///////////////////////////////////////////////////////////////////////// // $Id: bit16.cc,v 1.11 2008-07-13 15:35:09 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_CPU_LEVEL >= 3 void BX_CPP_AttrRegparmN(1) BX_CPU_C::BSF_GwEw(bxInstruction_c *i) { Bit16u op1_16, op2_16; /* op2_16 is a register or memory reference */ if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op2_16 = read_virtual_word(i->seg(), RMAddr(i)); } if (op2_16 == 0) { assert_ZF(); /* op1_16 undefined */ } else { op1_16 = 0; while ((op2_16 & 0x01) == 0) { op1_16++; op2_16 >>= 1; } SET_FLAGS_OSZAPC_LOGIC_16(op1_16); clear_ZF(); /* now write result back to destination */ BX_WRITE_16BIT_REG(i->nnn(), op1_16); } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BSR_GwEw(bxInstruction_c *i) { Bit16u op1_16, op2_16; /* op2_16 is a register or memory reference */ if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op2_16 = read_virtual_word(i->seg(), RMAddr(i)); } if (op2_16 == 0) { assert_ZF(); /* op1_16 undefined */ } else { op1_16 = 15; while ((op2_16 & 0x8000) == 0) { op1_16--; op2_16 <<= 1; } SET_FLAGS_OSZAPC_LOGIC_16(op1_16); clear_ZF(); /* now write result back to destination */ BX_WRITE_16BIT_REG(i->nnn(), op1_16); } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EwGwM(bxInstruction_c *i) { bx_address op1_addr; Bit16u op1_16, op2_16, index; Bit32s displacement32; BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op2_16 = BX_READ_16BIT_REG(i->nnn()); index = op2_16 & 0x0f; displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16; op1_addr = RMAddr(i) + 2 * displacement32; if (! i->as32L()) op1_addr = (Bit16u) op1_addr; #if BX_SUPPORT_X86_64 else if (! i->as64L()) op1_addr = (Bit32u) op1_addr; #endif /* pointer, segment address pair */ op1_16 = read_virtual_word(i->seg(), op1_addr); set_CF((op1_16 >> index) & 0x01); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EwGwR(bxInstruction_c *i) { Bit16u op1_16, op2_16; op1_16 = BX_READ_16BIT_REG(i->rm()); op2_16 = BX_READ_16BIT_REG(i->nnn()); op2_16 &= 0x0f; set_CF((op1_16 >> op2_16) & 0x01); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EwGwM(bxInstruction_c *i) { bx_address op1_addr; Bit16u op1_16, op2_16, index; Bit32s displacement32; bx_bool bit_i; BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op2_16 = BX_READ_16BIT_REG(i->nnn()); index = op2_16 & 0x0f; displacement32 = ((Bit16s) (op2_16 & 0xfff0)) / 16; op1_addr = RMAddr(i) + 2 * displacement32; if (! i->as32L()) op1_addr = (Bit16u) op1_addr; #if BX_SUPPORT_X86_64 else if (! i->as64L()) op1_addr = (Bit32u) op1_addr; #endif /* pointer, segment address pair */ op1_16 = read_RMW_virtual_word(i->seg(), op1_addr); bit_i = (op1_16 >> index) & 0x01; op1_16 |= (((Bit16u) 1) << index); write_RMW_virtual_word(op1_16); set_CF(bit_i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EwGwR(bxInstruction_c *i) { Bit16u op1_16, op2_16; op1_16 = BX_READ_16BIT_REG(i->rm()); op2_16 = BX_READ_16BIT_REG(i->nnn()); op2_16 &= 0x0f; set_CF((op1_16 >> op2_16) & 0x01); op1_16 |= (((Bit16u) 1) << op2_16); /* now write result back to the destination */ BX_WRITE_16BIT_REG(i->rm(), op1_16); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EwGwM(bxInstruction_c *i) { bx_address op1_addr; Bit16u op1_16, op2_16, index; Bit32s displacement32; BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op2_16 = BX_READ_16BIT_REG(i->nnn()); index = op2_16 & 0x0f; displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16; op1_addr = RMAddr(i) + 2 * displacement32; if (! i->as32L()) op1_addr = (Bit16u) op1_addr; #if BX_SUPPORT_X86_64 else if (! i->as64L()) op1_addr = (Bit32u) op1_addr; #endif /* pointer, segment address pair */ op1_16 = read_RMW_virtual_word(i->seg(), op1_addr); bx_bool temp_cf = (op1_16 >> index) & 0x01; op1_16 &= ~(((Bit16u) 1) << index); /* now write back to destination */ write_RMW_virtual_word(op1_16); set_CF(temp_cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EwGwR(bxInstruction_c *i) { Bit16u op1_16, op2_16; op1_16 = BX_READ_16BIT_REG(i->rm()); op2_16 = BX_READ_16BIT_REG(i->nnn()); op2_16 &= 0x0f; set_CF((op1_16 >> op2_16) & 0x01); op1_16 &= ~(((Bit16u) 1) << op2_16); /* now write result back to the destination */ BX_WRITE_16BIT_REG(i->rm(), op1_16); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EwGwM(bxInstruction_c *i) { bx_address op1_addr; Bit16u op1_16, op2_16, index_16; Bit16s displacement16; BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op2_16 = BX_READ_16BIT_REG(i->nnn()); index_16 = op2_16 & 0x0f; displacement16 = ((Bit16s) (op2_16 & 0xfff0)) / 16; op1_addr = RMAddr(i) + 2 * displacement16; if (! i->as32L()) op1_addr = (Bit16u) op1_addr; #if BX_SUPPORT_X86_64 else if (! i->as64L()) op1_addr = (Bit32u) op1_addr; #endif op1_16 = read_RMW_virtual_word(i->seg(), op1_addr); bx_bool temp_CF = (op1_16 >> index_16) & 0x01; op1_16 ^= (((Bit16u) 1) << index_16); /* toggle bit */ write_RMW_virtual_word(op1_16); set_CF(temp_CF); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EwGwR(bxInstruction_c *i) { Bit16u op1_16, op2_16; op1_16 = BX_READ_16BIT_REG(i->rm()); op2_16 = BX_READ_16BIT_REG(i->nnn()); op2_16 &= 0x0f; bx_bool temp_CF = (op1_16 >> op2_16) & 0x01; op1_16 ^= (((Bit16u) 1) << op2_16); /* toggle bit */ BX_WRITE_16BIT_REG(i->rm(), op1_16); set_CF(temp_CF); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EwIbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit16u op1_16 = read_virtual_word(i->seg(), RMAddr(i)); Bit8u op2_8 = i->Ib() & 0xf; set_CF((op1_16 >> op2_8) & 0x01); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EwIbR(bxInstruction_c *i) { Bit16u op1_16 = BX_READ_16BIT_REG(i->rm()); Bit8u op2_8 = i->Ib() & 0xf; set_CF((op1_16 >> op2_8) & 0x01); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EwIbM(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0xf; BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit16u op1_16 = read_RMW_virtual_word(i->seg(), RMAddr(i)); bx_bool temp_CF = (op1_16 >> op2_8) & 0x01; op1_16 |= (((Bit16u) 1) << op2_8); write_RMW_virtual_word(op1_16); set_CF(temp_CF); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EwIbR(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0xf; Bit16u op1_16 = BX_READ_16BIT_REG(i->rm()); bx_bool temp_CF = (op1_16 >> op2_8) & 0x01; op1_16 |= (((Bit16u) 1) << op2_8); BX_WRITE_16BIT_REG(i->rm(), op1_16); set_CF(temp_CF); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EwIbM(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0xf; BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit16u op1_16 = read_RMW_virtual_word(i->seg(), RMAddr(i)); bx_bool temp_CF = (op1_16 >> op2_8) & 0x01; op1_16 ^= (((Bit16u) 1) << op2_8); /* toggle bit */ write_RMW_virtual_word(op1_16); set_CF(temp_CF); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EwIbR(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0xf; Bit16u op1_16 = BX_READ_16BIT_REG(i->rm()); bx_bool temp_CF = (op1_16 >> op2_8) & 0x01; op1_16 ^= (((Bit16u) 1) << op2_8); /* toggle bit */ BX_WRITE_16BIT_REG(i->rm(), op1_16); set_CF(temp_CF); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EwIbM(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0xf; BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit16u op1_16 = read_RMW_virtual_word(i->seg(), RMAddr(i)); bx_bool temp_CF = (op1_16 >> op2_8) & 0x01; op1_16 &= ~(((Bit16u) 1) << op2_8); write_RMW_virtual_word(op1_16); set_CF(temp_CF); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EwIbR(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0xf; Bit16u op1_16 = BX_READ_16BIT_REG(i->rm()); bx_bool temp_CF = (op1_16 >> op2_8) & 0x01; op1_16 &= ~(((Bit16u) 1) << op2_8); BX_WRITE_16BIT_REG(i->rm(), op1_16); set_CF(temp_CF); } /* 0F B8 */ void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPCNT_GwEw(bxInstruction_c *i) { #if BX_SUPPORT_POPCNT || (BX_SUPPORT_SSE >= 5) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0) Bit16u op1_16, op2_16; /* op2_16 is a register or memory reference */ if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op2_16 = read_virtual_word(i->seg(), RMAddr(i)); } op1_16 = 0; while (op2_16 != 0) { if (op2_16 & 1) op1_16++; op2_16 >>= 1; } Bit32u flags = op1_16 ? 0 : EFlagsZFMask; setEFlagsOSZAPC(flags); /* now write result back to destination */ BX_WRITE_16BIT_REG(i->nnn(), op1_16); #else BX_INFO(("POPCNT_GwEw: required POPCNT support, use --enable-popcnt option")); exception(BX_UD_EXCEPTION, 0, 0); #endif } #endif // (BX_CPU_LEVEL >= 3)