hostAddr; // See if the TLB entry privilege level allows us write access // from this CPL. hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr; hostAddr = (Bit32u*) (hostPageAddr | pageOffset); accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits; if ( accessBits & (1 << (2 | pl)) ) { #if BX_SupportICache Bit32u *pageStamp; pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[ BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12]; #endif // Current write access has privilege. if (hostPageAddr #if BX_SupportICache && (*pageStamp & ICacheWriteStampMask) #endif ) { ReadHostQWordFromLittleEndian(hostAddr, *data); BX_CPU_THIS_PTR address_xlation.pages = (Bit32u) hostAddr; #if BX_SupportICache (*pageStamp)--; #endif return; } } } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 8, pl, BX_RW, (void *) data); return; } } write_virtual_checks(seg, offset, 8); goto accessOK; } #if BX_SUPPORT_SSE != 0 // Some macro defs to make things cleaner for endian-ness issues. // The following routines access a double qword, ie 16-bytes. // For the moment, I redirect these to use the single qword routines // by splitting one access into two. // // Endian Host byte order Guest (x86) byte order // ====================================================== // Little 0..7 8..15 0..7 8..15 // Big 15..8 7...0 0..7 8..15 // // Below are the host memory offsets to each of 2 single quadwords, which // are different across big an little endian machines. The memory // accessing routines take care of the access endian issues when accessing // the physical memory image. #ifdef BX_LITTLE_ENDIAN # define Host1stDWordOffset 0 # define Host2ndDWordOffset 8 #else # define Host1stDWordOffset 8 # define Host2ndDWordOffset 0 #endif void BX_CPU_C::readVirtualDQword(unsigned s, bx_address offset, Bit8u *data) { // Read Double Quadword. Bit64u *qwords = (Bit64u*) data; read_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]); read_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]); } void BX_CPU_C::readVirtualDQwordAligned(unsigned s, bx_address offset, Bit8u *data) { // Read Double Quadword; access must be aligned on 16-byte boundary. Bit64u *qwords = (Bit64u*) data; // If double quadword access is unaligned, #GP(0). if (offset & 0xf) exception(BX_GP_EXCEPTION, 0, 0); read_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]); read_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]); } void BX_CPU_C::writeVirtualDQword(unsigned s, bx_address offset, Bit8u *data) { // Write Double Quadword. Bit64u *qwords = (Bit64u*) data; write_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]); write_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]); } void BX_CPU_C::writeVirtualDQwordAligned(unsigned s, bx_address offset, Bit8u *data) { // Write Double Quadword; access must be aligned on 16-byte boundary. Bit64u *qwords = (Bit64u*) data; // If double quadword access is unaligned, #GP(0). if (offset & 0xf) exception(BX_GP_EXCEPTION, 0, 0); write_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]); write_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]); } #endif // #if BX_SUPPORT_SSE