///////////////////////////////////////////////////////////////////////// // $Id: io.cc,v 1.66 2008-09-08 20:47:33 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #include "iodev/iodev.h" #if BX_SUPPORT_X86_64==0 // Make life easier for merging cpu64 and cpu32 code. #define RDI EDI #define RSI ESI #define RAX EAX #define RCX ECX #endif // // Repeat Speedups methods // #if BX_SupportRepeatSpeedups Bit32u BX_CPU_C::FastRepINSW(bxInstruction_c *i, bx_address dstOff, Bit16u port, Bit32u wordCount) { Bit32u wordsFitDst; signed int pointerDelta; Bit8u *hostAddrDst; unsigned count; BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]; if (!(dstSegPtr->cache.valid & SegAccessWOK)) return 0; if ((dstOff | 0xfff) > dstSegPtr->cache.u.segment.limit_scaled) return 0; bx_address laddrDst = BX_CPU_THIS_PTR get_laddr(BX_SEG_REG_ES, dstOff); // check that the address is word aligned if (laddrDst & 1) return 0; #if BX_SupportGuest2HostTLB hostAddrDst = v2h_write_byte(laddrDst, BX_CPU_THIS_PTR user_pl); #else bx_phy_address paddrDst; if (BX_CPU_THIS_PTR cr0.get_PG()) paddrDst = dtranslate_linear(laddrDst, CPL, BX_WRITE); else paddrDst = laddrDst; // If we want to write directly into the physical memory array, // we need the A20 address. hostAddrDst = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS, A20ADDR(paddrDst), BX_WRITE, DATA_ACCESS); #endif // Check that native host access was not vetoed for that page if (!hostAddrDst) return 0; // See how many words can fit in the rest of this page. if (BX_CPU_THIS_PTR get_DF()) { // Counting downward // 1st word must cannot cross page boundary because it is word aligned wordsFitDst = (2 + (PAGE_OFFSET(laddrDst))) >> 1; pointerDelta = -2; } else { // Counting upward wordsFitDst = (0x1000 - PAGE_OFFSET(laddrDst)) >> 1; pointerDelta = 2; } // Restrict word count to the number that will fit in this page. if (wordCount > wordsFitDst) wordCount = wordsFitDst; // If after all the restrictions, there is anything left to do... if (wordCount) { for (count=0; countcache.valid & SegAccessROK)) return 0; if ((srcOff | 0xfff) > srcSegPtr->cache.u.segment.limit_scaled) return 0; bx_address laddrSrc = BX_CPU_THIS_PTR get_laddr(srcSeg, srcOff); // check that the address is word aligned if (laddrSrc & 1) return 0; #if BX_SupportGuest2HostTLB hostAddrSrc = v2h_read_byte(laddrSrc, BX_CPU_THIS_PTR user_pl); #else bx_phy_address paddrSrc; if (BX_CPU_THIS_PTR cr0.get_PG()) paddrSrc = dtranslate_linear(laddrSrc, CPL, BX_READ); else paddrSrc = laddrSrc; // If we want to write directly into the physical memory array, // we need the A20 address. hostAddrSrc = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS, A20ADDR(paddrSrc), BX_READ, DATA_ACCESS); #endif // Check that native host access was not vetoed for that page if (!hostAddrSrc) return 0; // See how many words can fit in the rest of this page. if (BX_CPU_THIS_PTR get_DF()) { // Counting downward // 1st word must cannot cross page boundary because it is word aligned wordsFitSrc = (2 + (PAGE_OFFSET(laddrSrc))) >> 1; pointerDelta = (unsigned) -2; } else { // Counting upward wordsFitSrc = (0x1000 - PAGE_OFFSET(laddrSrc)) >> 1; pointerDelta = 2; } // Restrict word count to the number that will fit in this page. if (wordCount > wordsFitSrc) wordCount = wordsFitSrc; // If after all the restrictions, there is anything left to do... if (wordCount) { for (count=0; countas64L()) { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSB64_YbDX); } else #endif if (i->as32L()) { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSB32_YbDX); BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI } else { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSB16_YbDX); } } // 16-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSB16_YbDX(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 1)) { BX_DEBUG(("INSB_YbDX: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } // trigger any segment or page faults before reading from IO port Bit8u value8 = read_RMW_virtual_byte_32(BX_SEG_REG_ES, DI); value8 = BX_INP(DX, 1); write_RMW_virtual_byte(value8); if (BX_CPU_THIS_PTR get_DF()) DI--; else DI++; } // 