/*============================================================================ This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic Package, Release 2b. Written by John R. Hauser. This work was made possible in part by the International Computer Science Institute, located at Suite 600, 1947 Center Street, Berkeley, California 94704. Funding was partially provided by the National Science Foundation under grant MIP-9311980. The original version of this code was written as part of a project to build a fixed-point vector processor in collaboration with the University of California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek. More information is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ arithmetic/SoftFloat.html'. THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. Derivative works are acceptable, even for commercial purposes, so long as (1) the source code for the derivative work includes prominent notice that the work is derivative, and (2) the source code includes prominent notice with these four paragraphs for those parts of this code that are retained. =============================================================================*/ /*============================================================================ * Adapted for Bochs (x86 achitecture simulator) by * Stanislav Shwartsman (gate at fidonet.org.il) * ==========================================================================*/ #include "softfloat.h" /*---------------------------------------------------------------------------- | Primitive arithmetic functions, including multi-word arithmetic, and | division and square root approximations. (Can be specialized to target if | desired.) *----------------------------------------------------------------------------*/ #include "softfloat-macros.h" /*---------------------------------------------------------------------------- | Functions and definitions to determine: (1) whether tininess for underflow | is detected before or after rounding by default, (2) what (if anything) | happens when exceptions are raised, (3) how signaling NaNs are distinguished | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | are propagated from function inputs to output. These details are target- | specific. *----------------------------------------------------------------------------*/ #include "softfloat-specialize.h" /*---------------------------------------------------------------------------- | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | and 7, and returns the properly rounded 32-bit integer corresponding to the | input. If `zSign' is 1, the input is negated before being converted to an | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input | is simply rounded to an integer, with the inexact exception raised if the | input cannot be represented exactly as an integer. However, if the fixed- | point input is too large, the invalid exception is raised and the integer | indefinite value is returned. *----------------------------------------------------------------------------*/ static Bit32s roundAndPackInt32(int zSign, Bit64u absZ, float_status_t &status) { int roundingMode = get_float_rounding_mode(status); int roundNearestEven = (roundingMode == float_round_nearest_even); int roundIncrement = 0x40; if (! roundNearestEven) { if (roundingMode == float_round_to_zero) { roundIncrement = 0; } else { roundIncrement = 0x7F; if (zSign) { if (roundingMode == float_round_up) roundIncrement = 0; } else { if (roundingMode == float_round_down) roundIncrement = 0; } } } int roundBits = absZ & 0x7F; absZ = (absZ + roundIncrement)>>7; absZ &= ~(((roundBits ^ 0x40) == 0) & roundNearestEven); Bit32s z = absZ; if (zSign) z = -z; if ((absZ>>32) || (z && ((z < 0) ^ zSign))) { float_raise(status, float_flag_invalid); return (Bit32s)(int32_indefinite); } if (roundBits) float_raise(status, float_flag_inexact); return z; } /*---------------------------------------------------------------------------- | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | `absZ1', with binary point between bits 63 and 64 (between the input words), | and returns the properly rounded 64-bit integer corresponding to the input. | If `zSign' is 1, the input is negated before being converted to an integer. | Ordinarily, the fixed-point input is simply rounded to an integer, with | the inexact exception raised if the input cannot be represented exactly as | an integer. However, if the fixed-point input is too large, the invalid | exception is raised and the integer indefinite value is returned. *----------------------------------------------------------------------------*/ static Bit64s roundAndPackInt64(int zSign, Bit64u absZ0, Bit64u absZ1, float_status_t &status) { Bit64s z; int roundingMode = get_float_rounding_mode(status); int roundNearestEven = (roundingMode == float_round_nearest_even); int increment = ((Bit64s) absZ1 < 0); if (! roundNearestEven) { if (roundingMode == float_round_to_zero) increment = 0; else { if (zSign) { increment = (roundingMode == float_round_down) && absZ1; } else { increment = (roundingMode == float_round_up) && absZ1; } } } if (increment) { ++absZ0; if (absZ0 == 0) goto overflow; absZ0 &= ~(((Bit64u) (absZ1<<1) == 0) & roundNearestEven); } z = absZ0; if (zSign) z = -z; if (z && ((z < 0) ^ zSign)) { overflow: float_raise(status, float_flag_invalid); return (Bit64s)(int64_indefinite); } if (absZ1) float_raise(status, float_flag_inexact); return z; } /*---------------------------------------------------------------------------- | Determine single-precision floating-point number class *----------------------------------------------------------------------------*/ float_class_t float32_class(float32 a) { Bit16s aExp = extractFloat32Exp(a); Bit32u aSig = extractFloat32Frac(a); int aSign = extractFloat32Sign(a); if(aExp == 0xFF) { if (aSig == 0) return (aSign) ? float_negative_inf : float_positive_inf; return float_NaN; } if(aExp == 0) { if (aSig == 0) return float_zero; return float_denormal; } return float_normalized; } /*---------------------------------------------------------------------------- | Normalizes the subnormal single-precision floating-point value represented | by the denormalized significand `aSig'. The normalized exponent and | significand are stored at the locations pointed to by `zExpPtr' and | `zSigPtr', respectively. *----------------------------------------------------------------------------*/ static void normalizeFloat32Subnormal(Bit32u aSig, Bit16s *zExpPtr, Bit32u *zSigPtr) { int shiftCount = countLeadingZeros32(aSig) - 8; *zSigPtr = aSig<> 7; zSig &= ~(((roundBits ^ 0x40) == 0) & roundNearestEven); if (zSig == 0) zExp = 0; return packFloat32(zSign, zExp, zSig); } /*---------------------------------------------------------------------------- | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | and significand `zSig', and returns the proper single-precision floating- | point value corresponding to the abstract input. This routine is just like | `roundAndPackFloat32' except that `zSig' does not have to be normalized. | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | floating-point exponent. *----------------------------------------------------------------------------*/ static float32 normalizeRoundAndPackFloat32(int zSign, Bit16s zExp, Bit32u zSig, float_status_t &status) { int shiftCount = countLeadingZeros32(zSig) - 1; return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<>10; zSig &= ~(((roundBits ^ 0x200) == 0) & roundNearestEven); if (zSig == 0) zExp = 0; return packFloat64(zSign, zExp, zSig); } /*---------------------------------------------------------------------------- | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | and significand `zSig', and returns the proper double-precision floating- | point value corresponding to the abstract input. This routine is just like | `roundAndPackFloat64' except that `zSig' does not have to be normalized. | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | floating-point exponent. *----------------------------------------------------------------------------*/ static float64 normalizeRoundAndPackFloat64(int zSign, Bit16s zExp, Bit64u zSig, float_status_t &status) { int shiftCount = countLeadingZeros64(zSig) - 1; return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<>(-shiftCount); if ((Bit32u) (aSig<<(shiftCount & 31))) { float_raise(status, float_flag_inexact); } if (aSign) z = -z; return z; } /*---------------------------------------------------------------------------- | Returns the result of converting the single-precision floating-point value | `a' to the 64-bit two's complement integer format. The conversion is | performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic - which means in particular that the conversion is rounded | according to the current rounding mode. If `a' is a NaN or the | conversion overflows, the integer indefinite value is returned. *----------------------------------------------------------------------------*/ Bit64s float32_to_int64(float32 a, float_status_t &status) { Bit64u aSig64, aSigExtra; Bit32u aSig = extractFloat32Frac(a); Bit16s aExp = extractFloat32Exp(a); int aSign = extractFloat32Sign(a); int shiftCount = 0xBE - aExp; if (shiftCount < 0) { float_raise(status, float_flag_invalid); return (Bit64s)(int64_indefinite); } if (aExp) aSig |= 0x00800000; aSig64 = aSig; aSig64 <<= 40; shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra); return roundAndPackInt64(aSign, aSig64, aSigExtra, status); } /*---------------------------------------------------------------------------- | Returns the result of converting the single-precision floating-point value | `a' to the 64-bit two's complement integer format. The conversion is | performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic, except that the conversion is always rounded toward zero. If | `a' is a NaN or the conversion overflows, the integer indefinite value is | returned. *----------------------------------------------------------------------------*/ Bit64s float32_to_int64_round_to_zero(float32 a, float_status_t &status) { int aSign; Bit16s aExp; Bit32u aSig; Bit64u aSig64; Bit64s z; aSig = extractFloat32Frac(a); aExp = extractFloat32Exp(a); aSign = extractFloat32Sign(a); int shiftCount = aExp - 0xBE; if (0 <= shiftCount) { if (a != 0xDF000000) { float_raise(status, float_flag_invalid); } return (Bit64s)(int64_indefinite); } else if (aExp <= 0x7E) { if (aExp | aSig) float_raise(status, float_flag_inexact); return 0; } aSig64 = aSig | 0x00800000; aSig64 <<= 40; z = aSig64>>(-shiftCount); if ((Bit64u) (aSig64<<(shiftCount & 63))) { float_raise(status, float_flag_inexact); } if (aSign) z = -z; return z; } /*---------------------------------------------------------------------------- | Returns the result of converting the single-precision floating-point value | `a' to the double-precision floating-point format. The conversion is | performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic. *----------------------------------------------------------------------------*/ float64 float32_to_float64(float32 a, float_status_t &status) { Bit32u aSig = extractFloat32Frac(a); Bit16s aExp = extractFloat32Exp(a); int aSign = extractFloat32Sign(a); if (aExp == 0xFF) { if (aSig) return commonNaNToFloat64(float32ToCommonNaN(a, status)); return packFloat64(aSign, 0x7FF, 0); } if (aExp == 0) { if (aSig == 0) return packFloat64(aSign, 0, 0); float_raise(status, float_flag_denormal); normalizeFloat32Subnormal(aSig, &aExp, &aSig); --aExp; } return packFloat64(aSign, aExp + 0x380, ((Bit64u) aSig)<<29); } /*---------------------------------------------------------------------------- | Rounds the single-precision floating-point value `a' to an integer, and | returns the result as a single-precision floating-point value. The | operation is performed according to the IEC/IEEE Standard for Binary | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float32 float32_round_to_int(float32 a, float_status_t &status) { int aSign; Bit16s aExp; Bit32u lastBitMask, roundBitsMask; int roundingMode; float32 z; aExp = extractFloat32Exp(a); if (0x96 <= aExp) { if ((aExp == 0xFF) && extractFloat32Frac(a)) { return propagateFloat32NaN(a, status); } return a; } if (aExp <= 0x7E) { if ((Bit32u) (a<<1) == 0) return a; float_raise(status, float_flag_inexact); aSign = extractFloat32Sign(a); switch (get_float_rounding_mode(status)) { case float_round_nearest_even: if ((aExp == 0x7E) && extractFloat32Frac(a)) { return packFloat32(aSign, 0x7F, 0); } break; case float_round_down: return aSign ? 0xBF800000 : 0; case float_round_up: return aSign ? 0x80000000 : 0x3F800000; } return packFloat32(aSign, 0, 0); } lastBitMask = 1; lastBitMask <<= 0x96 - aExp; roundBitsMask = lastBitMask - 1; z = a; roundingMode = get_float_rounding_mode(status); if (roundingMode == float_round_nearest_even) { z += lastBitMask>>1; if ((z & roundBitsMask) == 0) z &= ~lastBitMask; } else if (roundingMode != float_round_to_zero) { if (extractFloat32Sign(z) ^ (roundingMode == float_round_up)) { z += roundBitsMask; } } z &= ~roundBitsMask; if (z != a) float_raise(status, float_flag_inexact); return z; } /*---------------------------------------------------------------------------- | Returns the result of adding the absolute values of the single-precision | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | before being returned. `zSign' is ignored if the result is a NaN. | The addition is performed according to the IEC/IEEE Standard for Binary | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ static float32 addFloat32Sigs(float32 a, float32 b, int zSign, float_status_t &status) { Bit16s aExp, bExp, zExp; Bit32u aSig, bSig, zSig; Bit16s expDiff; aSig = extractFloat32Frac(a); aExp = extractFloat32Exp(a); bSig = extractFloat32Frac(b); bExp = extractFloat32Exp(b); expDiff = aExp - bExp; aSig <<= 6; bSig <<= 6; if (0 < expDiff) { if (aExp == 0xFF) { if (aSig) return propagateFloat32NaN(a, b, status); if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal); return a; } if ((aExp == 0) && aSig) { float_raise(status, float_flag_denormal); } if (bExp == 0) { if (bSig) float_raise(status, float_flag_denormal); --expDiff; } else { bSig |= 0x20000000; } shift32RightJamming(bSig, expDiff, &bSig); zExp = aExp; } else if (expDiff < 0) { if (bExp == 0xFF) { if (bSig) return propagateFloat32NaN(a, b, status); if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal); return packFloat32(zSign, 0xFF, 0); } if ((bExp == 0) && bSig) { float_raise(status, float_flag_denormal); } if (aExp == 0) { if (aSig) float_raise(status, float_flag_denormal); ++expDiff; } else { aSig |= 0x20000000; } shift32RightJamming(aSig, -expDiff, &aSig); zExp = bExp; } else { if (aExp == 0xFF) { if (aSig | bSig) return propagateFloat32NaN(a, b, status); return a; } if (aExp == 0) { if (aSig | bSig) float_raise(status, float_flag_denormal); return packFloat32(zSign, 0, (aSig + bSig)>>6); } zSig = 0x40000000 + aSig + bSig; zExp = aExp; goto roundAndPack; } aSig |= 0x20000000; zSig = (aSig + bSig)<<1; --zExp; if ((Bit32s) zSig < 0) { zSig = aSig + bSig; ++zExp; } roundAndPack: return roundAndPackFloat32(zSign, zExp, zSig, status); } /*---------------------------------------------------------------------------- | Returns the result of subtracting the absolute values of the single- | precision floating-point values `a' and `b'. If `zSign' is 1, the | difference is negated before being returned. `zSign' is ignored if the | result is a NaN. The subtraction is performed according to the IEC/IEEE | Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ static float32 subFloat32Sigs(float32 a, float32 b, int zSign, float_status_t &status) { Bit16s aExp, bExp, zExp; Bit32u aSig, bSig, zSig; Bit16s expDiff; aSig = extractFloat32Frac(a); aExp = extractFloat32Exp(a); bSig = extractFloat32Frac(b); bExp = extractFloat32Exp(b); expDiff = aExp - bExp; aSig <<= 7; bSig <<= 7; if (0 < expDiff) goto aExpBigger; if (expDiff < 0) goto bExpBigger; if (aExp == 0xFF) { if (aSig | bSig) return propagateFloat32NaN(a, b, status); float_raise(status, float_flag_invalid); return float32_default_nan; } if (aExp == 0) { if (aSig | bSig) float_raise(status, float_flag_denormal); aExp = 1; bExp = 1; } if (bSig < aSig) goto aBigger; if (aSig < bSig) goto bBigger; return packFloat32(get_float_rounding_mode(status) == float_round_down, 0, 0); bExpBigger: if (bExp == 0xFF) { if (bSig) return propagateFloat32NaN(a, b, status); if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal); return packFloat32(zSign ^ 1, 0xFF, 0); } if ((bExp == 0) && bSig) { float_raise(status, float_flag_denormal); } if (aExp == 0) { if (aSig) float_raise(status, float_flag_denormal); ++expDiff; } else { aSig |= 0x40000000; } shift32RightJamming(aSig, -expDiff, &aSig); bSig |= 0x40000000; bBigger: zSig = bSig - aSig; zExp = bExp; zSign ^= 1; goto normalizeRoundAndPack; aExpBigger: if (aExp == 0xFF) { if (aSig) return propagateFloat32NaN(a, b, status); if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal); return a; } if ((aExp == 0) && aSig) { float_raise(status, float_flag_denormal); } if (bExp == 0) { if (bSig) float_raise(status, float_flag_denormal); --expDiff; } else { bSig |= 0x40000000; } shift32RightJamming(bSig, expDiff, &bSig); aSig |= 0x40000000; aBigger: zSig = aSig - bSig; zExp = aExp; normalizeRoundAndPack: --zExp; return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status); } /*---------------------------------------------------------------------------- | Returns the result of adding the single-precision floating-point values `a' | and `b'. The operation is performed according to the IEC/IEEE Standard for | Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float32 float32_add(float32 a, float32 b, float_status_t &status) { int aSign = extractFloat32Sign(a); int bSign = extractFloat32Sign(b); if (aSign == bSign) { return addFloat32Sigs(a, b, aSign, status); } else { return subFloat32Sigs(a, b, aSign, status); } } /*---------------------------------------------------------------------------- | Returns the result of subtracting the single-precision floating-point values | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float32 float32_sub(float32 a, float32 b, float_status_t &status) { int aSign = extractFloat32Sign(a); int bSign = extractFloat32Sign(b); if (aSign == bSign) { return subFloat32Sigs(a, b, aSign, status); } else { return addFloat32Sigs(a, b, aSign, status); } } /*---------------------------------------------------------------------------- | Returns the result of multiplying the single-precision floating-point values | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float32 float32_mul(float32 a, float32 b, float_status_t &status) { int aSign, bSign, zSign; Bit16s aExp, bExp, zExp; Bit32u aSig, bSig; Bit64u zSig64; Bit32u zSig; aSig = extractFloat32Frac(a); aExp = extractFloat32Exp(a); aSign = extractFloat32Sign(a); bSig = extractFloat32Frac(b); bExp = extractFloat32Exp(b); bSign = extractFloat32Sign(b); zSign = aSign ^ bSign; if (aExp == 0xFF) { if (aSig || ((bExp == 0xFF) && bSig)) { return propagateFloat32NaN(a, b, status); } if ((bExp | bSig) == 0) { float_raise(status, float_flag_invalid); return float32_default_nan; } if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal); return packFloat32(zSign, 0xFF, 0); } if (bExp == 0xFF) { if (bSig) return propagateFloat32NaN(a, b, status); if ((aExp | aSig) == 0) { float_raise(status, float_flag_invalid); return float32_default_nan; } if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal); return packFloat32(zSign, 0xFF, 0); } if (aExp == 0) { if (aSig == 0) { if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal); return packFloat32(zSign, 0, 0); } float_raise(status, float_flag_denormal); normalizeFloat32Subnormal(aSig, &aExp, &aSig); } if (bExp == 0) { if (bSig == 0) return packFloat32(zSign, 0, 0); float_raise(status, float_flag_denormal); normalizeFloat32Subnormal(bSig, &bExp, &bSig); } zExp = aExp + bExp - 0x7F; aSig = (aSig | 0x00800000)<<7; bSig = (bSig | 0x00800000)<<8; shift64RightJamming(((Bit64u) aSig) * bSig, 32, &zSig64); zSig = zSig64; if (0 <= (Bit32s) (zSig<<1)) { zSig <<= 1; --zExp; } return roundAndPackFloat32(zSign, zExp, zSig, status); } /*---------------------------------------------------------------------------- | Returns the result of dividing the single-precision floating-point value `a' | by the corresponding value `b'. The operation is performed according to the | IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float32 float32_div(float32 a, float32 b, float_status_t &status) { int aSign, bSign, zSign; Bit16s aExp, bExp, zExp; Bit32u aSig, bSig, zSig; aSig = extractFloat32Frac(a); aExp = extractFloat32Exp(a); aSign = extractFloat32Sign(a); bSig = extractFloat32Frac(b); bExp = extractFloat32Exp(b); bSign = extractFloat32Sign(b); zSign = aSign ^ bSign; if (aExp == 0xFF) { if (aSig) return propagateFloat32NaN(a, b, status); if (bExp == 0xFF) { if (bSig) return propagateFloat32NaN(a, b, status); float_raise(status, float_flag_invalid); return