///////////////////////////////////////////////////////////////////////// // $Id: bit.cc,v 1.16 2004-07-08 20:15:22 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_X86_64==0 // Make life easier merging cpu64 and cpu code. #define RAX EAX #define RBX EBX #define RCX ECX #define RDX EDX #define RSP ESP #define RSI ESI #define RDI EDI #define RBP EBP #endif void BX_CPU_C::SETO_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETO: not available on < 386")); #else Bit8u result_8; if (get_OF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETNO_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETNO: not available on < 386")); #else Bit8u result_8; if (get_OF()==0) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETB_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETB: not available on < 386")); #else Bit8u result_8; if (get_CF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETNB_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETNB: not available on < 386")); #else Bit8u result_8; if (get_CF()==0) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETZ_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETZ: not available on < 386")); #else Bit8u result_8; if (get_ZF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETNZ_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETNZ: not available on < 386")); #else Bit8u result_8; if (get_ZF()==0) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETBE_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETBE: not available on < 386")); #else Bit8u result_8; if (get_CF() || get_ZF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETNBE_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETNBE: not available on < 386")); #else Bit8u result_8; if ((get_CF()==0) && (get_ZF()==0)) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETS_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETS: not available on < 386")); #else Bit8u result_8; if (get_SF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETNS_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETNL: not available on < 386")); #else Bit8u result_8; if (get_SF()==0) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETP_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETP: not available on < 386")); #else Bit8u result_8; if (get_PF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETNP_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETNP: not available on < 386")); #else Bit8u result_8; if (get_PF() == 0) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETL_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETL: not available on < 386")); #else Bit8u result_8; if (getB_SF() != getB_OF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETNL_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETNL: not available on < 386")); #else Bit8u result_8; if (getB_SF() == getB_OF()) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETLE_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETLE: not available on < 386")); #else Bit8u result_8; if (get_ZF() || (getB_SF()!