32-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSB32_YbDX(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 1)) { BX_DEBUG(("INSB_YbDX: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } // trigger any segment or page faults before reading from IO port Bit8u value8 = read_RMW_virtual_byte_32(BX_SEG_REG_ES, EDI); value8 = BX_INP(DX, 1); /* no seg override possible */ write_RMW_virtual_byte(value8); if (BX_CPU_THIS_PTR get_DF()) { RDI = EDI - 1; } else { RDI = EDI + 1; } } #if BX_SUPPORT_X86_64 // 64-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSB64_YbDX(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 1)) { BX_DEBUG(("INSB_YbDX: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } // trigger any segment or page faults before reading from IO port Bit8u value8 = read_RMW_virtual_byte_64(BX_SEG_REG_ES, RDI); value8 = BX_INP(DX, 1); write_RMW_virtual_byte(value8); if (BX_CPU_THIS_PTR get_DF()) RDI--; else RDI++; } #endif void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_INSW_YwDX(bxInstruction_c *i) { #if BX_SUPPORT_X86_64 if (i->as64L()) { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSW64_YwDX); } else #endif if (i->as32L()) { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSW32_YwDX); BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI } else { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSW16_YwDX); } } // 16-bit operand size, 16-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSW16_YwDX(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 2)) { BX_DEBUG(("INSW16_YwDX: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } // trigger any segment or page faults before reading from IO port Bit16u value16 = read_RMW_virtual_word_32(BX_SEG_REG_ES, DI); value16 = BX_INP(DX, 2); write_RMW_virtual_word(value16); if (BX_CPU_THIS_PTR get_DF()) DI -= 2; else DI += 2; } // 16-bit operand size, 32-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSW32_YwDX(bxInstruction_c *i) { Bit16u value16=0; Bit32u edi = EDI; unsigned incr = 2; if (! BX_CPU_THIS_PTR allow_io(DX, 2)) { BX_DEBUG(("INSW32_YwDX: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } #if (BX_SupportRepeatSpeedups) && (BX_DEBUGGER == 0) /* If conditions are right, we can transfer IO to physical memory * in a batch, rather than one instruction at a time. */ if (i->repUsedL() && !BX_CPU_THIS_PTR async_event) { Bit32u wordCount = ECX; BX_ASSERT(wordCount > 0); wordCount = FastRepINSW(i, edi, DX, wordCount); if (wordCount) { // Decrement the ticks count by the number of iterations, minus // one, since the main cpu loop will decrement one. Also, // the count is predecremented before examined, so defintely // don't roll it under zero. BX_TICKN(wordCount-1); RCX = ECX - (wordCount-1); incr = wordCount << 1; // count * 2. } else { // trigger any segment or page faults before reading from IO port value16 = read_RMW_virtual_word_32(BX_SEG_REG_ES, edi); value16 = BX_INP(DX, 2); write_RMW_virtual_word(value16); } } else #endif { // trigger any segment or page faults before reading from IO port value16 = read_RMW_virtual_word_32(BX_SEG_REG_ES, edi); value16 = BX_INP(DX, 2); write_RMW_virtual_word(value16); } if (BX_CPU_THIS_PTR get_DF()) RDI = EDI - incr; else RDI = EDI + incr; } #if BX_SUPPORT_X86_64 // 16-bit operand size, 64-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSW64_YwDX(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 2)) { BX_DEBUG(("INSW64_YwDX: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } // trigger any segment or page faults before reading from IO port Bit16u value16 = read_RMW_virtual_word_64(BX_SEG_REG_ES, RDI); value16 = BX_INP(DX, 2); write_RMW_virtual_word(value16); if (BX_CPU_THIS_PTR get_DF()) RDI -= 2; else RDI += 2; } #endif void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_INSD_YdDX(bxInstruction_c *i) { #if BX_SUPPORT_X86_64 if (i->as64L()) { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSD64_YdDX); } else #endif if (i->as32L()) { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSD32_YdDX); BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI } else { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSD16_YdDX); } } // 