float32_default_nan; } if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal); return packFloat32(zSign, 0xFF, 0); } if (bExp == 0xFF) { if (bSig) return propagateFloat32NaN(a, b, status); if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal); return packFloat32(zSign, 0, 0); } if (bExp == 0) { if (bSig == 0) { if ((aExp | aSig) == 0) { float_raise(status, float_flag_invalid); return float32_default_nan; } float_raise(status, float_flag_divbyzero); return packFloat32(zSign, 0xFF, 0); } float_raise(status, float_flag_denormal); normalizeFloat32Subnormal(bSig, &bExp, &bSig); } if (aExp == 0) { if (aSig == 0) return packFloat32(zSign, 0, 0); float_raise(status, float_flag_denormal); normalizeFloat32Subnormal(aSig, &aExp, &aSig); } zExp = aExp - bExp + 0x7D; aSig = (aSig | 0x00800000)<<7; bSig = (bSig | 0x00800000)<<8; if (bSig <= (aSig + aSig)) { aSig >>= 1; ++zExp; } zSig = (((Bit64u) aSig)<<32) / bSig; if ((zSig & 0x3F) == 0) { zSig |= ((Bit64u) bSig * zSig != ((Bit64u) aSig)<<32); } return roundAndPackFloat32(zSign, zExp, zSig, status); } /*---------------------------------------------------------------------------- | Returns the square root of the single-precision floating-point value `a'. | The operation is performed according to the IEC/IEEE Standard for Binary | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float32 float32_sqrt(float32 a, float_status_t &status) { int aSign; Bit16s aExp, zExp; Bit32u aSig, zSig; Bit64u rem, term; aSig = extractFloat32Frac(a); aExp = extractFloat32Exp(a); aSign = extractFloat32Sign(a); if (aExp == 0xFF) { if (aSig) return propagateFloat32NaN(a, status); if (! aSign) return a; float_raise(status, float_flag_invalid); return float32_default_nan; } if (aSign) { if ((aExp | aSig) == 0) return a; float_raise(status, float_flag_invalid); return float32_default_nan; } if (aExp == 0) { if (aSig == 0) return 0; float_raise(status, float_flag_denormal); normalizeFloat32Subnormal(aSig, &aExp, &aSig); } zExp = ((aExp - 0x7F)>>1) + 0x7E; aSig = (aSig | 0x00800000)<<8; zSig = estimateSqrt32(aExp, aSig) + 2; if ((zSig & 0x7F) <= 5) { if (zSig < 2) { zSig = 0x7FFFFFFF; goto roundAndPack; } aSig >>= aExp & 1; term = ((Bit64u) zSig) * zSig; rem = (((Bit64u) aSig)<<32) - term; while ((Bit64s) rem < 0) { --zSig; rem += (((Bit64u) zSig)<<1) | 1; } zSig |= (rem != 0); } shift32RightJamming(zSig, 1, &zSig); roundAndPack: return roundAndPackFloat32(0, zExp, zSig, status); } /*---------------------------------------------------------------------------- | Returns 1 if the single-precision floating-point value `a' is equal to | the corresponding value `b', and 0 otherwise. The comparison is performed | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int float32_eq(float32 a, float32 b, float_status_t &status) { float_class_t aClass = float32_class(a); float_class_t bClass = float32_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } return (a == b) || ((Bit32u) ((a | b)<<1) == 0); } /*---------------------------------------------------------------------------- | Returns 1 if the single-precision floating-point value `a' is less than | or equal to the corresponding value `b', and 0 otherwise. The comparison | is performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic. *----------------------------------------------------------------------------*/ int float32_le(float32 a, float32 b, float_status_t &status) { float_class_t aClass = float32_class(a); float_class_t bClass = float32_class(b); if (aClass == float_NaN || bClass == float_NaN) { float_raise(status, float_flag_invalid); return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } int aSign = extractFloat32Sign(a); int bSign = extractFloat32Sign(b); if (aSign != bSign) return aSign || ((Bit32u) ((a | b)<<1) == 0); return (a == b) || (aSign ^ (a < b)); } /*---------------------------------------------------------------------------- | Returns 1 if the single-precision floating-point value `a' is less than | the corresponding value `b', and 0 otherwise. The comparison is performed | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int float32_lt(float32 a, float32 b, float_status_t &status) { float_class_t aClass = float32_class(a); float_class_t bClass = float32_class(b); if (aClass == float_NaN || bClass == float_NaN) { float_raise(status, float_flag_invalid); return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } int aSign = extractFloat32Sign(a); int bSign = extractFloat32Sign(b); if (aSign != bSign) return aSign && ((Bit32u) ((a | b)<<1) != 0); return (a != b) && (aSign ^ (a < b)); } /*---------------------------------------------------------------------------- | Returns 1 if the single-precision floating-point value `a' is equal to | the corresponding value `b', and 0 otherwise. The invalid exception is | raised if either operand is a NaN. Otherwise, the comparison is performed | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int float32_eq_signaling(float32 a, float32 b, float_status_t &status) { float_class_t aClass = float32_class(a); float_class_t bClass = float32_class(b); if (aClass == float_NaN || bClass == float_NaN) { float_raise(status, float_flag_invalid); return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } return (a == b) || ((Bit32u) ((a | b)<<1) == 0); } /*---------------------------------------------------------------------------- | Returns 1 if the single-precision floating-point value `a' is less than or | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | cause an exception. Otherwise, the comparison is performed according to the | IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int float32_le_quiet(float32 a, float32 b, float_status_t &status) { float_class_t aClass = float32_class(a); float_class_t bClass = float32_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } int aSign = extractFloat32Sign(a); int bSign = extractFloat32Sign(b); if (aSign != bSign) return aSign || ((Bit32u) ((a | b)<<1) == 0); return (a == b) || (aSign ^ (a < b)); } /*---------------------------------------------------------------------------- | Returns 1 if the single-precision floating-point value `a' is less than | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | exception. Otherwise, the comparison is performed according to the IEC/IEEE | Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int float32_lt_quiet(float32 a, float32 b, float_status_t &status) { float_class_t aClass = float32_class(a); float_class_t bClass = float32_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } int aSign = extractFloat32Sign(a); int bSign = extractFloat32Sign(b); if (aSign != bSign) return aSign && ((Bit32u) ((a | b)<<1) != 0); return (a != b) && (aSign ^ (a < b)); } /*---------------------------------------------------------------------------- | The unordered relationship is true when at least one of two source operands | being compared is a NaN. Quiet NaNs do not cause an exception. *----------------------------------------------------------------------------*/ int float32_unordered(float32 a, float32 b, float_status_t &status) { float_class_t aClass = float32_class(a); float_class_t bClass = float32_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return 1; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } return 0; } /*---------------------------------------------------------------------------- | Compare between two single precision floating point numbers. Returns | 'float_relation_equal' if the operands are equal, 'float_relation_less' if | the value 'a' is less than the corresponding value `b', | 'float_relation_greater' if the value 'a' is greater than the corresponding | value `b', or 'float_relation_unordered' otherwise. *----------------------------------------------------------------------------*/ int float32_compare(float32 a, float32 b, float_status_t &status) { float_class_t aClass = float32_class(a); float_class_t bClass = float32_class(b); if (aClass == float_NaN || bClass == float_NaN) { float_raise(status, float_flag_invalid); return float_relation_unordered; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } if ((a == b) || ((Bit32u) ((a | b)<<1) == 0)) return float_relation_equal; int aSign = extractFloat32Sign(a); int bSign = extractFloat32Sign(b); if (aSign != bSign) return (aSign) ? float_relation_less : float_relation_greater; if (aSign ^ (a < b)) return float_relation_less; return float_relation_greater; } /*---------------------------------------------------------------------------- | Compare between two double precision floating point numbers. Returns | 'float_relation_equal' if the operands are equal, 'float_relation_less' if | the value 'a' is less than the corresponding value `b', | 'float_relation_greater' if the value 'a' is greater than the corresponding | value `b', or 'float_relation_unordered' otherwise. Quiet NaNs do not cause | an exception. *----------------------------------------------------------------------------*/ int float32_compare_quiet(float32 a, float32 b, float_status_t &status) { float_class_t aClass = float32_class(a); float_class_t bClass = float32_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return float_relation_unordered; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } if ((a == b) || ((Bit32u) ((a | b)<<1) == 0)) return float_relation_equal; int aSign = extractFloat32Sign(a); int bSign = extractFloat32Sign(b); if (aSign != bSign) return (aSign) ? float_relation_less : float_relation_greater; if (aSign ^ (a < b)) return float_relation_less; return float_relation_greater; } /*---------------------------------------------------------------------------- | Returns the result of converting the double-precision floating-point value | `a' to the 32-bit two's complement integer format. The conversion is | performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic - which means in particular that the conversion is rounded | according to the current rounding mode. If `a' is a NaN, the largest | positive integer is returned. Otherwise, if the conversion overflows, the | largest integer with the same sign as `a' is returned. *----------------------------------------------------------------------------*/ Bit32s float64_to_int32(float64 a, float_status_t &status) { Bit64u aSig = extractFloat64Frac(a); Bit16s aExp = extractFloat64Exp(a); int aSign = extractFloat64Sign(a); if ((aExp == 0x7FF) && aSig) aSign = 0; if (aExp) aSig |= BX_CONST64(0x0010000000000000); int shiftCount = 0x42C - aExp; if (0 < shiftCount) shift64RightJamming(aSig, shiftCount, &aSig); return