=getB_OF())) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::SETNLE_Eb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("SETNLE: not available on < 386")); #else Bit8u result_8; if ((get_ZF()==0) && (getB_SF()==getB_OF())) result_8 = 1; else result_8 = 0; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_virtual_byte(i->seg(), RMAddr(i), &result_8); } #endif } void BX_CPU_C::BSF_GvEv(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("BSF_GvEv(): not supported on < 386")); #else #if BX_SUPPORT_X86_64 if (i->os64L()) { /* 64 bit operand size mode */ /* for 64 bit operand size mode */ Bit64u op1_64, op2_64; /* op2_64 is a register or memory reference */ if (i->modC0()) { op2_64 = BX_READ_64BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_qword(i->seg(), RMAddr(i), &op2_64); } if (op2_64 == 0) { set_ZF(1); /* op1_64 undefined */ return; } op1_64 = 0; while ( (op2_64 & 0x01) == 0 ) { op1_64++; op2_64 >>= 1; } set_ZF(0); /* now write result back to destination */ BX_WRITE_64BIT_REG(i->nnn(), op1_64); } else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32; /* op2_32 is a register or memory reference */ if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } if (op2_32 == 0) { set_ZF(1); /* op1_32 undefined */ return; } op1_32 = 0; while ( (op2_32 & 0x01) == 0 ) { op1_32++; op2_32 >>= 1; } set_ZF(0); /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), op1_32); } else { /* 16 bit operand size mode */ Bit16u op1_16, op2_16; /* op2_16 is a register or memory reference */ if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &op2_16); } if (op2_16 == 0) { set_ZF(1); /* op1_16 undefined */ return; } op1_16 = 0; while ( (op2_16 & 0x01) == 0 ) { op1_16++; op2_16 >>= 1; } set_ZF(0); /* now write result back to destination */ BX_WRITE_16BIT_REG(i->nnn(), op1_16); } #endif } void BX_CPU_C::BSR_GvEv(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("BSR_GvEv(): not supported on < 386")); #else #if BX_SUPPORT_X86_64 if (i->os64L()) { /* 64 bit operand size mode */ /* for 64 bit operand size mode */ Bit64u op1_64, op2_64; /* op2_64 is a register or memory reference */ if (i->modC0()) { op2_64 = BX_READ_64BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_qword(i->seg(), RMAddr(i), &op2_64); } if (op2_64 == 0) { set_ZF(1); /* op1_64 undefined */ return; } op1_64 = 63; while ( (op2_64 & BX_CONST64(0x8000000000000000)) == 0 ) { op1_64--; op2_64 <<= 1; } set_ZF(0); /* now write result back to destination */ BX_WRITE_64BIT_REG(i->nnn(), op1_64); } else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32; /* op2_32 is a register or memory reference */ if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } if (op2_32 == 0) { set_ZF(1); /* op1_32 undefined */ return; } op1_32 = 31; while ( (op2_32 & 0x80000000) == 0 ) { op1_32--; op2_32 <<= 1; } set_ZF(0); /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), op1_32); } else { /* 16 bit operand size mode */ Bit16u op1_16, op2_16; /* op2_16 is a register or memory reference */ if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &op2_16); } if (op2_16 == 0) { set_ZF(1); /* op1_16 undefined */ return; } op1_16 = 15; while ( (op2_16 & 0x8000) == 0 ) { op1_16--; op2_16 <<= 1; } set_ZF(0); /* now write result back to destination */ BX_WRITE_16BIT_REG(i->nnn(), op1_16); } #endif } void BX_CPU_C::BSWAP_EAX(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u eax, b0, b1, b2, b3; eax = EAX; b0 = eax & 0xff; eax >>= 8; b1 = eax & 0xff; eax >>= 8; b2 = eax & 0xff; eax >>= 8; b3 = eax; RAX = (b0<<24) | (b1<<16) | (b2<<8) | b3; // zero extended #else BX_PANIC(("BSWAP_EAX: not implemented CPU <= 3")); UndefinedOpcode(i); #endif } void BX_CPU_C::BSWAP_ECX(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u ecx, b0, b1, b2, b3; ecx = ECX; b0 = ecx & 0xff; ecx >>= 8; b1 = ecx & 0xff; ecx >>= 8; b2 = ecx & 0xff; ecx >>= 8; b3 = ecx; RCX = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else BX_PANIC(("BSWAP_ECX: not implemented CPU <= 