///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2002-2018 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // PCI host bridge support // i430FX - TSC/TDP // i440FX - PMC/DBX // i440BX - Host bridge // Define BX_PLUGGABLE in files that can be compiled into plugins. For // platforms that require a special tag on exported symbols, BX_PLUGGABLE // is used to know when we are exporting symbols and when we are importing. #define BX_PLUGGABLE #include "iodev.h" #if BX_SUPPORT_PCI #include "pci.h" #define LOG_THIS thePciBridge-> const char csname[3][20] = {"i430FX TSC", "i440FX PMC", "i440BX Host bridge"}; bx_pci_bridge_c *thePciBridge = NULL; int CDECL libpci_LTX_plugin_init(plugin_t *plugin, plugintype_t type) { if (type == PLUGTYPE_CORE) { thePciBridge = new bx_pci_bridge_c(); BX_REGISTER_DEVICE_DEVMODEL(plugin, type, thePciBridge, BX_PLUGIN_PCI); return 0; // Success } else { return -1; } } void CDECL libpci_LTX_plugin_fini(void) { delete thePciBridge; } bx_pci_bridge_c::bx_pci_bridge_c() { put("PCI"); vbridge = NULL; } bx_pci_bridge_c::~bx_pci_bridge_c() { if (vbridge != NULL) { delete vbridge; } SIM->get_bochs_root()->remove("pci_bridge"); BX_DEBUG(("Exit")); } void bx_pci_bridge_c::init(void) { // called once when bochs initializes unsigned i; Bit32u ramsize; Bit8u devfunc = BX_PCI_DEVICE(0, 0); BX_PCI_THIS chipset = SIM->get_param_enum(BXPN_PCI_CHIPSET)->get(); DEV_register_pci_handlers(this, &devfunc, BX_PLUGIN_PCI, csname[BX_PCI_THIS chipset]); // initialize readonly registers if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I430FX) { init_pci_conf(0x8086, 0x0122, 0x02, 0x060000, 0x00, 0); } else if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I440BX) { init_pci_conf(0x8086, 0x7190, 0x02, 0x060000, 0x00, 0); BX_PCI_THIS pci_conf[0x10] = 0x08; init_bar_mem(0, 0xf0000000, agp_ap_read_handler, agp_ap_write_handler); BX_PCI_THIS pci_conf[0x06] = 0x10; BX_PCI_THIS pci_conf[0x34] = 0xa0; BX_PCI_THIS pci_conf[0xa0] = 0x02; BX_PCI_THIS pci_conf[0xa2] = 0x10; BX_PCI_THIS pci_conf[0xa4] = 0x03; BX_PCI_THIS pci_conf[0xa5] = 0x02; BX_PCI_THIS pci_conf[0xa7] = 0x1f; BX_PCI_THIS pci_conf[0xf3] = 0xf8; BX_PCI_THIS pci_conf[0xf8] = 0x20; BX_PCI_THIS pci_conf[0xf9] = 0x0f; BX_PCI_THIS vbridge = new bx_pci_vbridge_c(); BX_PCI_THIS vbridge->init(); } else { // i440FX init_pci_conf(0x8086, 0x1237, 0x00, 0x060000, 0x00, 0); } // DRAM module setup for (i = 0; i < 8; i++) BX_PCI_THIS DRBA[i] = 0x0; ramsize = SIM->get_param_num(BXPN_MEM_SIZE)->get(); if ((ramsize & 0x07) != 0) { ramsize = (ramsize & ~0x07) + 8; } if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I430FX) { if (ramsize > 128) ramsize = 128; if (ramsize == 8) { for (i = 0; i < 5; i++) { BX_PCI_THIS DRBA[i] = 0x02; } } else if (ramsize == 16) { BX_PCI_THIS DRBA[0] = 0x02; for (i = 1; i < 5; i++) { BX_PCI_THIS DRBA[i] = 0x04; } } else if (ramsize == 24) { BX_PCI_THIS DRBA[0] = 