roundAndPackInt32(aSign, aSig, status); } /*---------------------------------------------------------------------------- | Returns the result of converting the double-precision floating-point value | `a' to the 32-bit two's complement integer format. The conversion is | performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic, except that the conversion is always rounded toward zero. | If `a' is a NaN or the conversion overflows, the integer indefinite | value is returned. *----------------------------------------------------------------------------*/ Bit32s float64_to_int32_round_to_zero(float64 a, float_status_t &status) { int aSign; Bit16s aExp; Bit64u aSig, savedASig; Bit32s z; int shiftCount; aSig = extractFloat64Frac(a); aExp = extractFloat64Exp(a); aSign = extractFloat64Sign(a); if (0x41E < aExp) { if ((aExp == 0x7FF) && aSig) aSign = 0; goto invalid; } else if (aExp < 0x3FF) { if (aExp || aSig) float_raise(status, float_flag_inexact); return 0; } aSig |= BX_CONST64(0x0010000000000000); shiftCount = 0x433 - aExp; savedASig = aSig; aSig >>= shiftCount; z = aSig; if (aSign) z = -z; if ((z < 0) ^ aSign) { invalid: float_raise(status, float_flag_invalid); return (Bit32s)(int32_indefinite); } if ((aSig<>(-shiftCount); if ((Bit64u) (aSig<<(shiftCount & 63))) { float_raise(status, float_flag_inexact); } } if (aSign) z = -z; return z; } /*---------------------------------------------------------------------------- | Returns the result of converting the double-precision floating-point value | `a' to the single-precision floating-point format. The conversion is | performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic. *----------------------------------------------------------------------------*/ float32 float64_to_float32(float64 a, float_status_t &status) { int aSign; Bit16s aExp; Bit64u aSig; Bit32u zSig; aSig = extractFloat64Frac(a); aExp = extractFloat64Exp(a); aSign = extractFloat64Sign(a); if (aExp == 0x7FF) { if (aSig) return commonNaNToFloat32(float64ToCommonNaN(a, status)); return packFloat32(aSign, 0xFF, 0); } if (aExp == 0) { if (aSig == 0) return packFloat32(aSign, 0, 0); float_raise(status, float_flag_denormal); } shift64RightJamming(aSig, 22, &aSig); zSig = aSig; if (aExp || zSig) { zSig |= 0x40000000; aExp -= 0x381; } return roundAndPackFloat32(aSign, aExp, zSig, status); } /*---------------------------------------------------------------------------- | Rounds the double-precision floating-point value `a' to an integer, and | returns the result as a double-precision floating-point value. The | operation is performed according to the IEC/IEEE Standard for Binary | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float64 float64_round_to_int(float64 a, float_status_t &status) { int aSign; Bit16s aExp; Bit64u lastBitMask, roundBitsMask; int roundingMode; float64 z; aExp = extractFloat64Exp(a); if (0x433 <= aExp) { if ((aExp == 0x7FF) && extractFloat64Frac(a)) { return propagateFloat64NaN(a, status); } return a; } if (aExp < 0x3FF) { if ((Bit64u) (a<<1) == 0) return a; float_raise(status, float_flag_inexact); aSign = extractFloat64Sign(a); switch (get_float_rounding_mode(status)) { case float_round_nearest_even: if ((aExp == 0x3FE) && extractFloat64Frac(a)) { return packFloat64(aSign, 0x3FF, 0); } break; case float_round_down: return aSign ? BX_CONST64(0xBFF0000000000000) : 0; case float_round_up: return aSign ? BX_CONST64(0x8000000000000000) : BX_CONST64(0x3FF0000000000000); } return packFloat64(aSign, 0, 0); } lastBitMask = 1; lastBitMask <<= 0x433 - aExp; roundBitsMask = lastBitMask - 1; z = a; roundingMode = get_float_rounding_mode(status); if (roundingMode == float_round_nearest_even) { z += lastBitMask>>1; if ((z & roundBitsMask) == 0) z &= ~lastBitMask; } else if (roundingMode != float_round_to_zero) { if (extractFloat64Sign(z) ^ (roundingMode == float_round_up)) { z += roundBitsMask; } } z &= ~roundBitsMask; if (z != a) float_raise(status, float_flag_inexact); return z; } /*---------------------------------------------------------------------------- | Returns the result of adding the absolute values of the double-precision | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | before being returned. `zSign' is ignored if the result is a NaN. | The addition is performed according to the IEC/IEEE Standard for Binary | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ static float64 addFloat64Sigs(float64 a, float64 b, int zSign, float_status_t &status) { Bit16s aExp, bExp, zExp; Bit64u aSig, bSig, zSig; Bit16s expDiff; aSig = extractFloat64Frac(a); aExp = extractFloat64Exp(a); bSig = extractFloat64Frac(b); bExp = extractFloat64Exp(b); expDiff = aExp - bExp; aSig <<= 9; bSig <<= 9; if (0 < expDiff) { if (aExp == 0x7FF) { if (aSig) return propagateFloat64NaN(a, b, status); if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal); return a; } if ((aExp == 0) && aSig) { float_raise(status, float_flag_denormal); } if (bExp == 0) { if (bSig) float_raise(status, float_flag_denormal); --expDiff; } else { bSig |= BX_CONST64(0x2000000000000000); } shift64RightJamming(bSig, expDiff, &bSig); zExp = aExp; } else if (expDiff < 0) { if (bExp == 0x7FF) { if (bSig) return propagateFloat64NaN(a, b, status); if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal); return packFloat64(zSign, 0x7FF, 0); } if ((bExp == 0) && bSig) { float_raise(status, float_flag_denormal); } if (aExp == 0) { if (aSig) float_raise(status, float_flag_denormal); ++expDiff; } else { aSig |= BX_CONST64(0x2000000000000000); } shift64RightJamming(aSig, -expDiff, &aSig); zExp = bExp; } else { if (aExp == 0x7FF) { if (aSig | bSig) return propagateFloat64NaN(a, b, status); return a; } if (aExp == 0) { if (aSig | bSig) float_raise(status, float_flag_denormal); return packFloat64(zSign, 0, (aSig + bSig)>>9); } zSig = BX_CONST64(0x4000000000000000) + aSig + bSig; zExp = aExp; goto roundAndPack; } aSig |= BX_CONST64(0x2000000000000000); zSig = (aSig + bSig)<<1; --zExp; if ((Bit64s) zSig < 0) { zSig = aSig + bSig; ++zExp; } roundAndPack: return roundAndPackFloat64(zSign, zExp, zSig, status); } /*---------------------------------------------------------------------------- | Returns the result of subtracting the absolute values of the double- | precision floating-point values `a' and `b'. If `zSign' is 1, the | difference is negated before being returned. `zSign' is ignored if the | result is a NaN. The subtraction is performed according to the IEC/IEEE | Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ static float64 subFloat64Sigs(float64 a, float64 b, int zSign, float_status_t &status) { Bit16s aExp, bExp, zExp; Bit64u aSig, bSig, zSig; Bit16s expDiff; aSig = extractFloat64Frac(a); aExp = extractFloat64Exp(a); bSig = extractFloat64Frac(b); bExp = extractFloat64Exp(b); expDiff = aExp - bExp; aSig <<= 10; bSig <<= 10; if (0 < expDiff) goto aExpBigger; if (expDiff < 0) goto bExpBigger; if (aExp == 0x7FF) { if (aSig | bSig) return propagateFloat64NaN(a, b, status); float_raise(status, float_flag_invalid); return float64_default_nan; } if (aExp == 0) { if (aSig | bSig) float_raise(status, float_flag_denormal); aExp = 1; bExp = 1; } if (bSig < aSig) goto aBigger; if (aSig < bSig) goto bBigger; return packFloat64(get_float_rounding_mode(status) == float_round_down, 0, 0); bExpBigger: if (bExp == 0x7FF) { if (bSig) return propagateFloat64NaN(a, b, status); if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal); return packFloat64(zSign ^ 1, 0x7FF, 0); } if ((bExp == 0) && bSig) { float_raise(status, float_flag_denormal); } if (aExp == 0) { if (aSig) float_raise(status, float_flag_denormal); ++expDiff; } else { aSig |= BX_CONST64(0x4000000000000000); } shift64RightJamming(aSig, -expDiff, &aSig); bSig |= BX_CONST64(0x4000000000000000); bBigger: zSig = bSig - aSig; zExp = bExp; zSign ^= 1; goto normalizeRoundAndPack; aExpBigger: if (aExp == 0x7FF) { if (aSig) return propagateFloat64NaN(a, b, status); if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal); return a; } if ((aExp == 0) && aSig) { float_raise(status, float_flag_denormal); } if (bExp == 0) { if (bSig) float_raise(status, float_flag_denormal); --expDiff; } else { bSig |= BX_CONST64(0x4000000000000000); } shift64RightJamming(bSig, expDiff, &bSig); aSig |= BX_CONST64(0x4000000000000000); aBigger: zSig = aSig - bSig; zExp = aExp; normalizeRoundAndPack: --zExp; return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status); } /*---------------------------------------------------------------------------- | Returns the result of adding the double-precision floating-point values `a' | and `b'. The operation is performed according to the IEC/IEEE Standard for | Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float64 float64_add(float64 a, float64 b, float_status_t &status) { int aSign = extractFloat64Sign(a); int bSign = extractFloat64Sign(b); if (aSign == bSign) { return addFloat64Sigs(a, b, aSign, status); } else { return subFloat64Sigs(a, b, aSign, status); } } /*---------------------------------------------------------------------------- | Returns the result of subtracting the double-precision floating-point values | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float64 float64_sub(float64 a, float64 b, float_status_t &status) { int aSign = extractFloat64Sign(a); int bSign = extractFloat64Sign(b); if (aSign == bSign) { return subFloat64Sigs(a, b, aSign, status); } else { return addFloat64Sigs(a, b, aSign, status); } } /*---------------------------------------------------------------------------- | Returns the result of multiplying the double-precision floating-point values | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float64 float64_mul(float64 a, float64 b, float_status_t &status) { int aSign, bSign, zSign; Bit16s aExp, bExp, zExp; Bit64u aSig, bSig, zSig0, zSig1; aSig = extractFloat64Frac(a); aExp = extractFloat64Exp(a); aSign = extractFloat64Sign(a); bSig = extractFloat64Frac(b); bExp = extractFloat64Exp(b); bSign = extractFloat64Sign(b); zSign = aSign ^ bSign; if (aExp == 0x7FF) { if (aSig || ((bExp == 0x7FF) && bSig)) { return propagateFloat64NaN(a, b, status); } if ((bExp | bSig) == 0) { float_raise(status, float_flag_invalid); return float64_default_nan; } if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal); return packFloat64(zSign, 0x7FF, 0); } if (bExp == 0x7FF) { if (bSig) return propagateFloat64NaN(a, b, status); if ((aExp | aSig) == 0) { float_raise(status, float_flag_invalid); return float64_default_nan; } if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal); return packFloat64(zSign, 0x7FF, 