///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2013 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EwR(bxInstruction_c *i) { push_16(BX_READ_16BIT_REG(i->dst())); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EwM(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit16u op1_16 = read_virtual_word(i->seg(), eaddr); push_16(op1_16); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_Sw(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[i->src()].selector.value); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_Sw(bxInstruction_c *i) { RSP_SPECULATIVE; Bit16u selector = pop_16(); load_seg_reg(&BX_CPU_THIS_PTR sregs[i->dst()], selector); RSP_COMMIT; if (i->dst() == BX_SEG_REG_SS) { // POP SS inhibits interrupts, debug exceptions and single-step // trap exceptions until the execution boundary following the // next instruction is reached. // Same code as MOV_SwEw() inhibit_interrupts(BX_INHIBIT_INTERRUPTS_BY_MOVSS); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EwR(bxInstruction_c *i) { BX_WRITE_16BIT_REG(i->dst(), pop_16()); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EwM(bxInstruction_c *i) { RSP_SPECULATIVE; Bit16u val16 = pop_16(); // Note: there is one little weirdism here. It is possible to use // SP in the modrm addressing. If used, the value of SP after the // pop is used to calculate the address. bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); write_virtual_word(i->seg(), eaddr, val16); RSP_COMMIT; BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_Iw(bxInstruction_c *i) { push_16(i->Iw()); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSHA16(bxInstruction_c *i) { Bit32u temp_ESP = ESP; Bit16u temp_SP = SP; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { stack_write_word((Bit32u)(temp_ESP - 2), AX); stack_write_word((Bit32u)(temp_ESP - 4), CX); stack_write_word((Bit32u)(temp_ESP - 6), DX); stack_write_word((Bit32u)(temp_ESP - 8), BX); stack_write_word((Bit32u)(temp_ESP - 10), temp_SP); stack_write_word((Bit32u)(temp_ESP - 12), BP); stack_write_word((Bit32u)(temp_ESP - 14), SI); stack_write_word((Bit32u)(temp_ESP - 16), DI); ESP -= 16; } else { stack_write_word((Bit16u)(temp_SP - 2), AX); stack_write_word((Bit16u)(temp_SP - 4), CX); stack_write_word((Bit16u)(temp_SP - 6), DX); stack_write_word((Bit16u)(temp_SP - 8), BX); stack_write_word((Bit16u)(temp_SP - 10), temp_SP); stack_write_word((Bit16u)(temp_SP - 12), BP); stack_write_word((Bit16u)(temp_SP - 14), SI); stack_write_word((Bit16u)(temp_SP - 16), DI); SP -= 16; } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POPA16(bxInstruction_c *i) { Bit16u di, si, bp, bx, dx, cx, ax; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { Bit32u temp_ESP = ESP; di = stack_read_word((Bit32u)(temp_ESP + 0)); si = stack_read_word((Bit32u)(temp_ESP + 2)); bp = stack_read_word((Bit32u)(temp_ESP + 4)); stack_read_word((Bit32u)(temp_ESP + 6)); bx = stack_read_word((Bit32u)(temp_ESP + 8)); dx = stack_read_word((Bit32u)(temp_ESP + 10)); cx = stack_read_word((Bit32u)(temp_ESP + 12)); ax = stack_read_word((Bit32u)(temp_ESP + 14)); ESP += 16; } else { Bit16u temp_SP = SP; di = stack_read_word((Bit16u)(temp_SP + 0)); si = stack_read_word((Bit16u)(temp_SP + 2)); bp = stack_read_word((Bit16u)(temp_SP + 4)); stack_read_word((Bit16u)(temp_SP + 6)); bx = stack_read_word((Bit16u)(temp_SP + 8)); dx = stack_read_word((Bit16u)(temp_SP + 10)); cx = stack_read_word((Bit16u)(temp_SP + 12)); ax = stack_read_word((Bit16u)(temp_SP + 14)); SP += 16; } DI = di; SI = si; BP = bp; BX = bx; DX = dx; CX = cx; AX = ax; BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER16_IwIb(bxInstruction_c *i) { Bit16u imm16 = i->Iw(); Bit8u level = i->Ib2(); level &= 0x1F; RSP_SPECULATIVE; push_16(BP); Bit16u frame_ptr16 = SP; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { Bit32u ebp = EBP; // Use temp copy for case of exception. if (level > 0) { /* do level-1 times */ while (--level) { ebp -= 2; Bit16u temp16 = stack_read_word(ebp); push_16(temp16); } /* push(frame pointer) */ push_16(frame_ptr16); } ESP -= imm16; // ENTER finishes with memory write check on the final stack pointer // the memory is touched but no write actually occurs // emulate it by doing RMW read access from SS:ESP read_RMW_virtual_word_32(BX_SEG_REG_SS, ESP); BP = frame_ptr16; } else { Bit16u bp = BP; if (level > 0) { /* do level-1 times */ while (--level) { bp -= 2; Bit16u temp16 = stack_read_word(bp); push_16(temp16); } /* push(frame pointer) */ push_16(frame_ptr16); } SP -= imm16; // ENTER finishes with memory write check on the final stack pointer // the memory is touched but no write actually occurs // emulate it by doing RMW read access from SS:SP read_RMW_virtual_word_32(BX_SEG_REG_SS, SP); } BP = frame_ptr16; RSP_COMMIT; BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LEAVE16(bxInstruction_c *i) { BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); Bit16u value16; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { value16 = stack_read_word(EBP); ESP = EBP + 2; } else { value16 = stack_read_word(BP); SP = BP + 2; } BP = value16; BX_NEXT_INSTR(i); }