0x02; BX_PCI_THIS DRBA[1] = 0x04; for (i = 2; i < 5; i++) { BX_PCI_THIS DRBA[i] = 0x06; } } else if (ramsize == 32) { BX_PCI_THIS DRBA[0] = 0x04; for (i = 1; i < 5; i++) { BX_PCI_THIS DRBA[i] = 0x08; } } else if (ramsize <= 48) { BX_PCI_THIS DRBA[0] = 0x04; BX_PCI_THIS DRBA[1] = 0x08; for (i = 2; i < 5; i++) { BX_PCI_THIS DRBA[i] = 0x0c; } } else if (ramsize <= 64) { BX_PCI_THIS DRBA[0] = 0x08; for (i = 1; i < 5; i++) { BX_PCI_THIS DRBA[i] = 0x10; } } else if (ramsize <= 96) { BX_PCI_THIS DRBA[0] = 0x04; BX_PCI_THIS DRBA[1] = 0x08; BX_PCI_THIS DRBA[2] = 0x10; BX_PCI_THIS DRBA[3] = 0x18; BX_PCI_THIS DRBA[4] = 0x18; } else if (ramsize <= 128) { BX_PCI_THIS DRBA[0] = 0x10; for (i = 1; i < 5; i++) { BX_PCI_THIS DRBA[i] = 0x20; } } } else { // i440FX const Bit8u type[3] = {128, 32, 8}; if (ramsize > 1024) ramsize = 1024; Bit8u drbval = 0; unsigned row = 0; unsigned ti = 0; while ((ramsize > 0) && (row < 8) && (ti < 3)) { unsigned mc = ramsize / type[ti]; ramsize = ramsize % type[ti]; for (i = 0; i < mc; i++) { drbval += (type[ti] >> 3); BX_PCI_THIS DRBA[row++] = drbval; if (row == 8) break; } ti++; } while (row < 8) { BX_PCI_THIS DRBA[row++] = drbval; } } for (i = 0; i < 8; i++) BX_PCI_THIS pci_conf[0x60 + i] = BX_PCI_THIS DRBA[i]; dram_detect = 0; #if BX_DEBUGGER // register device for the 'info device' command (calls debug_dump()) bx_dbg_register_debug_info("pci", this); #endif } void bx_pci_bridge_c::reset(unsigned type) { unsigned i; BX_PCI_THIS pci_conf[0x04] = 0x06; BX_PCI_THIS pci_conf[0x05] = 0x00; BX_PCI_THIS pci_conf[0x07] = 0x02; BX_PCI_THIS pci_conf[0x0d] = 0x00; BX_PCI_THIS pci_conf[0x0f] = 0x00; BX_PCI_THIS pci_conf[0x50] = 0x00; BX_PCI_THIS pci_conf[0x52] = 0x00; BX_PCI_THIS pci_conf[0x53] = 0x80; BX_PCI_THIS pci_conf[0x54] = 0x00; BX_PCI_THIS pci_conf[0x55] = 0x00; BX_PCI_THIS pci_conf[0x56] = 0x00; BX_PCI_THIS pci_conf[0x57] = 0x01; if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I430FX) { BX_PCI_THIS pci_conf[0x06] = 0x00; BX_PCI_THIS pci_conf[0x58] = 0x00; } else if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I440BX) { BX_PCI_THIS vbridge->reset(type); } else { // i440FX BX_PCI_THIS pci_conf[0x06] = 0x80; BX_PCI_THIS pci_conf[0x51] = 0x01; BX_PCI_THIS pci_conf[0x58] = 0x10; BX_PCI_THIS pci_conf[0xb4] = 0x00; BX_PCI_THIS pci_conf[0xb9] = 0x00; BX_PCI_THIS pci_conf[0xba] = 0x00; BX_PCI_THIS pci_conf[0xbb] = 0x00; BX_PCI_THIS gart_base = 0; } for (i=0x59; i<0x60; i++) BX_PCI_THIS pci_conf[i] = 0x00; for (i = 0; i <= BX_MEM_AREA_F0000; i++) { DEV_mem_set_memory_type(i, 0, 0); DEV_mem_set_memory_type(i, 1, 0); } BX_PCI_THIS pci_conf[0x72] = 0x02; } void bx_pci_bridge_c::register_state(void) { bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "pci_bridge", "PCI Bridge State"); register_pci_state(list); if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I440BX) { BX_PCI_THIS vbridge->register_state(); } } void