///////////////////////////////////////////////////////////////////////// // $Id: mult16.cc,v 1.20 2005-09-29 17:32:32 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR void BX_CPU_C::MUL_AXEw(bxInstruction_c *i) { Bit16u op1_16, op2_16; op1_16 = AX; /* op2 is a register or memory reference */ if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &op2_16); } Bit32u product_32 = ((Bit32u) op1_16) * ((Bit32u) op2_16); Bit16u product_16l = (product_32 & 0xFFFF); Bit16u product_16h = product_32 >> 16; /* set EFLAGS */ SET_FLAGS_OSZAPC_S1S2_16(product_16l, product_16h, BX_INSTR_MUL16); /* now write product back to destination */ AX = product_16l; DX = product_16h; } void BX_CPU_C::IMUL_AXEw(bxInstruction_c *i) { Bit16s op1_16, op2_16; op1_16 = AX; /* op2 is a register or memory reference */ if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), (Bit16u *) &op2_16); } Bit32s product_32 = ((Bit32s) op1_16) * ((Bit32s) op2_16); Bit16u product_16l = (product_32 & 0xFFFF); Bit16u product_16h = product_32 >> 16; /* now write product back to destination */ AX = product_16l; DX = product_16h; /* set eflags: * IMUL r/m16: condition for clearing CF & OF: * DX:AX = sign-extend of AX */ SET_FLAGS_OSZAPC_S1S2_16(product_16l, product_16h, BX_INSTR_IMUL16); } void BX_CPU_C::DIV_AXEw(bxInstruction_c *i) { Bit16u op2_16, remainder_16, quotient_16l; Bit32u op1_32, quotient_32; op1_32 = (((Bit32u) DX) << 16) | ((Bit32u) AX); /* op2 is a register or memory reference */ if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &op2_16); } if (op2_16 == 0) exception(BX_DE_EXCEPTION, 0, 0); quotient_32 = op1_32 / op2_16; remainder_16 = op1_32 % op2_16; quotient_16l = quotient_32 & 0xFFFF; if (quotient_32 != quotient_16l) exception(BX_DE_EXCEPTION, 0, 0); /* set EFLAGS: * DIV affects the following flags: O,S,Z,A,P,C are undefined */ #if INTEL_DIV_FLAG_BUG == 1 assert_CF(); #endif /* now write quotient back to destination */ AX = quotient_16l; DX = remainder_16; } void BX_CPU_C::IDIV_AXEw(bxInstruction_c *i) { Bit16s op2_16, remainder_16, quotient_16l; Bit32s op1_32, quotient_32; op1_32 = ((((Bit32u) DX) << 16) | ((Bit32u) AX)); /* op2 is a register or memory reference */ if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), (Bit16u *) &op2_16); } if (op2_16 == 0) exception(BX_DE_EXCEPTION, 0, 0); /* check MIN_INT divided by -1 case */ if ((op1_32 == ((Bit32s)0x80000000)) && (op2_16 == -1)) exception(BX_DE_EXCEPTION, 0, 0); quotient_32 = op1_32 / op2_16; remainder_16 = op1_32 % op2_16; quotient_16l = quotient_32 & 0xFFFF; if (quotient_32 != quotient_16l) exception(BX_DE_EXCEPTION, 0, 0); /* set EFLAGS: * IDIV affects the following flags: O,S,Z,A,P,C are undefined */ #if INTEL_DIV_FLAG_BUG == 1 assert_CF(); #endif /* now write quotient back to destination */ AX = quotient_16l; DX = remainder_16; } void BX_CPU_C::IMUL_GwEwIw(bxInstruction_c *i) { Bit16s op2_16, op3_16; op3_16 = i->Iw(); /* op2 is a register or memory reference */ if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), (Bit16u *) &op2_16); } Bit32s product_32 = op2_16 * op3_16; Bit16u product_16l = (product_32 & 0xFFFF); Bit16u product_16h = (product_32 >> 16); /* now write product back to destination */ BX_WRITE_16BIT_REG(i->nnn(), product_16l); /* set eflags: * IMUL r16,r/m16,imm16: condition for clearing CF & OF: * result exactly fits within r16 */ SET_FLAGS_OSZAPC_S1S2_16(product_16l, product_16h, BX_INSTR_IMUL16); } void BX_CPU_C::IMUL_GwEw(bxInstruction_c *i) { Bit16s op1_16, op2_16; /* op2 is a register or memory reference */ if (i->modC0()) { op2_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), (Bit16u *) &op2_16); } op1_16 = BX_READ_16BIT_REG(i->nnn()); Bit32s product_32 = op1_16 * op2_16; Bit16u product_16l = (product_32 & 0xFFFF); Bit16u product_16h = (product_32 >> 16); /* now write product back to destination */ BX_WRITE_16BIT_REG(i->nnn(), product_16l); /* set eflags: * IMUL r16,r/m16,imm16: condition for clearing CF & OF: * result exactly fits within r16 */ SET_FLAGS_OSZAPC_S1S2_16(product_16l, product_16h, BX_INSTR_IMUL16); }