32-bit operand size, 16-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSD16_YdDX(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 4)) { BX_DEBUG(("INSD16_YdDX: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } // trigger any segment or page faults before reading from IO port Bit32u value32 = read_RMW_virtual_dword_32(BX_SEG_REG_ES, DI); value32 = BX_INP(DX, 4); write_RMW_virtual_dword(value32); if (BX_CPU_THIS_PTR get_DF()) DI -= 4; else DI += 4; } // 32-bit operand size, 32-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSD32_YdDX(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 4)) { BX_DEBUG(("INSD32_YdDX: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } // trigger any segment or page faults before reading from IO port Bit32u value32 = read_RMW_virtual_dword_32(BX_SEG_REG_ES, EDI); value32 = BX_INP(DX, 4); write_RMW_virtual_dword(value32); if (BX_CPU_THIS_PTR get_DF()) RDI = EDI - 4; else RDI = EDI + 4; } #if BX_SUPPORT_X86_64 // 32-bit operand size, 64-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSD64_YdDX(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 4)) { BX_DEBUG(("INSD64_YdDX: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } // trigger any segment or page faults before reading from IO port Bit32u value32 = read_RMW_virtual_dword_64(BX_SEG_REG_ES, RDI); value32 = BX_INP(DX, 4); write_RMW_virtual_dword(value32); if (BX_CPU_THIS_PTR get_DF()) RDI -= 4; else RDI += 4; } #endif // // REP OUTS methods // void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_OUTSB_DXXb(bxInstruction_c *i) { #if BX_SUPPORT_X86_64 if (i->as64L()) { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSB64_DXXb); } else #endif if (i->as32L()) { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSB32_DXXb); BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI } else { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSB16_DXXb); } } // 16-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSB16_DXXb(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 1)) { BX_DEBUG(("OUTSB16_DXXb: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } Bit8u value8 = read_virtual_byte_32(i->seg(), SI); BX_OUTP(DX, value8, 1); if (BX_CPU_THIS_PTR get_DF()) SI--; else SI++; } // 32-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSB32_DXXb(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 1)) { BX_DEBUG(("OUTSB32_DXXb: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } Bit8u value8 = read_virtual_byte(i->seg(), ESI); BX_OUTP(DX, value8, 1); if (BX_CPU_THIS_PTR get_DF()) RSI = ESI - 1; else RSI = ESI + 1; } #if BX_SUPPORT_X86_64 // 64-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSB64_DXXb(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 1)) { BX_DEBUG(("OUTSB64_DXXb: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } Bit8u value8 = read_virtual_byte_64(i->seg(), RSI); BX_OUTP(DX, value8, 1); if (BX_CPU_THIS_PTR get_DF()) RSI--; else RSI++; } #endif void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_OUTSW_DXXw(bxInstruction_c *i) { #if BX_SUPPORT_X86_64 if (i->as64L()) { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSW64_DXXw); } else #endif if (i->as32L()) { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSW32_DXXw); BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI } else { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSW16_DXXw); } } // 16-bit operand size, 16-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSW16_DXXw(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 2)) { BX_DEBUG(("OUTSW16_DXXw: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } Bit16u value16 = read_virtual_word_32(i->seg(), SI); BX_OUTP(DX, value16, 2); if (BX_CPU_THIS_PTR get_DF()) SI -= 2; else SI += 2; } // 16-bit operand size, 32-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSW32_DXXw(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 2)) { BX_DEBUG(("OUTSW32_DXXw: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } Bit16u value16; Bit32u esi = ESI; unsigned incr = 2; #if (BX_SupportRepeatSpeedups) && (BX_DEBUGGER == 0) /* If conditions are right, we can transfer