///////////////////////////////////////////////////////////////////////// // $Id: data_xfer16.cc,v 1.28 2004-02-26 19:17:40 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR void BX_CPU_C::MOV_RXIw(bxInstruction_c *i) { BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].word.rx = i->Iw(); } void BX_CPU_C::XCHG_RXAX(bxInstruction_c *i) { Bit16u temp16; temp16 = AX; AX = BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].word.rx; BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].word.rx = temp16; } void BX_CPU_C::MOV_EEwGw(bxInstruction_c *i) { write_virtual_word(i->seg(), RMAddr(i), &BX_READ_16BIT_REG(i->nnn())); } void BX_CPU_C::MOV_EGwGw(bxInstruction_c *i) { Bit16u op2_16; op2_16 = BX_READ_16BIT_REG(i->nnn()); BX_WRITE_16BIT_REG(i->rm(), op2_16); } void BX_CPU_C::MOV_GwEGw(bxInstruction_c *i) { // 2nd modRM operand Ex, is known to be a general register Gw. Bit16u op2_16; op2_16 = BX_READ_16BIT_REG(i->rm()); BX_WRITE_16BIT_REG(i->nnn(), op2_16); } void BX_CPU_C::MOV_GwEEw(bxInstruction_c *i) { // 2nd modRM operand Ex, is known to be a memory operand, Ew. read_virtual_word(i->seg(), RMAddr(i), &BX_READ_16BIT_REG(i->nnn())); } void BX_CPU_C::MOV_EwSw(bxInstruction_c *i) { Bit16u seg_reg; #if BX_CPU_LEVEL < 3 BX_PANIC(("MOV_EwSw: incomplete for CPU < 3")); #endif seg_reg = BX_CPU_THIS_PTR sregs[i->nnn()].selector.value; if (i->modC0()) { if ( i->os32L() ) { BX_WRITE_32BIT_REGZ(i->rm(), seg_reg); } else { BX_WRITE_16BIT_REG(i->rm(), seg_reg); } } else { write_virtual_word(i->seg(), RMAddr(i), &seg_reg); } } void BX_CPU_C::MOV_SwEw(bxInstruction_c *i) { Bit16u op2_16; /* If attempt is made to load the CS register ... */ if (i->nnn() == BX_SEG_REG_CS) { UndefinedOpcode(i); } #if BX_CPU_LEVEL < 3 BX_PANIC(("MOV_SwEw: incomplete for CPU < 3")); #endif if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { read_virtual_word(i->seg(), RMAddr(i), &op2_16); } load_seg_reg(&BX_CPU_THIS_PTR sregs[i->nnn()], op2_16); if (i->nnn() == BX_SEG_REG_SS) { // MOV SS inhibits interrupts, debug exceptions and single-step // trap exceptions until the execution boundary following the // next instruction is reached. // Same code as POP_SS() BX_CPU_THIS_PTR inhibit_mask |= BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG; BX_CPU_THIS_PTR async_event = 1; } } void BX_CPU_C::LEA_GwM(bxInstruction_c *i) { if (i->modC0()) { BX_INFO(("LEA_GvM: op2 is a register")); UndefinedOpcode(i); return; } BX_WRITE_16BIT_REG(i->nnn(), (Bit16u) RMAddr(i)); } void BX_CPU_C::MOV_AXOw(bxInstruction_c *i) { /* read from memory address */ if (!BX_NULL_SEG_REG(i->seg())) { read_virtual_word(i->seg(), i->Id(), &AX); } else { read_virtual_word(BX_SEG_REG_DS, i->Id(), &AX); } } void BX_CPU_C::MOV_OwAX(bxInstruction_c *i) { /* write to memory address */ if (!BX_NULL_SEG_REG(i->seg())) { write_virtual_word(i->seg(), i->Id(), &AX); } else { write_virtual_word(BX_SEG_REG_DS, i->Id(), &AX); } } void BX_CPU_C::MOV_EwIw(bxInstruction_c *i) { Bit16u op2_16 = i->Iw(); /* now write sum back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), op2_16); } else { write_virtual_word(i->seg(), RMAddr(i), &op2_16); } } void BX_CPU_C::MOVZX_GwEb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("MOVZX_GvEb: not supported on < 386")); #else Bit8u op2_8; if (i->modC0()) { op2_8 