0); } if (aExp == 0) { if (aSig == 0) { if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal); return packFloat64(zSign, 0, 0); } float_raise(status, float_flag_denormal); normalizeFloat64Subnormal(aSig, &aExp, &aSig); } if (bExp == 0) { if (bSig == 0) return packFloat64(zSign, 0, 0); float_raise(status, float_flag_denormal); normalizeFloat64Subnormal(bSig, &bExp, &bSig); } zExp = aExp + bExp - 0x3FF; aSig = (aSig | BX_CONST64(0x0010000000000000))<<10; bSig = (bSig | BX_CONST64(0x0010000000000000))<<11; mul64To128(aSig, bSig, &zSig0, &zSig1); zSig0 |= (zSig1 != 0); if (0 <= (Bit64s) (zSig0<<1)) { zSig0 <<= 1; --zExp; } return roundAndPackFloat64(zSign, zExp, zSig0, status); } /*---------------------------------------------------------------------------- | Returns the result of dividing the double-precision floating-point value `a' | by the corresponding value `b'. The operation is performed according to | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float64 float64_div(float64 a, float64 b, float_status_t &status) { int aSign, bSign, zSign; Bit16s aExp, bExp, zExp; Bit64u aSig, bSig, zSig; Bit64u rem0, rem1; Bit64u term0, term1; aSig = extractFloat64Frac(a); aExp = extractFloat64Exp(a); aSign = extractFloat64Sign(a); bSig = extractFloat64Frac(b); bExp = extractFloat64Exp(b); bSign = extractFloat64Sign(b); zSign = aSign ^ bSign; if (aExp == 0x7FF) { if (aSig) return propagateFloat64NaN(a, b, status); if (bExp == 0x7FF) { if (bSig) return propagateFloat64NaN(a, b, status); float_raise(status, float_flag_invalid); return float64_default_nan; } if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal); return packFloat64(zSign, 0x7FF, 0); } if (bExp == 0x7FF) { if (bSig) return propagateFloat64NaN(a, b, status); if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal); return packFloat64(zSign, 0, 0); } if (bExp == 0) { if (bSig == 0) { if ((aExp | aSig) == 0) { float_raise(status, float_flag_invalid); return float64_default_nan; } float_raise(status, float_flag_divbyzero); return packFloat64(zSign, 0x7FF, 0); } float_raise(status, float_flag_denormal); normalizeFloat64Subnormal(bSig, &bExp, &bSig); } if (aExp == 0) { if (aSig == 0) return packFloat64(zSign, 0, 0); float_raise(status, float_flag_denormal); normalizeFloat64Subnormal(aSig, &aExp, &aSig); } zExp = aExp - bExp + 0x3FD; aSig = (aSig | BX_CONST64(0x0010000000000000))<<10; bSig = (bSig | BX_CONST64(0x0010000000000000))<<11; if (bSig <= (aSig + aSig)) { aSig >>= 1; ++zExp; } zSig = estimateDiv128To64(aSig, 0, bSig); if ((zSig & 0x1FF) <= 2) { mul64To128(bSig, zSig, &term0, &term1); sub128(aSig, 0, term0, term1, &rem0, &rem1); while ((Bit64s) rem0 < 0) { --zSig; add128(rem0, rem1, 0, bSig, &rem0, &rem1); } zSig |= (rem1 != 0); } return roundAndPackFloat64(zSign, zExp, zSig, status); } /*---------------------------------------------------------------------------- | Returns the square root of the double-precision floating-point value `a'. | The operation is performed according to the IEC/IEEE Standard for Binary | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float64 float64_sqrt(float64 a, float_status_t &status) { int aSign; Bit16s aExp, zExp; Bit64u aSig, zSig, doubleZSig; Bit64u rem0, rem1, term0, term1; float64 z; aSig = extractFloat64Frac(a); aExp = extractFloat64Exp(a); aSign = extractFloat64Sign(a); if (aExp == 0x7FF) { if (aSig) return propagateFloat64NaN(a, status); if (! aSign) return a; float_raise(status, float_flag_invalid); return float64_default_nan; } if (aSign) { if ((aExp | aSig) == 0) return a; float_raise(status, float_flag_invalid); return float64_default_nan; } if (aExp == 0) { if (aSig == 0) return 0; float_raise(status, float_flag_denormal); normalizeFloat64Subnormal(aSig, &aExp, &aSig); } zExp = ((aExp - 0x3FF)>>1) + 0x3FE; aSig |= BX_CONST64(0x0010000000000000); zSig = estimateSqrt32(aExp, aSig>>21); aSig <<= 9 - (aExp & 1); zSig = estimateDiv128To64(aSig, 0, zSig<<32) + (zSig<<30); if ((zSig & 0x1FF) <= 5) { doubleZSig = zSig<<1; mul64To128(zSig, zSig, &term0, &term1); sub128(aSig, 0, term0, term1, &rem0, &rem1); while ((Bit64s) rem0 < 0) { --zSig; doubleZSig -= 2; add128(rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1); } zSig |= ((rem0 | rem1) != 0); } return roundAndPackFloat64(0, zExp, zSig, status); } /*---------------------------------------------------------------------------- | Returns 1 if the double-precision floating-point value `a' is equal to the | corresponding value `b', and 0 otherwise. The comparison is performed | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int float64_eq(float64 a, float64 b, float_status_t &status) { float_class_t aClass = float64_class(a); float_class_t bClass = float64_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } return (a == b) || ((Bit64u) ((a | b)<<1) == 0); } /*---------------------------------------------------------------------------- | Returns 1 if the double-precision floating-point value `a' is less than or | equal to the corresponding value `b', and 0 otherwise. The comparison is | performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic. *----------------------------------------------------------------------------*/ int float64_le(float64 a, float64 b, float_status_t &status) { float_class_t aClass = float64_class(a); float_class_t bClass = float64_class(b); if (aClass == float_NaN || bClass == float_NaN) { float_raise(status, float_flag_invalid); return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } int aSign = extractFloat64Sign(a); int bSign = extractFloat64Sign(b); if (aSign != bSign) return aSign || ((Bit64u) ((a | b)<<1) == 0); return (a == b) || (aSign ^ (a < b)); } /*---------------------------------------------------------------------------- | Returns 1 if the double-precision floating-point value `a' is less than | the corresponding value `b', and 0 otherwise. The comparison is performed | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int float64_lt(float64 a, float64 b, float_status_t &status) { float_class_t aClass = float64_class(a); float_class_t bClass = float64_class(b); if (aClass == float_NaN || bClass == float_NaN) { float_raise(status, float_flag_invalid); return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } int aSign = extractFloat64Sign(a); int bSign = extractFloat64Sign(b); if (aSign != bSign) return aSign && ((Bit64u) ((a | b)<<1) != 0); return (a != b) && (aSign ^ (a < b)); } /*---------------------------------------------------------------------------- | Returns 1 if the double-precision floating-point value `a' is equal to the | corresponding value `b', and 0 otherwise. The invalid exception is raised | if either operand is a NaN. Otherwise, the comparison is performed | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int float64_eq_signaling(float64 a, float64 b, float_status_t &status) { float_class_t aClass = float64_class(a); float_class_t bClass = float64_class(b); if (aClass == float_NaN || bClass == float_NaN) { float_raise(status, float_flag_invalid); return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } return (a == b) || ((Bit64u) ((a | b)<<1) == 0); } /*---------------------------------------------------------------------------- | Returns 1 if the double-precision floating-point value `a' is less than or | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | cause an exception. Otherwise, the comparison is performed according to the | IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int float64_le_quiet(float64 a, float64 b, float_status_t &status) { float_class_t aClass = float64_class(a); float_class_t bClass = float64_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } int aSign = extractFloat64Sign(a); int bSign = extractFloat64Sign(b); if (aSign != bSign) return aSign || ((Bit64u) ((a | b)<<1) == 0); return (a == b) || (aSign ^ (a < b)); } /*---------------------------------------------------------------------------- | Returns 1 if the double-precision floating-point value `a' is less than | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | exception. Otherwise, the comparison is performed according to the IEC/IEEE | Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int float64_lt_quiet(float64 a, float64 b, float_status_t &status) { float_class_t aClass = float64_class(a); float_class_t bClass = float64_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } int aSign = extractFloat64Sign(a); int bSign = extractFloat64Sign(b); if (aSign != bSign) return aSign && ((Bit64u) ((a | b)<<1) != 0); return (a != b) && (aSign ^ (a < b)); } /*---------------------------------------------------------------------------- | The unordered relationship is true when at least one of two source operands | being compared is a NaN. Quiet NaNs do not cause an exception. *----------------------------------------------------------------------------*/ int float64_unordered(float64 a, float64 b, float_status_t &status) { float_class_t aClass = float64_class(a); float_class_t bClass = float64_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return 1; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } return 0; } /*---------------------------------------------------------------------------- | Compare between two double precision floating point numbers. Returns | 'float_relation_equal' if the operands are equal, 'float_relation_less' if | the value 'a' is less than the corresponding value `b', | 'float_relation_greater' if the value 'a' is greater than the corresponding | value `b', or 'float_relation_unordered' otherwise. *----------------------------------------------------------------------------*/ int float64_compare(float64 a, float64 b, float_status_t &status) { float_class_t aClass = float64_class(a); float_class_t bClass = float64_class(b); if (aClass == float_NaN || bClass == float_NaN) { float_raise(status, float_flag_invalid); return float_relation_unordered; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } if ((a == b) || ((Bit64u) ((a | b)<<1) == 0)) return float_relation_equal; int aSign = extractFloat64Sign(a); int bSign = extractFloat64Sign(b); if (aSign != bSign) return (aSign) ? float_relation_less : float_relation_greater; if (aSign ^ (a < b)) return float_relation_less; return float_relation_greater; } /*---------------------------------------------------------------------------- | Compare between two double precision floating point numbers. Returns | 'float_relation_equal' if the operands are equal, 'float_relation_less' if | the value 'a' is less than the corresponding value `b', | 