///////////////////////////////////////////////////////////////////////// // $Id: arith32.cc,v 1.30 2002-10-25 18:26:27 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_X86_64==0 // Make life easier for merging cpu64 and cpu code. #define RAX EAX #define RDX EDX #endif void BX_CPU_C::INC_ERX(bxInstruction_c *i) { #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmInc32(BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx, flags32); setEFlagsOSZAP(flags32); #else Bit32u erx; erx = ++ BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx; #endif #if BX_SUPPORT_X86_64 BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.hrx = 0; #endif #if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) SET_FLAGS_OSZAP_32(0, 0, erx, BX_INSTR_INC32); #endif } void BX_CPU_C::DEC_ERX(bxInstruction_c *i) { #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmDec32(BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx, flags32); setEFlagsOSZAP(flags32); #else Bit32u erx; erx = -- BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx; #endif #if BX_SUPPORT_X86_64 BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.hrx = 0; #endif #if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) SET_FLAGS_OSZAP_32(0, 0, erx, BX_INSTR_DEC32); #endif } void BX_CPU_C::ADD_EdGd(bxInstruction_c *i) { Bit32u op2_32, op1_32, sum_32; op2_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); sum_32 = op1_32 + op2_32; BX_WRITE_32BIT_REGZ(i->rm(), sum_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); sum_32 = op1_32 + op2_32; Write_RMW_virtual_dword(sum_32); } SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_ADD32); } void BX_CPU_C::ADD_GdEEd(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; unsigned nnn = i->nnn(); op1_32 = BX_READ_32BIT_REG(nnn); read_virtual_dword(i->seg(), RMAddr(i), &op2_32); #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmAdd32(sum_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else sum_32 = op1_32 + op2_32; #endif BX_WRITE_32BIT_REGZ(nnn, sum_32); #if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_ADD32); #endif } void BX_CPU_C::ADD_GdEGd(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; unsigned nnn = i->nnn(); op1_32 = BX_READ_32BIT_REG(nnn); op2_32 = BX_READ_32BIT_REG(i->rm()); #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmAdd32(sum_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else sum_32 = op1_32 + op2_32; #endif BX_WRITE_32BIT_REGZ(nnn, sum_32); #if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_ADD32); #endif } void BX_CPU_C::ADD_EAXId(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; op1_32 = EAX; op2_32 = i->Id(); sum_32 = op1_32 + op2_32; RAX = sum_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_ADD32); } void BX_CPU_C::ADC_EdGd(bxInstruction_c *i) { bx_bool temp_CF; temp_CF = getB_CF(); Bit32u op2_32, op1_32, sum_32; op2_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); sum_32 = op1_32 + op2_32 + temp_CF; BX_WRITE_32BIT_REGZ(i->rm(), sum_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); sum_32 = op1_32 + op2_32 + temp_CF; Write_RMW_virtual_dword(sum_32); } SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, sum_32, BX_INSTR_ADC32, temp_CF); } void BX_CPU_C::ADC_GdEd(bxInstruction_c *i) { bx_bool temp_CF; temp_CF = getB_CF(); Bit32u op1_32, op2_32, sum_32; op1_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } sum_32 = op1_32 + op2_32 + temp_CF; BX_WRITE_32BIT_REGZ(i->nnn(), sum_32); SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, sum_32, BX_INSTR_ADC32, temp_CF); } void BX_CPU_C::ADC_EAXId(bxInstruction_c *i) { bx_bool temp_CF; temp_CF = getB_CF(); Bit32u op1_32, op2_32, sum_32; op1_32 = EAX; op2_32 = i->Id(); sum_32 = op1_32 + op2_32 + temp_CF; RAX = sum_32; SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, sum_32, BX_INSTR_ADC32, temp_CF); } void BX_CPU_C::SBB_EdGd(bxInstruction_c *i) { bx_bool temp_CF; temp_CF = getB_CF(); Bit32u op2_32, op1_32, diff_32; op2_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); diff_32 = op1_32 - (op2_32 + temp_CF); BX_WRITE_32BIT_REGZ(i->rm(), diff_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); diff_32 = op1_32 - (op2_32 + temp_CF); Write_RMW_virtual_dword(diff_32); } SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, diff_32, BX_INSTR_SBB32, temp_CF); } void BX_CPU_C::SBB_GdEd(bxInstruction_c *i) { bx_bool temp_CF; temp_CF = getB_CF(); Bit32u op1_32, op2_32, diff_32; op1_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } diff_32 = op1_32 - (op2_32 + temp_CF); BX_WRITE_32BIT_REGZ(i->nnn(), diff_32); SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, diff_32, BX_INSTR_SBB32, temp_CF); } void BX_CPU_C::SBB_EAXId(bxInstruction_c *i) { bx_bool temp_CF; temp_CF = getB_CF(); Bit32u op1_32, op2_32, diff_32; op1_32 = EAX; op2_32 = i->Id(); diff_32 = op1_32 - (op2_32 + temp_CF); RAX = diff_32; SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, diff_32, BX_INSTR_SBB32, temp_CF); } void BX_CPU_C::SBB_EdId(bxInstruction_c *i) { bx_bool temp_CF; temp_CF = getB_CF(); Bit32u op2_32, op1_32, diff_32; op2_32 = i->Id(); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); diff_32 = op1_32 - (op2_32 + temp_CF); BX_WRITE_32BIT_REGZ(i->rm(), diff_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); diff_32 = op1_32 - (op2_32 + temp_CF); Write_RMW_virtual_dword(diff_32); } SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, diff_32, BX_INSTR_SBB32, temp_CF); } void BX_CPU_C::SUB_EdGd(bxInstruction_c *i) { Bit32u op2_32, op1_32, diff_32; op2_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); diff_32 = op1_32 - op2_32; BX_WRITE_32BIT_REGZ(i->rm(), diff_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); diff_32 = op1_32 - op2_32; Write_RMW_virtual_dword(diff_32); } SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_SUB32); } void BX_CPU_C::SUB_GdEd(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; unsigned nnn = i->nnn(); op1_32 = BX_READ_32BIT_REG(nnn); if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmSub32(diff_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else diff_32 = op1_32 - op2_32; #endif BX_WRITE_32BIT_REGZ(nnn, diff_32); #if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_SUB32); #endif } void BX_CPU_C::SUB_EAXId(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; op1_32 = EAX; op2_32 = i->Id(); diff_32 = op1_32 - op2_32; RAX = diff_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_SUB32); } void BX_CPU_C::CMP_EdGd(bxInstruction_c *i) { Bit32u op2_32, op1_32; op2_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op1_32); } #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmCmp32(op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else Bit32u diff_32; diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_CMP32); #endif } void BX_CPU_C::CMP_GdEd(bxInstruction_c *i) { Bit32u op1_32, op2_32; op1_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmCmp32(op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else Bit32u diff_32; diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_CMP32); #endif } void BX_CPU_C::CMP_EAXId(bxInstruction_c *i) { Bit32u op1_32, op2_32; op1_32 = EAX; op2_32 = i->Id(); #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmCmp32(op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else Bit32u diff_32; diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_CMP32); #endif } void BX_CPU_C::CWDE(bxInstruction_c *i) { /* CBW: no flags are effected */ Bit32u temp; temp = (Bit16s) AX; RAX = temp; } void BX_CPU_C::CDQ(bxInstruction_c *i) { /* CDQ: no flags are affected */ if (EAX & 0x80000000) { RDX = 0xFFFFFFFF; } else { RDX = 0x00000000; } } // Some info on the opcodes at {0F,A6} and {0F,A7} // On 386 steps A0-B0: // {OF,A6} = XBTS // {OF,A7} = IBTS // On 486 steps A0-B0: // {OF,A6} = CMPXCHG 8 // {OF,A7} = CMPXCHG 16|32 // // On 486 >= B steps, and further processors, the // CMPXCHG instructions were moved to opcodes: // {OF,B0} = CMPXCHG 8 // {OF,B1} = CMPXCHG 16|32 void BX_CPU_C::CMPXCHG_XBTS(bxInstruction_c *i) { BX_INFO(("CMPXCHG_XBTS:")); UndefinedOpcode(i); } void BX_CPU_C::CMPXCHG_IBTS(bxInstruction_c *i) { BX_INFO(("CMPXCHG_IBTS:")); UndefinedOpcode(i); } void BX_CPU_C::XADD_EdGd(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u op2_32, op1_32, sum_32; /* XADD dst(r/m), src(r) * temp <-- src + dst | sum = op2 + op1 * src <-- dst | op2 = op1 * dst <-- tmp | op1 = sum */ op2_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); sum_32 = op1_32 + op2_32; // and write destination into source // Note: if both op1 & op2 are registers, the last one written // should be the sum, as op1 & op2 may be the same register. // For example: XADD AL, AL BX_WRITE_32BIT_REGZ(i->nnn(), op1_32); BX_WRITE_32BIT_REGZ(i->rm(), sum_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); sum_32 = op1_32 + op2_32; Write_RMW_virtual_dword(sum_32); /* and write destination into source */ BX_WRITE_32BIT_REGZ(i->nnn(), op1_32); } SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_XADD32); #else BX_INFO (("XADD_EdGd not supported for cpulevel <= 3")); UndefinedOpcode(i); #endif } void BX_CPU_C::ADD_EEdId(bxInstruction_c *i) { Bit32u op2_32, op1_32, sum_32; op2_32 = i->Id(); read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmAdd32(sum_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else sum_32 = op1_32 + op2_32; #endif Write_RMW_virtual_dword(sum_32); #if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_ADD32); #endif } void BX_CPU_C::ADD_EGdId(bxInstruction_c *i) { Bit32u op2_32, op1_32, sum_32; op2_32 = i->Id(); op1_32 = BX_READ_32BIT_REG(i->rm()); #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmAdd32(sum_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else sum_32 = op1_32 + op2_32; #endif BX_WRITE_32BIT_REGZ(i->rm(), sum_32); #if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_ADD32); #endif } void BX_CPU_C::ADC_EdId(bxInstruction_c *i) { bx_bool temp_CF; temp_CF = getB_CF(); Bit32u op2_32, op1_32, sum_32; op2_32 = i->Id(); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); sum_32 = op1_32 + op2_32 + temp_CF; BX_WRITE_32BIT_REGZ(i->rm(), sum_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); sum_32 = op1_32 + op2_32 + temp_CF; Write_RMW_virtual_dword(sum_32); } SET_FLAGS_OSZAPC_32_CF(op1_32, op2_32, sum_32, BX_INSTR_ADC32, temp_CF); } void BX_CPU_C::SUB_EdId(bxInstruction_c *i) { Bit32u op2_32, op1_32, diff_32; op2_32 = i->Id(); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); diff_32 = op1_32 - op2_32; BX_WRITE_32BIT_REGZ(i->rm(), diff_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); diff_32 = op1_32 - op2_32; Write_RMW_virtual_dword(diff_32); } SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_SUB32); } void BX_CPU_C::CMP_EdId(bxInstruction_c *i) { Bit32u op2_32, op1_32; op2_32 = i->Id(); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op1_32); } #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmCmp32(op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else Bit32u diff_32; diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_CMP32); #endif } void BX_CPU_C::NEG_Ed(bxInstruction_c *i) { Bit32u op1_32, diff_32; if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); diff_32 = 0 - op1_32; BX_WRITE_32BIT_REGZ(i->rm(), diff_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); diff_32 = 0 - op1_32; Write_RMW_virtual_dword(diff_32); } SET_FLAGS_OSZAPC_32(op1_32, 0, diff_32, BX_INSTR_NEG32); } void BX_CPU_C::INC_Ed(bxInstruction_c *i) { Bit32u op1_32; if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); op1_32++; BX_WRITE_32BIT_REGZ(i->rm(), op1_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); op1_32++; Write_RMW_virtual_dword(op1_32); } SET_FLAGS_OSZAP_32(0, 0, op1_32, BX_INSTR_INC32); } void BX_CPU_C::DEC_Ed(bxInstruction_c *i) { Bit32u op1_32; if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); op1_32--; BX_WRITE_32BIT_REGZ(i->rm(), op1_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); op1_32--; Write_RMW_virtual_dword(op1_32); } SET_FLAGS_OSZAP_32(0, 0, op1_32, BX_INSTR_DEC32); } void BX_CPU_C::CMPXCHG_EdGd(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4) Bit32u op2_32, op1_32, diff_32; if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); } diff_32 = EAX - op1_32; SET_FLAGS_OSZAPC_32(EAX, op1_32, diff_32, BX_INSTR_CMP32); if (diff_32 == 0) { // if accumulator == dest // ZF = 1 set_ZF(1); // dest <-- src op2_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { BX_WRITE_32BIT_REGZ(i->rm(), op2_32); } else { Write_RMW_virtual_dword(op2_32); } } else { // ZF = 0 set_ZF(0); // accumulator <-- dest RAX = op1_32; } #else BX_PANIC(("CMPXCHG_EdGd:")); #endif } void BX_CPU_C::CMPXCHG8B(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 5) || (BX_CPU_LEVEL_HACKED >= 5) Bit32u op1_64_lo, op1_64_hi, diff; if (i->modC0()) { BX_INFO(("CMPXCHG8B: dest is reg: #UD")); UndefinedOpcode(i); } read_virtual_dword(i->seg(), RMAddr(i), &op1_64_lo); read_RMW_virtual_dword(i->seg(), RMAddr(i) + 4, &op1_64_hi); diff = EAX - op1_64_lo; diff |= EDX - op1_64_hi; // SET_FLAGS_OSZAPC_32(EAX, op1_32, diff_32, BX_INSTR_CMP32); if (diff == 0) { // if accumulator == dest // ZF = 1 set_ZF(1); // dest <-- src Write_RMW_virtual_dword(ECX); write_virtual_dword(i->seg(), RMAddr(i), &EBX); } else { // ZF = 0 set_ZF(0); // accumulator <-- dest RAX = op1_64_lo; RDX = op1_64_hi; } #else BX_INFO(("CMPXCHG8B: not implemented yet")); UndefinedOpcode(i); #endif }