bx_pci_bridge_c::after_restore_state(void) { BX_PCI_THIS smram_control(BX_PCI_THIS pci_conf[0x72]); if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I440BX) { BX_PCI_THIS vbridge->after_restore_state(); } } // pci configuration space write callback handler void bx_pci_bridge_c::pci_write_handler(Bit8u address, Bit32u value, unsigned io_len) { Bit8u value8, oldval; unsigned area; Bit8u drba_reg, old_dram_detect; bx_bool drba_changed; bx_bool attbase_changed = 0; Bit32u apsize; old_dram_detect = BX_PCI_THIS dram_detect; if ((address >= 0x10) && (address < 0x34)) return; BX_DEBUG_PCI_WRITE(address, value, io_len); for (unsigned i=0; i> (i*8)) & 0xFF; oldval = BX_PCI_THIS pci_conf[address+i]; switch (address+i) { case 0x04: if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I430FX) { BX_PCI_THIS pci_conf[address+i] = (value8 & 0x02) | 0x04; } else { BX_PCI_THIS pci_conf[address+i] = (value8 & 0x40) | 0x06; } break; case 0x05: if (BX_PCI_THIS chipset != BX_PCI_CHIPSET_I430FX) { BX_PCI_THIS pci_conf[address+i] = (value8 & 0x01); } break; case 0x07: if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I430FX) { value8 &= 0x30; } else if (BX_PCI_THIS chipset != BX_PCI_CHIPSET_I440BX) { value8 = (BX_PCI_THIS pci_conf[0x07] & ~value8) | 0x02; } else { value8 &= 0xf9; } BX_PCI_THIS pci_conf[address+i] &= ~value8; break; case 0x0d: BX_PCI_THIS pci_conf[address+i] = (value8 & 0xf8); break; case 0x06: case 0x0c: case 0x0f: break; case 0x50: if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I430FX) { BX_PCI_THIS pci_conf[address+i] = (value8 & 0xef); } else if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I440BX) { BX_PCI_THIS pci_conf[address+i] = (value8 & 0xec); } else { BX_PCI_THIS pci_conf[address+i] = (value8 & 0x70); } break; case 0x51: if (BX_PCI_THIS chipset != BX_PCI_CHIPSET_I430FX) { BX_PCI_THIS pci_conf[address+i] = (value8 & 0x80) | 0x01; } else if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I440BX) { BX_PCI_THIS pci_conf[address+i] = (value8 & 0x8f); } break; case 0x59: case 0x5A: case 0x5B: case 0x5C: case 0x5D: case 0x5E: case 0x5F: if (value8 != oldval) { BX_PCI_THIS pci_conf[address+i] = value8; if ((address+i) == 0x59) { area = BX_MEM_AREA_F0000; DEV_mem_set_memory_type(area, 0, (value8 >> 4) & 0x1); DEV_mem_set_memory_type(area, 1, (value8 >> 5) & 0x1); } else { area = ((address+i) - 0x5a) << 1; DEV_mem_set_memory_type(area, 0, (value8 >> 0) & 0x1); DEV_mem_set_memory_type(area, 1, (value8 >> 1) & 0x1); area++; DEV_mem_set_memory_type(area, 0, (value8 >> 4) & 0x1); DEV_mem_set_memory_type(area, 1, (value8 >> 5) & 0x1); } BX_INFO(("%s write to PAM register %x (TLB Flush)", csname[BX_PCI_THIS chipset], address+i)); bx_pc_system.MemoryMappingChanged(); } break; case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67: BX_PCI_THIS pci_conf[address+i] = value8; drba_reg = (address + i) & 0x07; drba_changed = (BX_PCI_THIS pci_conf[0x60 + drba_reg] != BX_PCI_THIS DRBA[drba_reg]); if (drba_changed) { BX_PCI_THIS dram_detect |= (1 << drba_reg); } else if (!drba_changed && dram_detect) { BX_PCI_THIS dram_detect &= ~(1 << drba_reg); } break; case 0x72: smram_control(value8); // SMRAM control register break; case 0xb4: if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I440BX) { BX_PCI_THIS pci_conf[address+i] = value8 & 0x3f; switch (BX_PCI_THIS pci_conf[0xb4]) { case 0x00: apsize = (1 << 28); break; case 0x20: apsize = (1 << 27); break; case 0x30: apsize = (1 << 26); break; case 0x38: apsize = (1 << 25); break; case 0x3c: apsize = (1 << 24); break; case 0x3e: apsize = (1 << 23); break; case 0x3f: apsize = (1 << 22); break; default: BX_ERROR(("Invalid AGP aperture size mask")); apsize = 0; } BX_INFO(("AGP aperture size set to %d MB", apsize >> 20)); pci_bar[0].size = apsize; } break; case 0xb8: break; case 0xb9: value8 &= 0xf0; case 0xba: case 0xbb: if ((BX_PCI_THIS chipset == BX_PCI_CHIPSET_I440BX) && (value8 != oldval)) { BX_PCI_THIS pci_conf[address+i] = value8; attbase_changed |= 1; } break; case 0xf0: if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I440BX) { BX_PCI_THIS pci_conf[address+i] = value8 & 0xc0; } break; default: BX_PCI_THIS pci_conf[address+i] = value8; BX_DEBUG(("%s write register 0x%02x value 0x%02x", csname[BX_PCI_THIS chipset], address+i, value8)); } } if ((BX_PCI_THIS dram_detect > 0) && (old_dram_detect == 0)) { // TODO BX_ERROR(("FIXME: DRAM module detection")); } else if ((BX_PCI_THIS dram_detect == 0) && (old_dram_detect > 0)) { // TODO BX_INFO(("normal memory access mode")); } if (attbase_changed) { BX_PCI_THIS gart_base = ((BX_PCI_THIS pci_conf[0xbb] << 24) | (BX_PCI_THIS pci_conf[0xba] << 16) | (BX_PCI_THIS pci_conf[0xb9] << 8)); BX_INFO(("New GART base address = 0x%08x", BX_PCI_THIS gart_base)); } } bx_bool bx_pci_bridge_c::agp_ap_read_handler(bx_phy_address addr, unsigned len, void *data, void *param) { bx_pci_bridge_c *class_ptr = (bx_pci_bridge_c*)param; Bit32u value = class_ptr->agp_aperture_read(addr, len, 0); switch (len) { case 1: value &= 0xFF; *((Bit8u *) data) = (Bit8u) value; break; case 2: value &= 0xFFFF; *((Bit16u *) data) = (Bit16u) value; break; case 4: *((Bit32u *) data) = value; break; } return 1; } Bit32u bx_pci_bridge_c::agp_aperture_read(bx_phy_address addr, unsigned len, bx_bool agp) { if (BX_PCI_THIS pci_conf[0x51] & 0x02) { Bit32u offset = (Bit32u)(addr - pci_bar[0].addr); Bit32u gart_index = (Bit32u)(offset >> 12); Bit32u page_offset = (Bit32u)(offset & 0xfff); Bit32u gart_addr = BX_PCI_THIS gart_base + (gart_index << 2); Bit32u page_addr; DEV_MEM_READ_PHYSICAL(gart_addr, 4, (Bit8u*)&page_addr); BX_INFO(("TODO: AGP aperture read: page address = 0x%08x / offset = 0x%04x", page_addr, (Bit16u)page_offset)); // TODO } return 0; } bx_bool bx_pci_bridge_c::agp_ap_write_handler(bx_phy_address