///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2011-2012 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #include "iodev/iodev.h" bx_bool BX_CPU_C::handleWaitForEvent(void) { // For one processor, pass the time as quickly as possible until // an interrupt wakes up the CPU. while (1) { if ((is_pending(BX_EVENT_PENDING_INTR | BX_EVENT_PENDING_LAPIC_INTR) && (BX_CPU_THIS_PTR get_IF() || BX_CPU_THIS_PTR activity_state == BX_ACTIVITY_STATE_MWAIT_IF)) || is_pending(BX_EVENT_NMI | BX_EVENT_SMI | BX_EVENT_INIT | BX_EVENT_VMX_VTPR_UPDATE | BX_EVENT_VMX_MONITOR_TRAP_FLAG | BX_EVENT_VMX_PREEMPTION_TIMER_EXPIRED | BX_EVENT_VMX_NMI_WINDOW_EXITING)) { // interrupt ends the HALT condition #if BX_SUPPORT_MONITOR_MWAIT if (BX_CPU_THIS_PTR activity_state >= BX_ACTIVITY_STATE_MWAIT) BX_CPU_THIS_PTR monitor.reset_monitor(); #endif BX_CPU_THIS_PTR activity_state = BX_ACTIVITY_STATE_ACTIVE; BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume break; } if (BX_CPU_THIS_PTR activity_state == BX_ACTIVITY_STATE_ACTIVE) { // happens also when MWAIT monitor was hit // BX_INFO(("handleWaitForEvent: reset detected in HLT state")); break; } if (BX_HRQ && BX_DBG_ASYNC_DMA) { // handle DMA also when CPU is halted DEV_dma_raise_hlda(); } // for multiprocessor simulation, even if this CPU is halted we still // must give the others a chance to simulate. If an interrupt has // arrived, then clear the HALT condition; otherwise just return from // the CPU loop with stop_reason STOP_CPU_HALTED. #if BX_SUPPORT_SMP if (BX_SMP_PROCESSORS > 1) { // HALT condition remains, return so other CPUs have a chance #if BX_DEBUGGER BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED; #endif return 1; // Return to caller of cpu_loop. } #endif #if BX_DEBUGGER if (bx_guard.interrupt_requested) return 1; // Return to caller of cpu_loop. #endif if (bx_pc_system.kill_bochs_request) { // setting kill_bochs_request causes the cpu loop to return ASAP. return 1; // Return to caller of cpu_loop. } BX_TICKN(10); // when in HLT run time faster for single CPU } return 0; } void BX_CPU_C::InterruptAcknowledge(void) { Bit8u vector; #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_INTR)) Svm_Vmexit(SVM_VMEXIT_INTR); } #endif #if BX_SUPPORT_VMX VMexit_ExtInterrupt(); #endif // NOTE: similar code in ::take_irq() #if BX_SUPPORT_APIC if (is_pending(BX_EVENT_PENDING_LAPIC_INTR)) vector = BX_CPU_THIS_PTR lapic.acknowledge_int(); else #endif // if no local APIC, always acknowledge the PIC. vector = DEV_pic_iac(); // may set INTR with next interrupt BX_CPU_THIS_PTR EXT = 1; /* external event */ #if BX_SUPPORT_VMX VMexit_Event(BX_EXTERNAL_INTERRUPT, vector, 0, 0); #endif BX_INSTR_HWINTERRUPT(BX_CPU_ID, vector, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); interrupt(vector, BX_EXTERNAL_INTERRUPT, 0, 0); BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP } #if BX_SUPPORT_SVM void BX_CPU_C::VirtualInterruptAcknowledge(void) { Bit8u vector = SVM_V_INTR_VECTOR; if (SVM_INTERCEPT(SVM_INTERCEPT0_VINTR)) Svm_Vmexit(SVM_VMEXIT_VINTR); clear_event(BX_EVENT_SVM_VIRQ_PENDING); BX_CPU_THIS_PTR EXT = 1; /* external event */ BX_INSTR_HWINTERRUPT(BX_CPU_ID, vector, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); interrupt(vector, BX_EXTERNAL_INTERRUPT, 0, 0); BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP } #endif bx_bool BX_CPU_C::handleAsyncEvent(void) { // // This area is where we process special conditions and events. // if (BX_CPU_THIS_PTR activity_state != BX_ACTIVITY_STATE_ACTIVE) { // For one processor, pass the time as quickly