'float_relation_greater' if the value 'a' is greater than the corresponding | value `b', or 'float_relation_unordered' otherwise. Quiet NaNs do not cause | an exception. *----------------------------------------------------------------------------*/ int float64_compare_quiet(float64 a, float64 b, float_status_t &status) { float_class_t aClass = float64_class(a); float_class_t bClass = float64_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return float_relation_unordered; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } if ((a == b) || ((Bit64u) ((a | b)<<1) == 0)) return float_relation_equal; int aSign = extractFloat64Sign(a); int bSign = extractFloat64Sign(b); if (aSign != bSign) return (aSign) ? float_relation_less : float_relation_greater; if (aSign ^ (a < b)) return float_relation_less; return float_relation_greater; } #ifdef FLOATX80 /*---------------------------------------------------------------------------- | Normalizes the subnormal extended double-precision floating-point value | represented by the denormalized significand `aSig'. The normalized exponent | and significand are stored at the locations pointed to by `zExpPtr' and | `zSigPtr', respectively. *----------------------------------------------------------------------------*/ static void normalizeFloatx80Subnormal(Bit64u aSig, Bit32s *zExpPtr, Bit64u *zSigPtr) { int shiftCount = countLeadingZeros64(aSig); *zSigPtr = aSig<>63)) == 0) // report unsupported as NaN return float_NaN; if (((Bit64u) (aSig<< 1)) == 0) return (aSign) ? float_negative_inf : float_positive_inf; return float_NaN; } if(aExp == 0) { if (aSig == 0) return float_zero; return float_denormal; } return float_normalized; } /*---------------------------------------------------------------------------- | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | and extended significand formed by the concatenation of `zSig0' and `zSig1', | and returns the proper extended double-precision floating-point value | corresponding to the abstract input. Ordinarily, the abstract value is | rounded and packed into the extended double-precision format, with the | inexact exception raised if the abstract input cannot be represented | exactly. However, if the abstract value is too large, the overflow and | inexact exceptions are raised and an infinity or maximal finite value is | returned. If the abstract value is too small, the input value is rounded to | a subnormal number, and the underflow and inexact exceptions are raised if | the abstract input cannot be represented exactly as a subnormal extended | double-precision floating-point number. | If `roundingPrecision' is 32 or 64, the result is rounded to the same | number of bits as single or double precision, respectively. Otherwise, the | result is rounded to the full precision of the extended double-precision | format. | The input significand must be normalized or smaller. If the input | significand is not normalized, `zExp' must be 0; in that case, the result | returned is a subnormal number, and it must not require rounding. The | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ static floatx80 roundAndPackFloatx80(int roundingPrecision, int zSign, Bit32s zExp, Bit64u zSig0, Bit64u zSig1, float_status_t &status) { Bit64u roundIncrement, roundMask, roundBits; int increment; Bit8u roundingMode = get_float_rounding_mode(status); int roundNearestEven = (roundingMode == float_round_nearest_even); if (roundingPrecision == 64) { roundIncrement = BX_CONST64(0x0000000000000400); roundMask = BX_CONST64(0x00000000000007FF); } else if (roundingPrecision == 32) { roundIncrement = BX_CONST64(0x0000008000000000); roundMask = BX_CONST64(0x000000FFFFFFFFFF); } else goto precision80; zSig0 |= (zSig1 != 0); if (! roundNearestEven) { if (roundingMode == float_round_to_zero) { roundIncrement = 0; } else { roundIncrement = roundMask; if (zSign) { if (roundingMode == float_round_up) roundIncrement = 0; } else { if (roundingMode == float_round_down) roundIncrement = 0; } } } roundBits = zSig0 & roundMask; if (0x7FFD <= (Bit32u) (zExp - 1)) { if ((0x7FFE < zExp) || ((zExp == 0x7FFE) && (zSig0 + roundIncrement < zSig0))) { goto overflow; } if (zExp <= 0) { int isTiny = (status.float_detect_tininess == float_tininess_before_rounding) || (zExp < 0) || (zSig0 <= zSig0 + roundIncrement); shift64RightJamming(zSig0, 1 - zExp, &zSig0); zExp = 0; roundBits = zSig0 & roundMask; if (isTiny && roundBits) float_raise(status, float_flag_underflow); if (roundBits) float_raise(status, float_flag_inexact); zSig0 += roundIncrement; if ((Bit64s) zSig0 < 0) zExp = 1; roundIncrement = roundMask + 1; if (roundNearestEven && (roundBits<<1 == roundIncrement)) roundMask |= roundIncrement; zSig0 &= ~roundMask; return packFloatx80(zSign, zExp, zSig0); } } if (roundBits) float_raise(status, float_flag_inexact); zSig0 += roundIncrement; if (zSig0 < roundIncrement) { ++zExp; zSig0 = BX_CONST64(0x8000000000000000); } roundIncrement = roundMask + 1; if (roundNearestEven && (roundBits<<1 == roundIncrement)) roundMask |= roundIncrement; zSig0 &= ~roundMask; if (zSig0 == 0) zExp = 0; return packFloatx80(zSign, zExp, zSig0); precision80: increment = ((Bit64s) zSig1 < 0); if (! roundNearestEven) { if (roundingMode == float_round_to_zero) { increment = 0; } else { if (zSign) { increment = (roundingMode == float_round_down) && zSig1; } else { increment = (roundingMode == float_round_up) && zSig1; } } } if (0x7FFD <= (Bit32u) (zExp - 1)) { if ((0x7FFE < zExp) || ((zExp == 0x7FFE) && (zSig0 == BX_CONST64(0xFFFFFFFFFFFFFFFF)) && increment)) { roundMask = 0; overflow: float_raise(status, float_flag_overflow | float_flag_inexact); if ((roundingMode == float_round_to_zero) || (zSign && (roundingMode == float_round_up)) || (! zSign && (roundingMode == float_round_down))) { return packFloatx80(zSign, 0x7FFE, ~roundMask); } return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000)); } if (zExp <= 0) { int isTiny = (status.float_detect_tininess == float_tininess_before_rounding) || (zExp < 0) || ! increment || (zSig0 < BX_CONST64(0xFFFFFFFFFFFFFFFF)); shift64ExtraRightJamming(zSig0, zSig1, 1 - zExp, &zSig0, &zSig1); zExp = 0; if (isTiny && zSig1) float_raise(status, float_flag_underflow); if (zSig1) float_raise(status, float_flag_inexact); if (roundNearestEven) { increment = ((Bit64s) zSig1 < 0); } else { if (zSign) { increment = (roundingMode == float_round_down) && zSig1; } else { increment = (roundingMode == float_round_up) && zSig1; } } if (increment) { ++zSig0; zSig0 &= ~(((Bit64u) (zSig1<<1) == 0) & roundNearestEven); if ((Bit64s) zSig0 < 0) zExp = 1; } return packFloatx80(zSign, zExp, zSig0); } } if (zSig1) float_raise(status, float_flag_inexact); if (increment) { ++zSig0; if (zSig0 == 0) { ++zExp; zSig0 = BX_CONST64(0x8000000000000000); } else { zSig0 &= ~(((Bit64u) (zSig1<<1) == 0) & roundNearestEven); } } else { if (zSig0 == 0) zExp = 0; } return packFloatx80(zSign, zExp, zSig0); } /*---------------------------------------------------------------------------- | Takes an abstract floating-point value having sign `zSign', exponent | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | and returns the proper extended double-precision floating-point value | corresponding to the abstract input. This routine is just like | `roundAndPackFloatx80' except that the input significand does not have to be | normalized. *----------------------------------------------------------------------------*/ static floatx80 normalizeRoundAndPackFloatx80(int roundingPrecision, int zSign, Bit32s zExp, Bit64u zSig0, Bit64u zSig1, float_status_t &status) { if (zSig0 == 0) { zSig0 = zSig1; zSig1 = 0; zExp -= 64; } int shiftCount = countLeadingZeros64(zSig0); shortShift128Left(zSig0, zSig1, shiftCount, &zSig0, &zSig1); zExp -= shiftCount; return roundAndPackFloatx80(roundingPrecision, zSign, zExp, zSig0, zSig1, status); } /*---------------------------------------------------------------------------- | Returns the result of converting the 32-bit two's complement integer `a' | to the extended double-precision floating-point format. The conversion | is performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic. *----------------------------------------------------------------------------*/ floatx80 int32_to_floatx80(Bit32s a) { if (a == 0) return packFloatx80(0, 0, 0); int zSign = (a < 0); Bit32u absA = zSign ? -a : a; int shiftCount = countLeadingZeros32(absA) + 32; Bit64u zSig = absA; return packFloatx80(zSign, 0x403E - shiftCount, zSig<>= shiftCount; z = aSig; if (aSign) z = -z; if ((z < 0) ^ aSign) { invalid: float_raise(status, float_flag_invalid); return (Bit32s)(int32_indefinite); } if ((aSig<>(-shiftCount); if ((Bit64u) (aSig<<(shiftCount & 63))) { float_raise(status, float_flag_inexact); } if (aSign) z = -z; return z; } /*---------------------------------------------------------------------------- | Returns the result of converting the extended double-precision floating- | point value `a' to the single-precision floating-point format. The | conversion is performed according to the IEC/IEEE Standard for Binary | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float32 floatx80_to_float32(floatx80 a, float_status_t &status) { Bit64u aSig = extractFloatx80Frac(a); Bit32s aExp = extractFloatx80Exp(a); int aSign = extractFloatx80Sign(a); if (aExp == 0x7FFF) { if ((Bit64u) (aSig<<1)) return commonNaNToFloat32(floatx80ToCommonNaN(a, status)); return packFloat32(aSign, 0xFF, 0); } shift64RightJamming(aSig, 33, &aSig); if (aExp || aSig) aExp -= 0x3F81; return roundAndPackFloat32(aSign, aExp, aSig, status); } /*---------------------------------------------------------------------------- | Returns the result of converting the extended double-precision floating- | point value `a' to the double-precision floating-point format. The | conversion is performed according to the IEC/IEEE Standard for Binary | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ float64 floatx80_to_float64(floatx80 a, float_status_t &status) { Bit32s aExp; Bit64u aSig, zSig; aSig = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); int aSign = extractFloatx80Sign(a); if (aExp == 0x7FFF) { if ((Bit64u) (aSig<<1)) { return commonNaNToFloat64(floatx80ToCommonNaN(a, status)); } return packFloat64(aSign, 0x7FF, 0); } shift64RightJamming(aSig, 1, &zSig); if (aExp || aSig) aExp -= 0x3C01; return roundAndPackFloat64(aSign, aExp, zSig, status); } /*---------------------------------------------------------------------------- | Rounds the extended double-precision floating-point value `a' to an integer, | and