addr, unsigned len, void *data, void *param) { bx_pci_bridge_c *class_ptr = (bx_pci_bridge_c*)param; Bit32u value = *(Bit32u*)data; class_ptr->agp_aperture_write(addr, value, len, 0); return 1; } void bx_pci_bridge_c::agp_aperture_write(bx_phy_address addr, Bit32u value, unsigned len, bx_bool agp) { if (BX_PCI_THIS pci_conf[0x51] & 0x02) { Bit32u offset = (Bit32u)(addr - pci_bar[0].addr); Bit32u gart_index = (Bit32u)(offset >> 12); Bit32u page_offset = (Bit32u)(offset & 0xfff); Bit32u gart_addr = BX_PCI_THIS gart_base + (gart_index << 2); Bit32u page_addr; DEV_MEM_READ_PHYSICAL(gart_addr, 4, (Bit8u*)&page_addr); BX_INFO(("TODO: AGP aperture write: page address = 0x%08x / offset = 0x%04x", page_addr, (Bit16u)page_offset)); // TODO } } void bx_pci_bridge_c::smram_control(Bit8u value8) { // // From i440FX chipset manual: // // [7:7] Reserved. // [6:6] SMM Space Open (DOPEN), when DOPEN=1 and DLCK=0, SMM space DRAM // became visible even CPU not indicte SMM mode access. This is // indended to help BIOS to initialize SMM space. // [5:5] SMM Space Closed (DCLS), when DCLS=1, SMM space is not accessible // for data references, even if CPU indicates SMM mode access. Code // references may still access SMM space DRAM. // [4:4] SMM Space Locked (DLCK), when DLCK=1, DOPEN is set to 0 and // both DLCK and DOPEN became R/O. DLCK can only be cleared by // a power-on reset. // [3:3] SMRAM Enable (SMRAME) // [2:0] SMM space base segment, program the location of SMM space // reserved. // // SMRAM space access cycles: // | SMRAME | DLCK | DCLS | DOPEN | CPU_SMM | | Code | Data | // ------------------------------------------ --------------- // | 0 | X | X | X | X | -> | PCI | PCI | // | 1 | 0 | X | 0 | 0 | -> | PCI | PCI | // | 1 | 0 | 0 | 0 | 1 | -> | DRAM | DRAM | // | 1 | 0 | 0 | 1 | X | -> | DRAM | DRAM | // | 1 | 1 | 0 | X | 1 | -> | DRAM | DRAM | // | 1 | 0 | 1 | 0 | 1 | -> | DRAM | PCI | // | 1 | 0 | 1 | 1 | X | -> | ---- | ---- | // | 1 | 1 | X | X | 0 | -> | PCI | PCI | // | 1 | 1 | 1 | X | 1 | -> | DRAM | PCI | // ------------------------------------------ --------------- value8 = (value8 & 0x78) | 0x2; // ignore reserved bits if (BX_PCI_THIS pci_conf[0x72] & 0x10) { value8 &= 0xbf; // set DOPEN=0, DLCK=1 value8 |= 0x10; } if ((value8 & 0x08) == 0) { bx_devices.mem->disable_smram(); } else { bx_bool DOPEN = (value8 & 0x40) > 0, DCLS = (value8 & 0x20) > 0; if(DOPEN && DCLS) BX_PANIC(("SMRAM control: DOPEN not mutually exclusive with DCLS !")); bx_devices.mem->enable_smram(DOPEN, DCLS); } BX_INFO(("setting SMRAM control register to 0x%02x", value8)); BX_PCI_THIS pci_conf[0x72] = value8; } #if BX_DEBUGGER void bx_pci_bridge_c::debug_dump(int argc, char **argv) { int arg, i, j, r; if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I430FX) { dbg_printf("i430FX TSC/TDP"); } else if (BX_PCI_THIS chipset == BX_PCI_CHIPSET_I440BX) { dbg_printf("i440BX Host