as possible until // an interrupt wakes up the CPU. if (handleWaitForEvent()) return 1; } if (bx_pc_system.kill_bochs_request) { // setting kill_bochs_request causes the cpu loop to return ASAP. return 1; // Return to caller of cpu_loop. } // Priority 1: Hardware Reset and Machine Checks // RESET // Machine Check // (bochs doesn't support these) #if BX_SUPPORT_SVM // debug exceptions or trap due to breakpoint register match // ignored and discarded if GIF == 0 // debug traps due to EFLAGS.TF remain untouched if (! BX_CPU_THIS_PTR svm_gif) BX_CPU_THIS_PTR debug_trap &= BX_DEBUG_SINGLE_STEP_BIT; #endif // TPR shadow takes priority over SMI, INIT and lower priority events and // not blocked by EFLAGS.IF or interrupt inhibits by MOV_SS and STI #if BX_SUPPORT_X86_64 && BX_SUPPORT_VMX if (is_unmasked_event_pending(BX_EVENT_VMX_VTPR_UPDATE)) { VMX_TPR_Virtualization(); } #endif // Priority 2: Trap on Task Switch // T flag in TSS is set if (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_TASK_SWITCH_BIT) { exception(BX_DB_EXCEPTION, 0); // no error, not interrupt } // Priority 3: External Hardware Interventions // FLUSH // STOPCLK // SMI // INIT if (is_unmasked_event_pending(BX_EVENT_SMI) && SVM_GIF) { clear_event(BX_EVENT_SMI); // clear SMI pending flag enter_system_management_mode(); // would disable NMI when SMM was accepted } if (is_unmasked_event_pending(BX_EVENT_INIT) && SVM_GIF) { #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_INIT)) Svm_Vmexit(SVM_VMEXIT_INIT); } #endif #if BX_SUPPORT_VMX if (BX_CPU_THIS_PTR in_vmx_guest) { VMexit(VMX_VMEXIT_INIT, 0); } #endif // reset will clear pending INIT reset(BX_RESET_SOFTWARE); #if BX_SUPPORT_SMP if (BX_SMP_PROCESSORS > 1) { // if HALT condition remains, return so other CPUs have a chance if (BX_CPU_THIS_PTR activity_state != BX_ACTIVITY_STATE_ACTIVE) { #if BX_DEBUGGER BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED; #endif return 1; // Return to caller of cpu_loop. } } #endif } #if BX_SUPPORT_VMX if (is_unmasked_event_pending(BX_EVENT_VMX_MONITOR_TRAP_FLAG)) { VMexit(VMX_VMEXIT_MONITOR_TRAP_FLAG, 0); } #endif // Priority 4: Traps on Previous Instruction // Breakpoints // Debug Trap Exceptions (TF flag set or data/IO breakpoint) if (! interrupts_inhibited(BX_INHIBIT_DEBUG)) { // A trap may be inhibited on this boundary due to an instruction which loaded SS #if BX_X86_DEBUGGER // Pages with code breakpoints always have async_event=1 and therefore come here BX_CPU_THIS_PTR debug_trap |= code_breakpoint_match(get_laddr(BX_SEG_REG_CS, BX_CPU_THIS_PTR prev_rip)); #endif if (BX_CPU_THIS_PTR debug_trap & 0xf000) { exception(BX_DB_EXCEPTION, 0); // no error, not interrupt } else { BX_CPU_THIS_PTR debug_trap = 0; } } // Priority 5: External Interrupts // VMX Preemption Timer Expired. // NMI Interrupts // Maskable Hardware Interrupts if (interrupts_inhibited(BX_INHIBIT_INTERRUPTS) || ! SVM_GIF) { // Processing external interrupts is inhibited on this // boundary because of certain instructions like STI. } #if BX_SUPPORT_VMX >= 2 else if (is_unmasked_event_pending(BX_EVENT_VMX_PREEMPTION_TIMER_EXPIRED)) { VMexit(VMX_VMEXIT_VMX_PREEMPTION_TIMER_EXPIRED, 0); } #endif #if BX_SUPPORT_VMX else if (is_unmasked_event_pending(BX_EVENT_VMX_NMI_WINDOW_EXITING)) { VMexit(VMX_VMEXIT_NMI_WINDOW, 0); } #endif else if (is_unmasked_event_pending(BX_EVENT_NMI)) { #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_NMI)) Svm_Vmexit(SVM_VMEXIT_NMI); } #endif clear_event(BX_EVENT_NMI); mask_event(BX_EVENT_NMI | BX_EVENT_VMX_NMI_WINDOW_EXITING); BX_CPU_THIS_PTR