returns the result as an extended double-precision floating-point | value. The operation is performed according to the IEC/IEEE Standard for | Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ floatx80 floatx80_round_to_int(floatx80 a, float_status_t &status) { int aSign; Bit32s aExp; Bit64u lastBitMask, roundBitsMask; Bit8u roundingMode; floatx80 z; aExp = extractFloatx80Exp(a); if (0x403E <= aExp) { if ((aExp == 0x7FFF) && (Bit64u) (extractFloatx80Frac(a)<<1)) { return propagateFloatx80NaN(a, status); } return a; } if (aExp < 0x3FFF) { if ((aExp == 0) && ((Bit64u) (extractFloatx80Frac(a)<<1) == 0)) { return a; } float_raise(status, float_flag_inexact); aSign = extractFloatx80Sign(a); switch (get_float_rounding_mode(status)) { case float_round_nearest_even: if ((aExp == 0x3FFE) && (Bit64u) (extractFloatx80Frac(a)<<1)) { return packFloatx80(aSign, 0x3FFF, BX_CONST64(0x8000000000000000)); } break; case float_round_down: return aSign ? packFloatx80(1, 0x3FFF, BX_CONST64(0x8000000000000000)) : packFloatx80(0, 0, 0); case float_round_up: return aSign ? packFloatx80(1, 0, 0) : packFloatx80(0, 0x3FFF, BX_CONST64(0x8000000000000000)); } return packFloatx80(aSign, 0, 0); } lastBitMask = 1; lastBitMask <<= 0x403E - aExp; roundBitsMask = lastBitMask - 1; z = a; roundingMode = get_float_rounding_mode(status); if (roundingMode == float_round_nearest_even) { z.fraction += lastBitMask>>1; if ((z.fraction & roundBitsMask) == 0) z.fraction &= ~lastBitMask; } else if (roundingMode != float_round_to_zero) { if (extractFloatx80Sign(z) ^ (roundingMode == float_round_up)) z.fraction += roundBitsMask; } z.fraction &= ~roundBitsMask; if (z.fraction == 0) { z.exp++; z.fraction = BX_CONST64(0x8000000000000000); } if (z.fraction != a.fraction) float_raise(status, float_flag_inexact); return z; } /*---------------------------------------------------------------------------- | Returns the result of adding the absolute values of the extended double- | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is | negated before being returned. `zSign' is ignored if the result is a NaN. | The addition is performed according to the IEC/IEEE Standard for Binary | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, int zSign, float_status_t &status) { Bit32s aExp, bExp, zExp; Bit64u aSig, bSig, zSig0, zSig1; Bit32s expDiff; aSig = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); bSig = extractFloatx80Frac(b); bExp = extractFloatx80Exp(b); expDiff = aExp - bExp; if (0 < expDiff) { if (aExp == 0x7FFF) { if ((Bit64u) (aSig<<1)) return propagateFloatx80NaN(a, b, status); return a; } if (bExp == 0) --expDiff; shift64ExtraRightJamming(bSig, 0, expDiff, &bSig, &zSig1); zExp = aExp; } else if (expDiff < 0) { if (bExp == 0x7FFF) { if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status); return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000)); } if (aExp == 0) ++expDiff; shift64ExtraRightJamming(aSig, 0, - expDiff, &aSig, &zSig1); zExp = bExp; } else { if (aExp == 0x7FFF) { if ((Bit64u) ((aSig | bSig)<<1)) { return propagateFloatx80NaN(a, b, status); } return a; } zSig1 = 0; zSig0 = aSig + bSig; if (aExp == 0) { normalizeFloatx80Subnormal(zSig0, &zExp, &zSig0); goto roundAndPack; } zExp = aExp; goto shiftRight1; } zSig0 = aSig + bSig; if ((Bit64s) zSig0 < 0) goto roundAndPack; shiftRight1: shift64ExtraRightJamming(zSig0, zSig1, 1, &zSig0, &zSig1); zSig0 |= BX_CONST64(0x8000000000000000); ++zExp; roundAndPack: return roundAndPackFloatx80(get_float_rounding_precision(status), zSign, zExp, zSig0, zSig1, status); } /*---------------------------------------------------------------------------- | Returns the result of subtracting the absolute values of the extended | double-precision floating-point values `a' and `b'. If `zSign' is 1, the | difference is negated before being returned. `zSign' is ignored if the | result is a NaN. The subtraction is performed according to the IEC/IEEE | Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, int zSign, float_status_t &status) { Bit32s aExp, bExp, zExp; Bit64u aSig, bSig, zSig0, zSig1; Bit32s expDiff; floatx80 z; aSig = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); bSig = extractFloatx80Frac(b); bExp = extractFloatx80Exp(b); expDiff = aExp - bExp; if (0 < expDiff) goto aExpBigger; if (expDiff < 0) goto bExpBigger; if (aExp == 0x7FFF) { if ((Bit64u) ((aSig | bSig)<<1)) { return propagateFloatx80NaN(a, b, status); } float_raise(status, float_flag_invalid); z.fraction = floatx80_default_nan_fraction; z.exp = floatx80_default_nan_exp; return z; } if (aExp == 0) { aExp = 1; bExp = 1; } zSig1 = 0; if (bSig < aSig) goto aBigger; if (aSig < bSig) goto bBigger; return packFloatx80(get_float_rounding_mode(status) == float_round_down, 0, 0); bExpBigger: if (bExp == 0x7FFF) { if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status); return packFloatx80(zSign ^ 1, 0x7FFF, BX_CONST64(0x8000000000000000)); } if (aExp == 0) ++expDiff; shift128RightJamming(aSig, 0, - expDiff, &aSig, &zSig1); bBigger: sub128(bSig, 0, aSig, zSig1, &zSig0, &zSig1); zExp = bExp; zSign ^= 1; goto normalizeRoundAndPack; aExpBigger: if (aExp == 0x7FFF) { if ((Bit64u) (aSig<<1)) return propagateFloatx80NaN(a, b, status); return a; } if (bExp == 0) --expDiff; shift128RightJamming(bSig, 0, expDiff, &bSig, &zSig1); aBigger: sub128(aSig, 0, bSig, zSig1, &zSig0, &zSig1); zExp = aExp; normalizeRoundAndPack: return normalizeRoundAndPackFloatx80(get_float_rounding_precision(status), zSign, zExp, zSig0, zSig1, status); } /*---------------------------------------------------------------------------- | Returns the result of adding the extended double-precision floating-point | values `a' and `b'. The operation is performed according to the IEC/IEEE | Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ floatx80 floatx80_add(floatx80 a, floatx80 b, float_status_t &status) { int aSign = extractFloatx80Sign(a); int bSign = extractFloatx80Sign(b); if (aSign == bSign) return addFloatx80Sigs(a, b, aSign, status); else return subFloatx80Sigs(a, b, aSign, status); } /*---------------------------------------------------------------------------- | Returns the result of subtracting the extended double-precision floating- | point values `a' and `b'. The operation is performed according to the | IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status_t &status) { int aSign = extractFloatx80Sign(a); int bSign = extractFloatx80Sign(b); if (aSign == bSign) return subFloatx80Sigs(a, b, aSign, status); else return addFloatx80Sigs(a, b, aSign, status); } /*---------------------------------------------------------------------------- | Returns the result of multiplying the extended double-precision floating- | point values `a' and `b'. The operation is performed according to the | IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status_t &status) { int aSign, bSign, zSign; Bit32s aExp, bExp, zExp; Bit64u aSig, bSig, zSig0, zSig1; floatx80 z; aSig = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); aSign = extractFloatx80Sign(a); bSig = extractFloatx80Frac(b); bExp = extractFloatx80Exp(b); bSign = extractFloatx80Sign(b); zSign = aSign ^ bSign; if (aExp == 0x7FFF) { if ((Bit64u) (aSig<<1) || ((bExp == 0x7FFF) && (Bit64u) (bSig<<1))) { return propagateFloatx80NaN(a, b, status); } if ((bExp | bSig) == 0) goto invalid; return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000)); } if (bExp == 0x7FFF) { if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status); if ((aExp | aSig) == 0) { invalid: float_raise(status, float_flag_invalid); z.fraction = floatx80_default_nan_fraction; z.exp = floatx80_default_nan_exp; return z; } return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000)); } if (aExp == 0) { if (aSig == 0) return packFloatx80(zSign, 0, 0); float_raise(status, float_flag_denormal); normalizeFloatx80Subnormal(aSig, &aExp, &aSig); } if (bExp == 0) { if (bSig == 0) return packFloatx80(zSign, 0, 0); float_raise(status, float_flag_denormal); normalizeFloatx80Subnormal(bSig, &bExp, &bSig); } zExp = aExp + bExp - 0x3FFE; mul64To128(aSig, bSig, &zSig0, &zSig1); if (0 < (Bit64s) zSig0) { shortShift128Left(zSig0, zSig1, 1, &zSig0, &zSig1); --zExp; } return roundAndPackFloatx80(get_float_rounding_precision(status), zSign, zExp, zSig0, zSig1, status); } /*---------------------------------------------------------------------------- | Returns the result of dividing the extended double-precision floating-point | value `a' by the corresponding value `b'. The operation is performed | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ floatx80 floatx80_div(floatx80 a, floatx80 b, float_status_t &status) { int aSign, bSign, zSign; Bit32s aExp, bExp, zExp; Bit64u aSig, bSig, zSig0, zSig1; Bit64u rem0, rem1, rem2, term0, term1, term2; floatx80 z; aSig = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); aSign = extractFloatx80Sign(a); bSig = extractFloatx80Frac(b); bExp = extractFloatx80Exp(b); bSign = extractFloatx80Sign(b); zSign = aSign ^ bSign; if (aExp == 0x7FFF) { if ((Bit64u) (aSig<<1)) return propagateFloatx80NaN(a, b, status); if (bExp == 0x7FFF) { if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status); goto invalid; } return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000)); } if (bExp == 0x7FFF) { if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status); return packFloatx80(zSign, 0, 0); } if (bExp == 0) { if (bSig == 0) { if ((aExp | aSig) == 0) { invalid: float_raise(status, float_flag_invalid); z.fraction = floatx80_default_nan_fraction; z.exp = floatx80_default_nan_exp; return z; } float_raise(status, float_flag_divbyzero); return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000)); } float_raise(status, float_flag_denormal); normalizeFloatx80Subnormal(bSig, &bExp, &bSig); } if (aExp == 0) { if (aSig == 0) return packFloatx80(zSign, 0, 0); float_raise(status, float_flag_denormal); normalizeFloatx80Subnormal(aSig, &aExp, &aSig); } zExp = aExp - bExp + 0x3FFE; rem1 = 0; if (bSig <= aSig) { shift128Right(aSig, 0, 1, &aSig, &rem1); ++zExp; } zSig0 = estimateDiv128To64(aSig, rem1, bSig); mul64To128(bSig, zSig0, &term0, &term1); sub128(aSig, rem1, term0, term1, &rem0, &rem1); while ((Bit64s) rem0 < 0) { --zSig0; add128(rem0, rem1, 0, bSig, &rem0, &rem1); } zSig1 = estimateDiv128To64(rem1, 0, bSig); if ((Bit64u) (zSig1<<1) <= 8) { mul64To128(bSig, zSig1, &term1, &term2); sub128(rem1, 0, term1, term2, &rem1, &rem2); while ((Bit64s) rem1 < 0) { --zSig1; add128(rem1, rem2, 0, bSig, &rem1, &rem2); } zSig1 |= ((rem1 | rem2) != 0); } return