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL()); } else { /* pointer, segment address pair */ read_virtual_byte(i->seg(), RMAddr(i), &op2_8); } /* zero extend byte op2 into word op1 */ BX_WRITE_16BIT_REG(i->nnn(), (Bit16u) op2_8); #endif /* BX_CPU_LEVEL < 3 */ } void BX_CPU_C::MOVZX_GwEw(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("MOVZX_GvEw: not supported on < 386")); #else Bit16u op2_16; if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &op2_16); } /* normal move */ BX_WRITE_16BIT_REG(i->nnn(), op2_16); #endif /* BX_CPU_LEVEL < 3 */ } void BX_CPU_C::MOVSX_GwEb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("MOVSX_GvEb: not supported on < 386")); #else Bit8u op2_8; if (i->modC0()) { op2_8 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL()); } else { /* pointer, segment address pair */ read_virtual_byte(i->seg(), RMAddr(i), &op2_8); } /* sign extend byte op2 into word op1 */ BX_WRITE_16BIT_REG(i->nnn(), (Bit8s) op2_8); #endif /* BX_CPU_LEVEL < 3 */ } void BX_CPU_C::MOVSX_GwEw(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("MOVSX_GvEw: not supported on < 386")); #else Bit16u op2_16; if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &op2_16); } /* normal move */ BX_WRITE_16BIT_REG(i->nnn(), op2_16); #endif /* BX_CPU_LEVEL < 3 */ } void BX_CPU_C::XCHG_EwGw(bxInstruction_c *i) { Bit16u op2_16, op1_16; #if BX_DEBUGGER && BX_MAGIC_BREAKPOINT // (mch) Magic break point // Note for mortals: the instruction to trigger this is "xchgw %bx,%bx" if (i->nnn() == 3 && i->modC0() && i->rm() == 3) { BX_CPU_THIS_PTR magic_break = 1; } #endif /* op2_16 is a register, op2_addr is an index of a register */ op2_16 = BX_READ_16BIT_REG(i->nnn()); /* op1_16 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); BX_WRITE_16BIT_REG(i->rm(), op2_16); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); Write_RMW_virtual_word(op2_16); } BX_WRITE_16BIT_REG(i->nnn(), op1_16); } void BX_CPU_C::CMOV_GwEw(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 6) || (BX_CPU_LEVEL_HACKED >= 6) // Note: CMOV accesses a memory source operand (read), regardless // of whether condition is true or not. Thus, exceptions may // occur even if the MOV does not take place. bx_bool condition; Bit16u op2_16; switch (i->b1()) { // CMOV opcodes: case 0x140: condition = get_OF(); break; case 0x141: condition = !get_OF(); break; case 0x142: condition = get_CF(); break; case 0x143: condition = !get_CF(); break; case 0x144: condition = get_ZF(); break; case 0x145: condition = !get_ZF(); break; case 0x146: condition = get_CF() || get_ZF(); break; case 0x147: condition = !get_CF() && !get_ZF(); break; case 0x148: condition = get_SF(); break; case 0x149: condition = !get_SF(); break; case 0x14A: condition = get_PF(); break; case 0x14B: condition = !get_PF(); break; case 0x14C: condition = getB_SF() != getB_OF(); break; case 0x14D: condition = getB_SF() == getB_OF(); break; case 0x14E: condition = get_ZF() || (getB_SF() != getB_OF()); break; case 0x14F: condition = !get_ZF() && (getB_SF() == getB_OF()); break; default: condition = 0; BX_PANIC(("CMOV_GwEw: default case")); } if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &op2_16); } if (condition) { BX_WRITE_16BIT_REG(i->nnn(), op2_16); } #else BX_INFO(("CMOV_GwEw: required P6 support, use --enable-cpu-level=6 option")); UndefinedOpcode(i); #endif }