3")); UndefinedOpcode(i); #endif } void BX_CPU_C::BSWAP_EDX(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u edx, b0, b1, b2, b3; edx = EDX; b0 = edx & 0xff; edx >>= 8; b1 = edx & 0xff; edx >>= 8; b2 = edx & 0xff; edx >>= 8; b3 = edx; RDX = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else BX_PANIC(("BSWAP_EDX: not implemented CPU <= 3")); UndefinedOpcode(i); #endif } void BX_CPU_C::BSWAP_EBX(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u ebx, b0, b1, b2, b3; ebx = EBX; b0 = ebx & 0xff; ebx >>= 8; b1 = ebx & 0xff; ebx >>= 8; b2 = ebx & 0xff; ebx >>= 8; b3 = ebx; RBX = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else BX_PANIC(("BSWAP_EBX: not implemented CPU <= 3")); UndefinedOpcode(i); #endif } void BX_CPU_C::BSWAP_ESP(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u esp, b0, b1, b2, b3; esp = ESP; b0 = esp & 0xff; esp >>= 8; b1 = esp & 0xff; esp >>= 8; b2 = esp & 0xff; esp >>= 8; b3 = esp; RSP = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else BX_PANIC(("BSWAP_ESP: not implemented CPU <= 3")); UndefinedOpcode(i); #endif } void BX_CPU_C::BSWAP_EBP(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u ebp, b0, b1, b2, b3; ebp = EBP; b0 = ebp & 0xff; ebp >>= 8; b1 = ebp & 0xff; ebp >>= 8; b2 = ebp & 0xff; ebp >>= 8; b3 = ebp; RBP = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else BX_PANIC(("BSWAP_EBP: not implemented CPU <= 3")); UndefinedOpcode(i); #endif } void BX_CPU_C::BSWAP_ESI(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u esi, b0, b1, b2, b3; esi = ESI; b0 = esi & 0xff; esi >>= 8; b1 = esi & 0xff; esi >>= 8; b2 = esi & 0xff; esi >>= 8; b3 = esi; RSI = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else BX_PANIC(("BSWAP_ESI: not implemented CPU <= 3")); UndefinedOpcode(i); #endif } void BX_CPU_C::BSWAP_EDI(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u edi, b0, b1, b2, b3; edi = EDI; b0 = edi & 0xff; edi >>= 8; b1 = edi & 0xff; edi >>= 8; b2 = edi & 0xff; edi >>= 8; b3 = edi; RDI = (b0<<24) | (b1<<16) | (b2<<8) | b3; #else BX_PANIC(("BSWAP_EDI: not implemented CPU <= 3")); UndefinedOpcode(i); #endif } #if BX_SUPPORT_X86_64 void BX_CPU_C::BSWAP_RAX(bxInstruction_c *i) { Bit64u rax, b0, b1, b2, b3, b4, b5, b6, b7; rax = RAX; b0 = rax & 0xff; rax >>= 8; b1 = rax & 0xff; rax >>= 8; b2 = rax & 0xff; rax >>= 8; b3 = rax & 0xff; rax >>= 8; b4 = rax & 0xff; rax >>= 8; b5 = rax & 0xff; rax >>= 8; b6 = rax & 0xff; rax >>= 8; b7 = rax; RAX = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b4<<16) | (b4<<8) | b7; } void BX_CPU_C::BSWAP_RCX(bxInstruction_c *i) { Bit64u rcx, b0, b1, b2, b3, b4, b5, b6, b7; rcx = RCX; b0 = rcx & 0xff; rcx >>= 8; b1 = rcx & 0xff; rcx >>= 8; b2 = rcx & 0xff; rcx >>= 8; b3 = rcx & 0xff; rcx >>= 8; b4 = rcx & 0xff; rcx >>= 8; b5 = rcx & 0xff; rcx >>= 8; b6 = rcx & 0xff; rcx >>= 8; b7 = rcx; RCX = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7; } void BX_CPU_C::BSWAP_RDX(bxInstruction_c *i) { Bit64u rdx, b0, b1, b2, b3, b4, b5, b6, b7; rdx = RDX; b0 = rdx & 0xff; rdx >>= 8; b1 = rdx & 0xff; rdx >>= 8; b2 = rdx & 0xff; rdx >>= 8; b3 = rdx & 0xff; rdx >>= 8; b4 = rdx & 0xff; rdx >>= 8; b5 = rdx & 0xff; rdx >>= 8; b6 = rdx & 0xff; rdx >>= 8; b7 = rdx; RDX = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7; } void BX_CPU_C::BSWAP_RBX(bxInstruction_c *i) { Bit64u rbx, b0, b1, b2, b3, b4, b5, b6, b7; rbx = RBX; b0 = rbx & 0xff; rbx >>= 8; b1 = rbx & 0xff; rbx >>= 8; b2 = rbx & 0xff; rbx >>= 8; b3 = rbx & 0xff; rbx >>= 8; b4 = rbx & 0xff; rbx >>= 8; b5 = rbx & 