IO to physical memory * in a batch, rather than one instruction at a time. */ if (i->repUsedL() && !BX_CPU_THIS_PTR async_event) { Bit32u wordCount = ECX; wordCount = FastRepOUTSW(i, i->seg(), esi, DX, wordCount); if (wordCount) { // Decrement eCX. Note, the main loop will decrement 1 also, so // decrement by one less than expected, like the case above. BX_TICKN(wordCount-1); // Main cpu loop also decrements one more. RCX = ECX - (wordCount-1); incr = wordCount << 1; // count * 2. } else { value16 = read_virtual_word(i->seg(), esi); BX_OUTP(DX, value16, 2); } } else #endif { value16 = read_virtual_word(i->seg(), esi); BX_OUTP(DX, value16, 2); } if (BX_CPU_THIS_PTR get_DF()) RSI = ESI - incr; else RSI = ESI + incr; } #if BX_SUPPORT_X86_64 // 16-bit operand size, 64-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSW64_DXXw(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 2)) { BX_DEBUG(("OUTSW64_DXXw: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } Bit16u value16 = read_virtual_word_64(i->seg(), RSI); BX_OUTP(DX, value16, 2); if (BX_CPU_THIS_PTR get_DF()) RSI -= 2; else RSI += 2; } #endif void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_OUTSD_DXXd(bxInstruction_c *i) { #if BX_SUPPORT_X86_64 if (i->as64L()) { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSD64_DXXd); } else #endif if (i->as32L()) { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSD32_DXXd); BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI } else { BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSD16_DXXd); } } // 32-bit operand size, 16-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSD16_DXXd(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 4)) { BX_DEBUG(("OUTSD16_DXXd: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } Bit32u value32 = read_virtual_dword_32(i->seg(), SI); BX_OUTP(DX, value32, 4); if (BX_CPU_THIS_PTR get_DF()) SI -= 4; else SI += 4; } // 32-bit operand size, 32-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSD32_DXXd(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 4)) { BX_DEBUG(("OUTSD32_DXXd: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } Bit32u value32 = read_virtual_dword(i->seg(), ESI); BX_OUTP(DX, value32, 4); if (BX_CPU_THIS_PTR get_DF()) RSI = ESI - 4; else RSI = ESI + 4; } #if BX_SUPPORT_X86_64 // 32-bit operand size, 64-bit address size void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSD64_DXXd(bxInstruction_c *i) { if (! BX_CPU_THIS_PTR allow_io(DX, 4)) { BX_DEBUG(("OUTSD64_DXXd: I/O access not allowed !")); exception(BX_GP_EXCEPTION, 0, 0); } Bit32u value32 = read_virtual_dword_64(i->seg(), RSI); BX_OUTP(DX, value32, 4); if (BX_CPU_THIS_PTR get_DF()) RSI -= 4; else RSI += 4; } #endif // // non repeatable IN/OUT methods // void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_ALIb(bxInstruction_c *i) { AL = BX_CPU_THIS_PTR inp8(i->Ib()); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_AXIb(bxInstruction_c *i) { AX = BX_CPU_THIS_PTR inp16(i->Ib()); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_EAXIb(bxInstruction_c *i) { RAX = BX_CPU_THIS_PTR inp32(i->Ib()); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_IbAL(bxInstruction_c *i) { BX_CPU_THIS_PTR outp8(i->Ib(), AL); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_IbAX(bxInstruction_c *i) { BX_CPU_THIS_PTR outp16(i->Ib(), AX); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_IbEAX(bxInstruction_c *i) { BX_CPU_THIS_PTR outp32(i->Ib(), EAX); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_ALDX(bxInstruction_c *i) { AL = BX_CPU_THIS_PTR inp8(DX); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_AXDX(bxInstruction_c *i) { AX = BX_CPU_THIS_PTR inp16(DX); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_EAXDX(bxInstruction_c *i) { RAX = BX_CPU_THIS_PTR inp32(DX); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_DXAL(bxInstruction_c *i) { BX_CPU_THIS_PTR outp8(DX, AL); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_DXAX(bxInstruction_c *i) { BX_CPU_THIS_PTR outp16(DX, AX); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_DXEAX(bxInstruction_c *i) { BX_CPU_THIS_PTR outp32(DX, EAX); }