///////////////////////////////////////////////////////////////////////// // $Id: shift16.cc,v 1.26 2005-02-16 21:27:20 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR void BX_CPU_C::SHLD_EwGw(bxInstruction_c *i) { Bit16u op1_16, op2_16, result_16; Bit32u temp_32, result_32; unsigned count; /* op1:op2 << count. result stored in op1 */ if (i->b1() == 0x1a4) count = i->Ib(); else // 0x1a5 count = CL; count &= 0x1f; // use only 5 LSB's /* op1 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } if (!count) return; // count is 1..31 op2_16 = BX_READ_16BIT_REG(i->nnn()); temp_32 = ((Bit32u)(op1_16) << 16) | (op2_16); // double formed by op1:op2 result_32 = temp_32 << count; // Hack to act like x86 SHLD when count > 16 if (count > 16) { // when count > 16 actually shifting op1:op2:op2 << count, // it is the same as shifting op2:op2 by count-16 result_32 |= (op1_16 << (count - 16)); } result_16 = result_32 >> 16; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), result_16); } else { Write_RMW_virtual_word(result_16); } /* set eflags: * SHLD count affects the following flags: O,S,Z,A,P,C */ SET_FLAGS_OSZAPC_16(op1_16, count, result_16, BX_INSTR_SHL16); } void BX_CPU_C::SHRD_EwGw(bxInstruction_c *i) { Bit16u op1_16, op2_16, result_16; Bit32u temp_32, result_32; unsigned count; if (i->b1() == 0x1ac) count = i->Ib(); else // 0x1ad count = CL; count &= 0x1f; /* use only 5 LSB's */ /* op1 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } if (!count) return; // count is 1..31 op2_16 = BX_READ_16BIT_REG(i->nnn()); // Hack to act like x86 SHLD when count > 16 temp_32 = (op2_16 << 16) | op1_16; // double formed by op2:op1 result_32 = temp_32 >> count; if (count > 16) { // when count > 16 actually shifting op2:op2:op1 >> count, // it is the same as shifting op2:op2 by count-16 result_32 |= (op1_16 << (32 - count)); } result_16 = result_32; /* now write result back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), result_16); } else { Write_RMW_virtual_word(result_16); } /* set eflags: * SHRD count affects the following flags: S,Z,P,C,O */ set_CF((op1_16 >> (count - 1)) & 0x01); set_ZF(result_16 == 0); set_SF(result_16 >> 15); set_AF(0); /* for shift of 1, OF set if sign change occurred. */ if (count == 1) set_OF(((op1_16 ^ result_16) & 0x8000) > 0); set_PF_base((Bit8u) result_16); } void BX_CPU_C::ROL_Ew(bxInstruction_c *i) { Bit16u op1_16, result_16; unsigned count; if ( i->b1() == 0xc1 ) count = i->Ib(); else if ( i->b1() == 0xd1 ) count = 1; else // 0xd3 count = CL; /* op1 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } if ( (count & 0x0f) == 0 ) { if ( count & 0x10 ) { unsigned bit0 = op1_16 & 1; set_CF(bit0); } return; } count &= 0x0f; // only use bottom 4 bits result_16 = (op1_16 << count) | (op1_16 >> (16 - count)); /* now write result back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), result_16); } else { Write_RMW_virtual_word(result_16); } /* set eflags: * ROL count affects the following flags: C, O */ bx_bool temp_CF = (result_16 & 0x01); set_CF(temp_CF); set_OF(temp_CF ^ (result_16 >> 15)); } void BX_CPU_C::ROR_Ew(bxInstruction_c *i) { Bit16u op1_16, result_16; unsigned count; if ( i->b1() == 0xc1 ) count = i->Ib(); else if ( i->b1() == 0xd1 ) count = 1; else // 0xd3 count = CL; /* op1 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } if ( (count & 0x0f) == 0 ) { if ( count & 0x10 ) { unsigned MSB = op1_16 >> 15; set_CF(MSB); } return; } count &= 0x0f; // use only 4 LSB's result_16 = (op1_16 >> count) | (op1_16 << (16 - count)); /* now write result back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), result_16); } else { Write_RMW_virtual_word(result_16); } /* set