EXT = 1; /* external event */ #if BX_SUPPORT_VMX VMexit_Event(BX_NMI, 2, 0, 0); #endif BX_INSTR_HWINTERRUPT(BX_CPU_ID, 2, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); interrupt(2, BX_NMI, 0, 0); } #if BX_SUPPORT_VMX else if (is_pending(BX_EVENT_VMX_INTERRUPT_WINDOW_EXITING) && BX_CPU_THIS_PTR get_IF()) { // interrupt-window exiting VMexit(VMX_VMEXIT_INTERRUPT_WINDOW, 0); } #endif else if (is_unmasked_event_pending(BX_EVENT_PENDING_INTR | BX_EVENT_PENDING_LAPIC_INTR)) { InterruptAcknowledge(); } #if BX_SUPPORT_SVM else if (is_unmasked_event_pending(BX_EVENT_SVM_VIRQ_PENDING)) { // virtual interrupt acknowledge VirtualInterruptAcknowledge(); } #endif else if (BX_HRQ && BX_DBG_ASYNC_DMA) { // NOTE: similar code in ::take_dma() // assert Hold Acknowledge (HLDA) and go into a bus hold state DEV_dma_raise_hlda(); } if (BX_CPU_THIS_PTR get_TF()) { // TF is set before execution of next instruction. Schedule // a debug trap (#DB) after execution. After completion of // next instruction, the code above will invoke the trap. BX_CPU_THIS_PTR debug_trap |= BX_DEBUG_SINGLE_STEP_BIT; } // Priority 6: Faults from fetching next instruction // Code breakpoint fault // Code segment limit violation (priority 7 on 486/Pentium) // Code page fault (priority 7 on 486/Pentium) // (handled in main decode loop) // Priority 7: Faults from decoding next instruction // Instruction length > 15 bytes // Illegal opcode // Coprocessor not available // (handled in main decode loop etc) // Priority 8: Faults on executing an instruction // Floating point execution // Overflow // Bound error // Invalid TSS // Segment not present // Stack fault // General protection // Data page fault // Alignment check // (handled by rest of the code) if (!((SVM_GIF && unmasked_events_pending()) || BX_CPU_THIS_PTR debug_trap || // BX_CPU_THIS_PTR get_TF() || // implies debug_trap is set BX_HRQ)) { BX_CPU_THIS_PTR async_event = 0; } return 0; // Continue executing cpu_loop. } // Certain instructions inhibit interrupts, some debug exceptions and single-step traps. void BX_CPU_C::inhibit_interrupts(unsigned mask) { BX_DEBUG(("inhibit interrupts mask = %d", mask)); BX_CPU_THIS_PTR inhibit_mask = mask; BX_CPU_THIS_PTR inhibit_icount = get_icount() + 1; // inhibit for next instruction } bx_bool BX_CPU_C::interrupts_inhibited(unsigned mask) { return (get_icount() <= BX_CPU_THIS_PTR inhibit_icount) && (BX_CPU_THIS_PTR inhibit_mask & mask) == mask; } void BX_CPU_C::deliver_SIPI(unsigned vector) { if (BX_CPU_THIS_PTR activity_state == BX_ACTIVITY_STATE_WAIT_FOR_SIPI) { BX_CPU_THIS_PTR activity_state = BX_ACTIVITY_STATE_ACTIVE; RIP = 0; load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], vector*0x100); unmask_event(BX_EVENT_INIT); // enable INIT pin back BX_INFO(("CPU %d started up at %04X:%08X by APIC", BX_CPU_THIS_PTR bx_cpuid, vector*0x100, EIP)); } else { BX_INFO(("CPU %d started up by APIC, but was not halted at the time", BX_CPU_THIS_PTR bx_cpuid)); } } void BX_CPU_C::deliver_INIT(void) { if (! is_masked_event(BX_EVENT_INIT)) { signal_event(BX_EVENT_INIT); } } void BX_CPU_C::deliver_NMI(void) { signal_event(BX_EVENT_NMI); } void BX_CPU_C::deliver_SMI(void) { signal_event(BX_EVENT_SMI); } void BX_CPU_C::raise_INTR(void) { signal_event(BX_EVENT_PENDING_INTR); } void BX_CPU_C::clear_INTR(void) { clear_event(BX_EVENT_PENDING_INTR); } #if BX_DEBUGGER void BX_CPU_C::dbg_take_dma(void) { // NOTE: similar code in ::cpu_loop() if (BX_HRQ) { BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered DEV_dma_raise_hlda(); } } #endif // #if BX_DEBUGGER