roundAndPackFloatx80(get_float_rounding_precision(status), zSign, zExp, zSig0, zSig1, status); } /*---------------------------------------------------------------------------- | Returns the square root of the extended double-precision floating-point | value `a'. The operation is performed according to the IEC/IEEE Standard | for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ floatx80 floatx80_sqrt(floatx80 a, float_status_t &status) { int aSign; Bit32s aExp, zExp; Bit64u aSig0, aSig1, zSig0, zSig1, doubleZSig0; Bit64u rem0, rem1, rem2, rem3, term0, term1, term2, term3; floatx80 z; aSig0 = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); aSign = extractFloatx80Sign(a); if (aExp == 0x7FFF) { if ((Bit64u) (aSig0<<1)) return propagateFloatx80NaN(a, status); if (! aSign) return a; goto invalid; } if (aSign) { if ((aExp | aSig0) == 0) return a; invalid: float_raise(status, float_flag_invalid); z.fraction = floatx80_default_nan_fraction; z.exp = floatx80_default_nan_exp; return z; } if (aExp == 0) { if (aSig0 == 0) return packFloatx80(0, 0, 0); float_raise(status, float_flag_denormal); normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0); } zExp = ((aExp - 0x3FFF)>>1) + 0x3FFF; zSig0 = estimateSqrt32(aExp, aSig0>>32); shift128Right(aSig0, 0, 2 + (aExp & 1), &aSig0, &aSig1); zSig0 = estimateDiv128To64(aSig0, aSig1, zSig0<<32) + (zSig0<<30); doubleZSig0 = zSig0<<1; mul64To128(zSig0, zSig0, &term0, &term1); sub128(aSig0, aSig1, term0, term1, &rem0, &rem1); while ((Bit64s) rem0 < 0) { --zSig0; doubleZSig0 -= 2; add128(rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1); } zSig1 = estimateDiv128To64(rem1, 0, doubleZSig0); if ((zSig1 & BX_CONST64(0x3FFFFFFFFFFFFFFF)) <= 5) { if (zSig1 == 0) zSig1 = 1; mul64To128(doubleZSig0, zSig1, &term1, &term2); sub128(rem1, 0, term1, term2, &rem1, &rem2); mul64To128(zSig1, zSig1, &term2, &term3); sub192(rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3); while ((Bit64s) rem1 < 0) { --zSig1; shortShift128Left(0, zSig1, 1, &term2, &term3); term3 |= 1; term2 |= doubleZSig0; add192(rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3); } zSig1 |= ((rem1 | rem2 | rem3) != 0); } shortShift128Left(0, zSig1, 1, &zSig0, &zSig1); zSig0 |= doubleZSig0; return roundAndPackFloatx80(get_float_rounding_precision(status), 0, zExp, zSig0, zSig1, status); } /*---------------------------------------------------------------------------- | Returns 1 if the extended double-precision floating-point value `a' is | equal to the corresponding value `b', and 0 otherwise. The comparison is | performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic. *----------------------------------------------------------------------------*/ int floatx80_eq(floatx80 a, floatx80 b, float_status_t &status) { float_class_t aClass = floatx80_class(a); float_class_t bClass = floatx80_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (floatx80_is_signaling_nan(a) || floatx80_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } return (a.fraction == b.fraction) && ((a.exp == b.exp) || ((a.fraction == 0) && ((Bit16u) ((a.exp | b.exp)<<1) == 0))); } /*---------------------------------------------------------------------------- | Returns 1 if the extended double-precision floating-point value `a' is | less than or equal to the corresponding value `b', and 0 otherwise. The | comparison is performed according to the IEC/IEEE Standard for Binary | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int floatx80_le(floatx80 a, floatx80 b, float_status_t &status) { float_class_t aClass = floatx80_class(a); float_class_t bClass = floatx80_class(b); if (aClass == float_NaN || bClass == float_NaN) { float_raise(status, float_flag_invalid); return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } int aSign = extractFloatx80Sign(a); int bSign = extractFloatx80Sign(b); if (aSign != bSign) { return aSign || ((((Bit16u) ((a.exp | b.exp)<<1)) | a.fraction | b.fraction) == 0); } return aSign ? le128(b.exp, b.fraction, a.exp, a.fraction) : le128(a.exp, a.fraction, b.exp, b.fraction); } /*---------------------------------------------------------------------------- | Returns 1 if the extended double-precision floating-point value `a' is | less than the corresponding value `b', and 0 otherwise. The comparison | is performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic. *----------------------------------------------------------------------------*/ int floatx80_lt(floatx80 a, floatx80 b, float_status_t &status) { float_class_t aClass = floatx80_class(a); float_class_t bClass = floatx80_class(b); if (aClass == float_NaN || bClass == float_NaN) { float_raise(status, float_flag_invalid); return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } int aSign = extractFloatx80Sign(a); int bSign = extractFloatx80Sign(b); if (aSign != bSign) { return aSign && ((((Bit16u) ((a.exp | b.exp)<<1)) | a.fraction | b.fraction) != 0); } return aSign ? lt128(b.exp, b.fraction, a.exp, a.fraction) : lt128(a.exp, a.fraction, b.exp, b.fraction); } /*---------------------------------------------------------------------------- | Returns 1 if the extended double-precision floating-point value `a' is equal | to the corresponding value `b', and 0 otherwise. The invalid exception is | raised if either operand is a NaN. Otherwise, the comparison is performed | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int floatx80_eq_signaling(floatx80 a, floatx80 b, float_status_t &status) { float_class_t aClass = floatx80_class(a); float_class_t bClass = floatx80_class(b); if (aClass == float_NaN || bClass == float_NaN) { float_raise(status, float_flag_invalid); return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } return (a.fraction == b.fraction) && ((a.exp == b.exp) || ((a.fraction == 0) && ((Bit16u) ((a.exp | b.exp)<<1) == 0))); } /*---------------------------------------------------------------------------- | Returns 1 if the extended double-precision floating-point value `a' is less | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | do not cause an exception. Otherwise, the comparison is performed according | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int floatx80_le_quiet(floatx80 a, floatx80 b, float_status_t &status) { float_class_t aClass = floatx80_class(a); float_class_t bClass = floatx80_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (floatx80_is_signaling_nan(a) || floatx80_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } int aSign = extractFloatx80Sign(a); int bSign = extractFloatx80Sign(b); if (aSign != bSign) { return aSign || ((((Bit16u) ((a.exp | b.exp)<<1)) | a.fraction | b.fraction) == 0); } return aSign ? le128(b.exp, b.fraction, a.exp, a.fraction) : le128(a.exp, a.fraction, b.exp, b.fraction); } /*---------------------------------------------------------------------------- | Returns 1 if the extended double-precision floating-point value `a' is less | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | an exception. Otherwise, the comparison is performed according to the | IEC/IEEE Standard for Binary Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status_t &status) { float_class_t aClass = floatx80_class(a); float_class_t bClass = floatx80_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (floatx80_is_signaling_nan(a) || floatx80_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return 0; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } int aSign = extractFloatx80Sign(a); int bSign = extractFloatx80Sign(b); if (aSign != bSign) { return aSign && ((((Bit16u) ((a.exp | b.exp)<<1)) | a.fraction | b.fraction) != 0); } return aSign ? lt128(b.exp, b.fraction, a.exp, a.fraction) : lt128(a.exp, a.fraction, b.exp, b.fraction); } /*---------------------------------------------------------------------------- | Compare between two extended precision floating point numbers. Returns | 'float_relation_equal' if the operands are equal, 'float_relation_less' if | the value 'a' is less than the corresponding value `b', | 'float_relation_greater' if the value 'a' is greater than the corresponding | value `b', or 'float_relation_unordered' otherwise. *----------------------------------------------------------------------------*/ int floatx80_compare(floatx80 a, floatx80 b, float_status_t &status) { float_class_t aClass = floatx80_class(a); float_class_t bClass = floatx80_class(b); if (aClass == float_NaN || bClass == float_NaN) { float_raise(status, float_flag_invalid); return float_relation_unordered; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } if ((a.fraction == b.fraction) && (a.exp == b.exp)) { return float_relation_equal; } if (aClass == float_zero && bClass == float_zero) { return float_relation_equal; } int aSign = extractFloatx80Sign(a); int bSign = extractFloatx80Sign(b); if (aSign != bSign) return (aSign) ? float_relation_less : float_relation_greater; int less_than = aSign ? lt128(b.exp, b.fraction, a.exp, a.fraction) : lt128(a.exp, a.fraction, b.exp, b.fraction); if (less_than) return float_relation_less; return float_relation_greater; } /*---------------------------------------------------------------------------- | Compare between two extended precision floating point numbers. Returns | 'float_relation_equal' if the operands are equal, 'float_relation_less' if | the value 'a' is less than the corresponding value `b', | 'float_relation_greater' if the value 'a' is greater than the corresponding | value `b', or 'float_relation_unordered' otherwise. Quiet NaNs do not cause | an exception. *----------------------------------------------------------------------------*/ int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status_t &status) { float_class_t aClass = floatx80_class(a); float_class_t bClass = floatx80_class(b); if (aClass == float_NaN || bClass == float_NaN) { if (floatx80_is_signaling_nan(a) || floatx80_is_signaling_nan(b)) { float_raise(status, float_flag_invalid); } return float_relation_unordered; } if (aClass == float_denormal || bClass == float_denormal) { float_raise(status, float_flag_denormal); } if ((a.fraction == b.fraction) && (a.exp == b.exp)) { return float_relation_equal; } if (aClass == float_zero && bClass == float_zero) { return float_relation_equal; } int aSign = extractFloatx80Sign(a); int bSign = extractFloatx80Sign(b); if (aSign != bSign) return (aSign) ? float_relation_less : float_relation_greater; int less_than = aSign ? lt128(b.exp, b.fraction, a.exp, a.fraction) : lt128(a.exp, a.fraction, b.exp, b.fraction); if (less_than) return float_relation_less; return float_relation_greater; } #endif