eflags: * ROR count affects the following flags: C, O */ bx_bool result_b15 = (result_16 & 0x8000) != 0; set_CF(result_b15); if (count == 1) set_OF(((op1_16 ^ result_16) & 0x8000) > 0); } void BX_CPU_C::RCL_Ew(bxInstruction_c *i) { Bit16u op1_16, result_16; unsigned count; if ( i->b1() == 0xc1 ) count = i->Ib(); else if ( i->b1() == 0xd1 ) count = 1; else // 0xd3 count = CL; count = (count & 0x1f) % 17; /* op1 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } if (!count) return; if (count==1) { result_16 = (op1_16 << 1) | getB_CF(); } else if (count==16) { result_16 = (getB_CF() << 15) | (op1_16 >> 1); } else { // 2..15 result_16 = (op1_16 << count) | (getB_CF() << (count - 1)) | (op1_16 >> (17 - count)); } /* now write result back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), result_16); } else { Write_RMW_virtual_word(result_16); } /* set eflags: * RCL count affects the following flags: C, O */ bx_bool temp_CF = (op1_16 >> (16 - count)) & 0x01; set_CF(temp_CF); set_OF(temp_CF ^ (result_16 >> 15)); } void BX_CPU_C::RCR_Ew(bxInstruction_c *i) { Bit16u op1_16, result_16; unsigned count; if ( i->b1() == 0xc1 ) count = i->Ib(); else if ( i->b1() == 0xd1 ) count = 1; else // 0xd3 count = CL; count = (count & 0x1f) % 17; /* op1 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } if (! count) return; result_16 = (op1_16 >> count) | (getB_CF() << (16 - count)) | (op1_16 << (17 - count)); /* now write result back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), result_16); } else { Write_RMW_virtual_word(result_16); } /* set eflags: * RCR count affects the following flags: C, O */ set_CF((op1_16 >> (count - 1)) & 0x01); if (count == 1) set_OF(((op1_16 ^ result_16) & 0x8000) > 0); } void BX_CPU_C::SHL_Ew(bxInstruction_c *i) { Bit16u op1_16, result_16; unsigned count; if ( i->b1() == 0xc1 ) count = i->Ib(); else if ( i->b1() == 0xd1 ) count = 1; else // 0xd3 count = CL; count &= 0x1f; /* use only 5 LSB's */ /* op1 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } if (!count) return; result_16 = (op1_16 << count); /* now write result back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), result_16); } else { Write_RMW_virtual_word(result_16); } SET_FLAGS_OSZAPC_16(op1_16, count, result_16, BX_INSTR_SHL16); } void BX_CPU_C::SHR_Ew(bxInstruction_c *i) { Bit16u op1_16, result_16; unsigned count; if ( i->b1() == 0xc1 ) count = i->Ib(); else if ( i->b1() == 0xd1 ) count = 1; else // 0xd3 count = CL; count &= 0x1f; /* use only 5 LSB's */ /* op1 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } if (!count) return; #if defined(BX_HostAsm_Shr16) Bit32u flags32; asmShr16(result_16, op1_16, count, flags32); setEFlagsOSZAPC(flags32); #else result_16 = (op1_16 >> count); SET_FLAGS_OSZAPC_16(op1_16, count, result_16, BX_INSTR_SHR16); #endif /* now write result back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), result_16); } else { Write_RMW_virtual_word(result_16); } } void BX_CPU_C::SAR_Ew(bxInstruction_c *i) { Bit16u op1_16, result_16; unsigned count; if ( i->b1() == 0xc1 ) count = i->Ib(); else if ( i->b1() == 0xd1 ) count = 1; else // 0xd3 count = CL; count &= 0x1f; /* use only 5 LSB's */ /* op1 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } if (!count) return; if (count < 16) { if (op1_16 & 0x8000) { result_16 = (op1_16 >> count) | (0xffff << (16 - count)); } else { result_16 = (op1_16 >> count); } } else { if (op1_16 & 0x8000) { result_16 = 0xffff; } else { result_16 = 0; } } /* now write result back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), result_16); } else { Write_RMW_virtual_word(result_16); } SET_FLAGS_OSZAPC_16(op1_16, count, result_16, BX_INSTR_SAR16); }