bridge"); } else { dbg_printf("i440FX PMC/DBX"); } dbg_printf("\n\nconfAddr = 0x%08x\n\n", DEV_pci_get_confAddr()); if (argc == 0) { for (i = 0x59; i < 0x60; i++) { dbg_printf("PAM reg 0x%02x = 0x%02x\n", i, BX_PCI_THIS pci_conf[i]); } dbg_printf("SMRAM control = 0x%02x\n", BX_PCI_THIS pci_conf[0x72]); dbg_printf("\nSupported options:\n"); dbg_printf("info device 'pci' 'dump=full' - show PCI config space\n"); } else { for (arg = 0; arg < argc; arg++) { if (!strcmp(argv[arg], "dump=full")) { dbg_printf("\nPCI config space\n\n"); r = 0; for (i=0; i<16; i++) { dbg_printf("%04x ", r); for (j=0; j<16; j++) { dbg_printf(" %02x", BX_PCI_THIS pci_conf[r++]); } dbg_printf("\n"); } } else { dbg_printf("\nUnknown option: '%s'\n", argv[arg]); } } } } #endif // i440BX PCI-to-AGP bridge #undef LOG_THIS #define LOG_THIS bx_pci_vbridge_c::bx_pci_vbridge_c() { put("PCIAGP"); } bx_pci_vbridge_c::~bx_pci_vbridge_c() { SIM->get_bochs_root()->remove("pci_vbridge"); BX_DEBUG(("Exit")); } void bx_pci_vbridge_c::init(void) { Bit8u devfunc = BX_PCI_DEVICE(1, 0); DEV_register_pci_handlers(this, &devfunc, BX_PLUGIN_PCI, "i440BX PCI-to-AGP bridge"); init_pci_conf(0x8086, 0x7191, 0x02, 0x060400, 0x01, 0); pci_conf[0x06] = 0x20; pci_conf[0x07] = 0x02; pci_conf[0x1e] = 0xa0; } void bx_pci_vbridge_c::reset(unsigned type) { pci_conf[0x04] = 0x00; pci_conf[0x05] = 0x00; pci_conf[0x1c] = 0xf0; pci_conf[0x1f] = 0x02; pci_conf[0x20] = 0xf0; pci_conf[0x21] = 0xff; pci_conf[0x22] = 0x00; pci_conf[0x23] = 0x00; pci_conf[0x24] = 0xf0; pci_conf[0x25] = 0xff; pci_conf[0x26] = 0x00; pci_conf[0x27] = 0x00; pci_conf[0x3e] = 0x80; } void bx_pci_vbridge_c::register_state(void) { bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "pci_vbridge", "PCI/AGP Bridge State"); register_pci_state(list); } void bx_pci_vbridge_c::after_restore_state(void) { // TODO } // pci configuration space write callback handler void bx_pci_vbridge_c::pci_write_handler(Bit8u address, Bit32u value, unsigned io_len) { BX_DEBUG_PCI_WRITE(address, value, io_len); for (unsigned i=0; i> (i*8)) & 0xff; Bit8u oldval = pci_conf[address+i]; switch (address+i) { case 0x04: // PCICMD1 value8 &= 0x3f; break; case 0x05: value8 &= 0x01; break; case 0x0d: // MLT1 case 0x1b: // SMLT value8 &= 0xf8; break; case 0x1c: // IOBASE case 0x1d: // IOLIMIT case 0x20: // MBASE lo case 0x22: // MLIMIT lo case 0x24: // PMBASE lo case 0x26: // PMLIMIT lo value8 &= 0xf0; break; case 0x1f: // SSTS hi value8 = (pci_conf[0x1f] & ~value8) | 0x02; break; case 0x3e: // BCTRL value8 = (value8 & 0xc1) | 0x80; break; case 0x19: // SBUSN - all bits r/w case 0x1a: // SUBUSN case 0x21: // MBASE hi case 0x23: // MLIMIT hi case 0x25: // PMBASE hi case 0x27: // PMLIMIT hi break; case 0x06: // PCISTS1 - all bits r/o case 0x07: case 0x18: // PBUSN case 0x1e: // SSTS lo default: value8 = oldval; } pci_conf[address+i] = value8; } } #endif /* BX_SUPPORT_PCI */