0xff; rbx >>= 8; b6 = rbx & 0xff; rbx >>= 8; b7 = rbx; RBX = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7; } void BX_CPU_C::BSWAP_RSP(bxInstruction_c *i) { Bit64u rsp, b0, b1, b2, b3, b4, b5, b6, b7; rsp = RSP; b0 = rsp & 0xff; rsp >>= 8; b1 = rsp & 0xff; rsp >>= 8; b2 = rsp & 0xff; rsp >>= 8; b3 = rsp & 0xff; rsp >>= 8; b4 = rsp & 0xff; rsp >>= 8; b5 = rsp & 0xff; rsp >>= 8; b6 = rsp & 0xff; rsp >>= 8; b7 = rsp; RSP = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7; } void BX_CPU_C::BSWAP_RBP(bxInstruction_c *i) { Bit64u rbp, b0, b1, b2, b3, b4, b5, b6, b7; rbp = RBP; b0 = rbp & 0xff; rbp >>= 8; b1 = rbp & 0xff; rbp >>= 8; b2 = rbp & 0xff; rbp >>= 8; b3 = rbp & 0xff; rbp >>= 8; b4 = rbp & 0xff; rbp >>= 8; b5 = rbp & 0xff; rbp >>= 8; b6 = rbp & 0xff; rbp >>= 8; b7 = rbp; RBP = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7; } void BX_CPU_C::BSWAP_RSI(bxInstruction_c *i) { Bit64u rsi, b0, b1, b2, b3, b4, b5, b6, b7; rsi = RSI; b0 = rsi & 0xff; rsi >>= 8; b1 = rsi & 0xff; rsi >>= 8; b2 = rsi & 0xff; rsi >>= 8; b3 = rsi & 0xff; rsi >>= 8; b4 = rsi & 0xff; rsi >>= 8; b5 = rsi & 0xff; rsi >>= 8; b6 = rsi & 0xff; rsi >>= 8; b7 = rsi; RSI = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7; } void BX_CPU_C::BSWAP_RDI(bxInstruction_c *i) { Bit64u rdi, b0, b1, b2, b3, b4, b5, b6, b7; rdi = RDI; b0 = rdi & 0xff; rdi >>= 8; b1 = rdi & 0xff; rdi >>= 8; b2 = rdi & 0xff; rdi >>= 8; b3 = rdi & 0xff; rdi >>= 8; b4 = rdi & 0xff; rdi >>= 8; b5 = rdi & 0xff; rdi >>= 8; b6 = rdi & 0xff; rdi >>= 8; b7 = rdi; RDI = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7; } #endif // #if BX_SUPPORT_X86_64 void BX_CPU_C::BT_EvGv(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("BT_EvGv: not available on <386")); #else bx_address op1_addr; #if BX_SUPPORT_X86_64 if (i->os64L()) { /* 64 bit operand size mode */ /* for 64 bit operand size mode */ Bit64u op1_64, op2_64; Bit64s displacement64; Bit64u index; /* op2_64 is a register, op2_addr is an index of a register */ op2_64 = BX_READ_64BIT_REG(i->nnn()); /* op1_64 is a register or memory reference */ if (i->modC0()) { op1_64 = BX_READ_64BIT_REG(i->rm()); op2_64 &= 0x3f; set_CF((op1_64 >> op2_64) & 0x01); return; } index = op2_64 & 0x3f; displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64; op1_addr = RMAddr(i) + 8 * displacement64; /* pointer, segment address pair */ read_virtual_qword(i->seg(), op1_addr, &op1_64); set_CF((op1_64 >> index) & 0x01); } else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32, index; Bit32s displacement32; /* op2_32 is a register, op2_addr is an index of a register */ op2_32 = BX_READ_32BIT_REG(i->nnn()); /* op1_32 is a register or memory reference */ if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); op2_32 &= 0x1f; set_CF((op1_32 >> op2_32) & 0x01); return; } index = op2_32 & 0x1f; displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32; op1_addr = RMAddr(i) + 4 * displacement32; /* pointer, segment address pair */ read_virtual_dword(i->seg(), op1_addr, &op1_32); set_CF((op1_32 >> index) & 0x01); } else { /* 16 bit operand size mode */ Bit16u op1_16, op2_16, index; Bit32s displacement32; /* op2_16 is a register, op2_addr is an index of a register */ op2_16 = BX_READ_16BIT_REG(i->nnn()); /* op1_16 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); op2_16 &= 0x0f; set_CF((op1_16 >> op2_16) & 0x01); return; } index = op2_16 & 0x0f; displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16; op1_addr = RMAddr(i) + 2 * displacement32; /* pointer, segment address pair */ read_virtual_word(i->seg(), op1_addr, &op1_16); set_CF((op1_16 >> index) & 0x01); } #endif } void BX_CPU_C::BTS_EvGv(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("BTS_EvGv: not available on <386")); #else bx_address op1_addr; #if BX_SUPPORT_X86_64 if (i->os64L()) { /* 64 bit operand size mode */ /* for 64 bit operand size mode */ Bit64u op1_64, op2_64, index; Bit64s displacement64; Bit64u bit_i; /* op2_64 is a register, op2_addr is an index of a register */ op2_64 = BX_READ_64BIT_REG(i->nnn()); /* op1_64 is a register or memory reference */ if (i->modC0()) { op1_64 = BX_READ_64BIT_REG(i->rm()); op2_64 &= 0x3f; set_CF((op1_64 >> op2_64) & 0x01); op1_64 |= (((Bit64u) 1) << op2_64); /* now write diff back to destination */ BX_WRITE_64BIT_REG(i->rm(), op1_64); return; } index = op2_64 & 0x3f; displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64; op1_addr = RMAddr(i) + 8 * displacement64; /* pointer, segment address pair */ read_RMW_virtual_qword(i->seg(), op1_addr, &op1_64); bit_i = (op1_64 >> index) & 0x01; op1_64 |= (((Bit64u) 1) << index); Write_RMW_virtual_qword(op1_64); set_CF(bit_i); } else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32, bit_i, index; Bit32s displacement32; /* op2_32 is a register, op2_addr is an index of a register */ op2_32 = BX_READ_32BIT_REG(i->nnn()); /* op1_32 is a register or memory reference */ if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); op2_32 &= 0x1f; set_CF((op1_32 >> op2_32) & 0x01); op1_32 |= (((Bit32u) 1) << op2_32); /* now write diff back to destination */ BX_WRITE_32BIT_REGZ(i->rm(), op1_32); return; } index = op2_32 & 0x1f; displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32; op1_addr = RMAddr(i) + 4 * displacement32; /* pointer, segment address pair */ read_RMW_virtual_dword(i->seg(), op1_addr, &op1_32); bit_i = (op1_32 >> index) & 0x01; op1_32 |= (((Bit32u) 1) << index); Write_RMW_virtual_dword(op1_32); set_CF(bit_i); } else { /* 16 bit operand size mode */ Bit16u op1_16, op2_16, bit_i, index; Bit32s displacement32; /* op2_16 is a register, op2_addr is an index of a register */ op2_16 = BX_READ_16BIT_REG(i->nnn()); /* op1_16 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); op2_16 &= 0x0f; set_CF((op1_16 >> op2_16) & 0x01); op1_16 |= (((Bit16u) 1) << op2_16); /* now write diff back to destination */ BX_WRITE_16BIT_REG(i->rm(), op1_16); return; } index = op2_16 & 0x0f; displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16; op1_addr = RMAddr(i) + 2 * displacement32; /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), op1_addr, &op1_16); bit_i = (op1_16 >> index) & 0x01; op1_16 |= (((Bit16u) 1) << index); Write_RMW_virtual_word(op1_16); set_CF(bit_i); } #endif } void BX_CPU_C::BTR_EvGv(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("BTR_EvGv: not available on <386")); #else bx_address op1_addr; #if BX_SUPPORT_X86_64 if (i->os64L()) { /* 64 bit operand size mode */ /* for 64 bit operand size mode */ Bit64u op1_64, op2_64, index; Bit64s displacement64; Bit64u temp_cf; /* op2_64 is a register, op2_addr is an index of a register */ op2_64 = BX_READ_64BIT_REG(i->nnn()); /* op1_64 is a register or memory reference */ if (i->modC0()) { op1_64 = BX_READ_64BIT_REG(i->rm()); op2_64 &= 0x3f; set_CF((op1_64 >> op2_64) & 0x01); op1_64 &= ~(((Bit64u) 1) << op2_64); /* now write diff back to destination */ BX_WRITE_64BIT_REG(i->rm(), op1_64); return; } index = op2_64 & 0x3f; displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64; op1_addr = RMAddr(i) + 8 * displacement64; /* pointer, segment address pair */ read_RMW_virtual_qword(i->seg(), op1_addr, &op1_64); temp_cf = (op1_64 >> index) & 0x01; op1_64 &= ~(((Bit64u) 1) << index); /* now write back to destination */ Write_RMW_virtual_qword(op1_64); set_CF(temp_cf); } else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32, index, temp_cf; Bit32s displacement32; /* op2_32 is a register, op2_addr is an index of a register */ op2_32 = BX_READ_32BIT_REG(i->nnn()); /* op1_32 is a register or memory reference */ if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); op2_32 &= 0x1f; set_CF((op1_32 >> op2_32) & 0x01); op1_32 &= ~(((Bit32u) 1) << op2_32); /* now write diff back to destination */ BX_WRITE_32BIT_REGZ(i->rm(), op1_32); return; } index = op2_32 & 0x1f; displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32; op1_addr = RMAddr(i) + 4 * displacement32; /* pointer, segment address pair */ read_RMW_virtual_dword(i->seg(), op1_addr, &op1_32); temp_cf = (op1_32 >> index) & 0x01; op1_32 &= ~(((Bit32u) 1) << index); /* now write back to destination */ Write_RMW_virtual_dword(op1_32); set_CF(temp_cf); } else { /* 16 bit operand size mode */ Bit16u op1_16, op2_16, index, temp_cf; Bit32s displacement32; /* op2_16 is a register, op2_addr is an index of a register */ op2_16 = BX_READ_16BIT_REG(i->nnn()); /* op1_16 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); op2_16 &= 0x0f; set_CF((op1_16 >> op2_16) & 0x01); op1_16 &= ~(((Bit16u) 1) << op2_16); /* now write diff back to destination */ BX_WRITE_16BIT_REG(i->rm(), op1_16); return; } index = op2_16 & 0x0f; displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16; op1_addr = RMAddr(i) + 2 * displacement32; /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), op1_addr, &op1_16); temp_cf = (op1_16 >> index) & 0x01; op1_16 &= ~(((Bit16u) 1) << index); /* now write back to destination */ Write_RMW_virtual_word(op1_16); set_CF(temp_cf); } #endif } void BX_CPU_C::BTC_EvGv(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("BTC_EvGv: not available on <386")); #else bx_address op1_addr; #if BX_SUPPORT_X86_64 if (i->os64L()) { /* 64 bit operand size mode */ /* for 64 bit operand size mode */ Bit64u op1_64, op2_64; Bit64s displacement64; Bit64u temp_CF, index; op2_64 = BX_READ_64BIT_REG(i->nnn()); index = op2_64 & 0x3f; /* op1_64 is a register or memory reference */ if (i->modC0()) { op1_64 = BX_READ_64BIT_REG(i->rm()); op1_addr = 0; // keep compiler happy } else { displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64; op1_addr = RMAddr(i) + 8 * displacement64; read_RMW_virtual_qword(i->seg(), op1_addr, &op1_64); } temp_CF = (op1_64 >> index) & 0x01; // old code not as efficient??? op1_64 &= ~(((Bit64u) 1) << index); /* clear out bit */ op1_64 |= (((Bit64u) !temp_CF) << index); /* set to complement */ //op1_64 ^= (((Bit64u) 1) << index); /* toggle bit wrong??? */ /* now write diff back to destination */ if (i->modC0()) { BX_WRITE_64BIT_REG(i->rm(), op1_64); } else { Write_RMW_virtual_qword(op1_64); } set_CF(temp_CF); } else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32, index_32, temp_CF; Bit32s displacement32; op2_32 = BX_READ_32BIT_REG(i->nnn()); index_32 = op2_32 & 0x1f; /* op1_32 is a register or memory reference */ if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); op1_addr = 0; // keep compiler happy } else { displacement32 = ((Bit32s) (op2_32 & 0xffffffe0)) / 32; op1_addr = RMAddr(i) + 4 * displacement32; read_RMW_virtual_dword(i->seg(), op1_addr, &op1_32); } temp_CF = (op1_32 >> index_32) & 0x01; op1_32 &= ~(((Bit32u) 1) << index_32); /* clear out bit */ op1_32 |= (((Bit32u) !temp_CF) << index_32); /* set to complement */ /* now write diff back to destination */ if (i->modC0()) { BX_WRITE_32BIT_REGZ(i->rm(), op1_32); } else { Write_RMW_virtual_dword(op1_32); } set_CF(temp_CF); } else { /* 16 bit operand size mode */ Bit16u op1_16, op2_16, index_16, temp_CF; Bit16s displacement16; op2_16 = BX_READ_16BIT_REG(i->nnn()); index_16 = op2_16 & 0x0f; /* op1_16 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); op1_addr = 0; // keep compiler happy } else { displacement16 = ((Bit16s) (op2_16 & 0xfff0)) / 16; op1_addr = RMAddr(i) + 2 * displacement16; read_RMW_virtual_word(i->seg(), op1_addr, &op1_16); } temp_CF = (op1_16 >> index_16) & 0x01; op1_16 &= ~(((Bit16u) 1) << index_16); /* clear out bit */ op1_16 |= (((Bit16u) !temp_CF) << index_16); /* set to complement */ /* now write diff back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), op1_16); } else { Write_RMW_virtual_word(op1_16); } set_CF(temp_CF); } #endif } void BX_CPU_C::BT_EvIb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("BT_EvIb: not available on <386")); #else #if BX_SUPPORT_X86_64 if (i->os64L()) { /* 64 bit operand size mode */ /* for 64 bit operand size mode */ Bit64u op1_64; Bit8u op2_8; op2_8 = i->Ib() & 0x3f; op2_8 %= 64; /* op1_64 is a register or memory reference */ if (i->modC0()) { op1_64 = BX_READ_64BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_qword(i->seg(), RMAddr(i), &op1_64); } set_CF((op1_64 >> op2_8) & 0x01); } else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32; Bit8u op2_8; op2_8 = i->Ib(); op2_8 %= 32; /* op1_32 is a register or memory reference */ if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg(), RMAddr(i), &op1_32); } set_CF((op1_32 >> op2_8) & 0x01); } else { /* 16 bit operand size mode */ Bit16u op1_16; Bit8u op2_8; op2_8 = i->Ib(); op2_8 %= 16; /* op1_16 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &op1_16); } set_CF((op1_16 >> op2_8) & 0x01); } #endif } void BX_CPU_C::BTS_EvIb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("BTS_EvIb: not available on <386")); #else #if BX_SUPPORT_X86_64 if (i->os64L()) { /* 64 bit operand size mode */ /* for 64 bit operand size mode */ Bit64u op1_64, temp_CF; Bit8u op2_8; op2_8 = i->Ib(); op2_8 %= 64; /* op1_64 is a register or memory reference */ if (i->modC0()) { op1_64 = BX_READ_64BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_qword(i->seg(), RMAddr(i), &op1_64); } temp_CF = (op1_64 >> op2_8) & 0x01; op1_64 |= (((Bit64u) 1) << op2_8); /* now write diff back to destination */ if (i->modC0()) { BX_WRITE_64BIT_REG(i->rm(), op1_64); } else { Write_RMW_virtual_qword(op1_64); } set_CF(temp_CF); } else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, temp_CF; Bit8u op2_8; op2_8 = i->Ib(); op2_8 %= 32; /* op1_32 is a register or memory reference */ if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); } temp_CF = (op1_32 >> op2_8) & 0x01; op1_32 |= (((Bit32u) 1) << op2_8); /* now write diff back to destination */ if (i->modC0()) { BX_WRITE_32BIT_REGZ(i->rm(), op1_32); } else { Write_RMW_virtual_dword(op1_32); } set_CF(temp_CF); } else { /* 16 bit operand size mode */ Bit16u op1_16, temp_CF; Bit8u op2_8; op2_8 = i->Ib(); op2_8 %= 16; /* op1_16 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } temp_CF = (op1_16 >> op2_8) & 0x01; op1_16 |= (((Bit16u) 1) << op2_8); /* now write diff back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), op1_16); } else { Write_RMW_virtual_word(op1_16); } set_CF(temp_CF); } #endif } void BX_CPU_C::BTC_EvIb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("BTC_EvIb: not available on <386")); #else #if BX_SUPPORT_X86_64 if (i->os64L()) { /* 64 bit operand size mode */ /* for 64 bit operand size mode */ Bit64u op1_64, temp_CF; Bit8u op2_8; op2_8 = i->Ib(); op2_8 %= 64; /* op1_64 is a register or memory reference */ if (i->modC0()) { op1_64 = BX_READ_64BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_qword(i->seg(), RMAddr(i), &op1_64); } temp_CF = (op1_64 >> op2_8) & 0x01; op1_64 &= ~(((Bit64u) 1) << op2_8); /* clear out bit */ op1_64 |= (((Bit64u) !temp_CF) << op2_8); /* set to complement */ //op1_64 ^= (((Bit64u) 1) << op2_8); /* toggle bit */ /* now write diff back to destination */ if (i->modC0()) { BX_WRITE_64BIT_REG(i->rm(), op1_64); } else { Write_RMW_virtual_qword(op1_64); } set_CF(temp_CF); } else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, temp_CF; Bit8u op2_8; op2_8 = i->Ib(); op2_8 %= 32; /* op1_32 is a register or memory reference */ if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); } temp_CF = (op1_32 >> op2_8) & 0x01; op1_32 &= ~(((Bit32u) 1) << op2_8); /* clear out bit */ op1_32 |= (((Bit32u) !temp_CF) << op2_8); /* set to complement */ /* now write diff back to destination */ if (i->modC0()) { BX_WRITE_32BIT_REGZ(i->rm(), op1_32); } else { Write_RMW_virtual_dword(op1_32); } set_CF(temp_CF); } else { /* 16 bit operand size mode */ Bit16u op1_16, temp_CF; Bit8u op2_8; op2_8 = i->Ib(); op2_8 %= 16; /* op1_16 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } temp_CF = (op1_16 >> op2_8) & 0x01; op1_16 &= ~(((Bit16u) 1) << op2_8); /* clear out bit */ op1_16 |= (((Bit16u) !temp_CF) << op2_8); /* set to complement */ /* now write diff back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), op1_16); } else { Write_RMW_virtual_word(op1_16); } set_CF(temp_CF); } #endif } void BX_CPU_C::BTR_EvIb(bxInstruction_c *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("BTR_EvIb: not available on <386")); #else #if BX_SUPPORT_X86_64 if (i->os64L()) { /* 64 bit operand size mode */ /* for 64 bit operand size mode */ Bit64u op1_64, temp_CF; Bit8u op2_8; op2_8 = i->Ib(); op2_8 %= 64; /* op1_64 is a register or memory reference */ if (i->modC0()) { op1_64 = BX_READ_64BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_qword(i->seg(), RMAddr(i), &op1_64); } temp_CF = (op1_64 >> op2_8) & 0x01; op1_64 &= ~(((Bit64u) 1) << op2_8); /* now write diff back to destination */ if (i->modC0()) { BX_WRITE_64BIT_REG(i->rm(), op1_64); } else { Write_RMW_virtual_qword(op1_64); } set_CF(temp_CF); } else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, temp_CF; Bit8u op2_8; op2_8 = i->Ib(); op2_8 %= 32; /* op1_32 is a register or memory reference */ if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); } temp_CF = (op1_32 >> op2_8) & 0x01; op1_32 &= ~(((Bit32u) 1) << op2_8); /* now write diff back to destination */ if (i->modC0()) { BX_WRITE_32BIT_REGZ(i->rm(), op1_32); } else { Write_RMW_virtual_dword(op1_32); } set_CF(temp_CF); } else { /* 16 bit operand size mode */ Bit16u op1_16, temp_CF; Bit8u op2_8; op2_8 = i->Ib(); op2_8 %= 16; /* op1_16 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } temp_CF = (op1_16 >> op2_8) & 0x01; op1_16 &= ~(((Bit16u) 1) << op2_8); /* now write diff back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), op1_16); } else { Write_RMW_virtual_word(op1_16); } set_CF(temp_CF); } #endif }