///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2003 Fen Systems Ltd. (http://www.fensystems.co.uk/) // Copyright (C) 2003-2014 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ///////////////////////////////////////////////////////////////////////// // Define BX_PLUGGABLE in files that can be compiled into plugins. For // platforms that require a special tag on exported symbols, BX_PLUGGABLE // is used to know when we are exporting symbols and when we are importing. #define BX_PLUGGABLE #include "iodev.h" #if BX_SUPPORT_PCI && BX_SUPPORT_PCIPNIC #include "pci.h" #include "netmod.h" #include "pcipnic.h" #define LOG_THIS thePNICDevice-> bx_pcipnic_c* thePNICDevice = NULL; const Bit8u pnic_iomask[16] = {2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // builtin configuration handling functions void pnic_init_options(void) { bx_param_c *network = SIM->get_param("network"); bx_list_c *menu = new bx_list_c(network, "pcipnic", "PCI Pseudo NIC"); menu->set_options(menu->SHOW_PARENT); bx_param_bool_c *enabled = new bx_param_bool_c(menu, "enabled", "Enable Pseudo NIC emulation", "Enables the Pseudo NIC emulation", 1); SIM->init_std_nic_options("Pseudo NIC", menu); enabled->set_dependent_list(menu->clone()); } Bit32s pnic_options_parser(const char *context, int num_params, char *params[]) { int ret, valid = 0; if (!strcmp(params[0], "pcipnic")) { bx_list_c *base = (bx_list_c*) SIM->get_param(BXPN_PNIC); if (!SIM->get_param_bool("enabled", base)->get()) { SIM->get_param_enum("ethmod", base)->set_by_name("null"); } if (!SIM->get_param_string("mac", base)->isempty()) { // MAC address is already initialized valid |= 0x04; } for (int i = 1; i < num_params; i++) { ret = SIM->parse_nic_params(context, params[i], base); if (ret > 0) { valid |= ret; } } if (!SIM->get_param_bool("enabled", base)->get()) { if (valid == 0x04) { SIM->get_param_bool("enabled", base)->set(1); } } if (valid < 0x80) { if ((valid & 0x04) == 0) { BX_PANIC(("%s: 'pcipnic' directive incomplete (mac is required)", context)); } } } else { BX_PANIC(("%s: unknown directive '%s'", context, params[0])); } return 0; } Bit32s pnic_options_save(FILE *fp) { return SIM->write_param_list(fp, (bx_list_c*) SIM->get_param(BXPN_PNIC), NULL, 0); } // device plugin entry points int CDECL libpcipnic_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[]) { thePNICDevice = new bx_pcipnic_c(); BX_REGISTER_DEVICE_DEVMODEL(plugin, type, thePNICDevice, BX_PLUGIN_PCIPNIC); // add new configuration parameter for the config interface pnic_init_options(); // register add-on option for bochsrc and command line SIM->register_addon_option("pcipnic", pnic_options_parser, pnic_options_save); return 0; // Success } void CDECL libpcipnic_LTX_plugin_fini(void) { SIM->unregister_addon_option("pcipnic"); bx_list_c *menu = (bx_list_c*)SIM->get_param("network"); menu->remove("pnic"); delete thePNICDevice; } // the device object bx_pcipnic_c::bx_pcipnic_c() { put("pcipnic", "PNIC"); memset(&s, 0, sizeof(bx_pnic_t)); ethdev = NULL; } bx_pcipnic_c::~bx_pcipnic_c() { if (ethdev != NULL) { delete ethdev; } SIM->get_bochs_root()->remove("pcipnic"); BX_DEBUG(("Exit")); } void bx_pcipnic_c::init(void) { bx_list_c *base; bx_param_string_c *bootrom; // Read in values from config interface base = (bx_list_c*) SIM->get_param(BXPN_PNIC); // Check if the device is disabled or not configured if (!SIM->get_param_bool("enabled", base)->get()) { BX_INFO(("PCI Pseudo NIC disabled")); // mark unused plugin for removal ((bx_param_bool_c*)((bx_list_c*)SIM->get_param(BXPN_PLUGIN_CTRL))->get_by_name("pcipnic"))->set(0); return; } memcpy(BX_PNIC_THIS s.macaddr, SIM->get_param_string("mac", base)->getptr(), 6); BX_PNIC_THIS s.devfunc = 0x00; DEV_register_pci_handlers(this, &BX_PNIC_THIS s.devfunc, BX_PLUGIN_PCIPNIC, "Experimental PCI Pseudo NIC"); // initialize readonly registers init_pci_conf(PNIC_PCI_VENDOR, PNIC_PCI_DEVICE, 0x01, 0x020000, 0x00); BX_PNIC_THIS pci_conf[0x3d] = BX_PCI_INTA; BX_PNIC_THIS s.statusbar_id = bx_gui->register_statusitem("PNIC", 1); // Attach to the selected ethernet module BX_PNIC_THIS ethdev = DEV_net_init_module(base, rx_handler, rx_status_handler, this); BX_PNIC_THIS pci_base_address[4] = 0; BX_PNIC_THIS pci_rom_address = 0; bootrom = SIM->get_param_string("bootrom", base); if (!bootrom->isempty()) { BX_PNIC_THIS load_pci_rom(bootrom->getptr()); } BX_INFO(("PCI Pseudo NIC initialized")); } void bx_pcipnic_c::reset(unsigned type) { unsigned i; static const struct reset_vals_t { unsigned addr; unsigned char val; } reset_vals[] = { { 0x04, 0x01 }, { 0x05, 0x00 }, // command_io { 0x06, 0x00 }, { 0x07, 0x00 }, // status { 0x0d, 0x20 }, // bus latency // address space 0x20 - 0x23 { 0x20, 0x01 }, { 0x21, 0x00 }, { 0x22, 0x00 }, { 0x23, 0x00 }, { 0x3c, 0x00, }, // IRQ { 0x6a, 0x01 }, // PNIC clock { 0xc1, 0x20 } // PIRQ enable }; for (i = 0; i < sizeof(reset_vals) / sizeof(*reset_vals); ++i) { BX_PNIC_THIS pci_conf[reset_vals[i].addr] = reset_vals[i].val; } // Set up initial register values BX_PNIC_THIS s.rCmd = PNIC_CMD_NOOP; BX_PNIC_THIS s.rStatus = PNIC_STATUS_OK; BX_PNIC_THIS s.rLength = 0; BX_PNIC_THIS s.rDataCursor = 0; BX_PNIC_THIS s.recvIndex = 0; BX_PNIC_THIS s.recvQueueLength = 0; BX_PNIC_THIS s.irqEnabled = 0; // Deassert IRQ set_irq_level(0); } void bx_pcipnic_c::register_state(void) { char name[6]; bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "pcipnic", "PCI Pseudo NIC State"); new bx_shadow_num_c(list, "irqEnabled", &BX_PNIC_THIS s.irqEnabled); new bx_shadow_num_c(list, "rCmd", &BX_PNIC_THIS s.rCmd); new bx_shadow_num_c(list, "rStatus", &BX_PNIC_THIS s.rStatus); new bx_shadow_num_c(list, "rLength", &BX_PNIC_THIS s.rLength); new bx_shadow_num_c(list, "rDataCursor", &BX_PNIC_THIS s.rDataCursor); new bx_shadow_num_c(list, "recvIndex", &BX_PNIC_THIS s.recvIndex); new bx_shadow_num_c(list, "recvQueueLength", &BX_PNIC_THIS s.recvQueueLength); bx_list_c *recvRL = new bx_list_c(list, "recvRingLength"); for (unsigned i=0; i 0) { if (DEV_pci_set_base_mem(BX_PNIC_THIS_PTR, mem_read_handler, mem_write_handler, &BX_PNIC_THIS pci_rom_address, &BX_PNIC_THIS pci_conf[0x30], BX_PNIC_THIS pci_rom_size)) { BX_INFO(("new ROM address: 0x%08x", BX_PNIC_THIS pci_rom_address)); } } } void bx_pcipnic_c::set_irq_level(bx_bool level) { DEV_pci_set_irq(BX_PNIC_THIS s.devfunc, BX_PNIC_THIS pci_conf[0x3d], level); } bx_bool bx_pcipnic_c::mem_read_handler(bx_phy_address addr, unsigned len, void *data, void *param) { Bit8u *data_ptr; Bit32u mask = (BX_PNIC_THIS pci_rom_size - 1); #ifdef BX_LITTLE_ENDIAN data_ptr = (Bit8u *) data; #else // BX_BIG_ENDIAN data_ptr = (Bit8u *) data + (len - 1); #endif for (unsigned i = 0; i < len; i++) { if (BX_PNIC_THIS pci_conf[0x30] & 0x01) { *data_ptr = BX_PNIC_THIS pci_rom[addr & mask]; } else { *data_ptr = 0xff; } addr++; #ifdef BX_LITTLE_ENDIAN data_ptr++; #else // BX_BIG_ENDIAN data_ptr--; #endif } return 1; } bx_bool bx_pcipnic_c::mem_write_handler(bx_phy_address addr, unsigned len, void *data, void *param) { BX_INFO(("write to ROM ignored (addr=0x%08x len=%d)", (Bit32u)addr, len)); return 1; } // static IO port read callback handler // redirects to non-static class handler to avoid virtual functions Bit32u bx_pcipnic_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len) { #if !BX_USE_PCIPNIC_SMF bx_pcipnic_c *class_ptr = (bx_pcipnic_c *) this_ptr; return class_ptr->read(address, io_len); } Bit32u bx_pcipnic_c::read(Bit32u address, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_PCIPNIC_SMF Bit32u val = 0x0; Bit8u offset; BX_DEBUG(("register read from address 0x%04x - ", (unsigned) address)); offset = address - BX_PNIC_THIS pci_base_address[4]; switch (offset) { case PNIC_REG_STAT: val = BX_PNIC_THIS s.rStatus; break; case PNIC_REG_LEN: val = BX_PNIC_THIS s.rLength; break; case PNIC_REG_DATA: if (BX_PNIC_THIS s.rDataCursor >= BX_PNIC_THIS s.rLength) BX_PANIC(("PNIC read at %u, beyond end of data register array", BX_PNIC_THIS s.rDataCursor)); val = BX_PNIC_THIS s.rData[BX_PNIC_THIS s.rDataCursor++]; break; default : val = 0; // keep compiler happy BX_PANIC(("unsupported io read from address=0x%04x!", (unsigned) address)); break; } BX_DEBUG(("val = 0x%04x", (Bit16u) val)); return(val); } // static IO port write callback handler // redirects to non-static class handler to avoid virtual functions void bx_pcipnic_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len) { #if !BX_USE_PCIPNIC_SMF bx_pcipnic_c *class_ptr = (bx_pcipnic_c *) this_ptr; class_ptr->write(address, value, io_len); } void bx_pcipnic_c::write(Bit32u address, Bit32u value, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_PCIPNIC_SMF Bit8u offset; BX_DEBUG(("register write to address 0x%04x - ", (unsigned) address)); offset = address - BX_PNIC_THIS pci_base_address[4]; switch (offset) { case PNIC_REG_CMD: BX_PNIC_THIS s.rCmd = value; BX_PNIC_THIS exec_command(); break; case PNIC_REG_LEN: if (value > PNIC_DATA_SIZE) BX_PANIC(("PNIC bad length %u written to length register, max is %u", value, PNIC_DATA_SIZE)); BX_PNIC_THIS s.rLength = value; BX_PNIC_THIS s.rDataCursor = 0; break; case PNIC_REG_DATA: if (BX_PNIC_THIS s.rDataCursor >= BX_PNIC_THIS s.rLength) BX_PANIC(("PNIC write at %u, beyond end of data register array", BX_PNIC_THIS s.rDataCursor)); BX_PNIC_THIS s.rData[BX_PNIC_THIS s.rDataCursor++] = value; break; default: BX_PANIC(("unsupported io write to address=0x%04x!", (unsigned) address)); break; } } void bx_pcipnic_c::pnic_timer_handler(void *this_ptr) { bx_pcipnic_c *class_ptr = (bx_pcipnic_c *) this_ptr; class_ptr->pnic_timer(); } // Called once every 1ms void bx_pcipnic_c::pnic_timer(void) { // Do nothing atm } // pci configuration space read callback handler Bit32u bx_pcipnic_c::pci_read_handler(Bit8u address, unsigned io_len) { Bit32u value = 0; for (unsigned i=0; i= 0x10) && (address < 0x20)) || ((address > 0x23) && (address < 0x30))) return; for (unsigned i=0; i> (i*8)) & 0xFF; oldval = BX_PNIC_THIS pci_conf[address+i]; switch (address+i) { case 0x04: value8 &= 0x01; break; case 0x3c: if (value8 != oldval) { BX_INFO(("new irq line = %d", value8)); } break; case 0x20: value8 = (value8 & 0xfc) | 0x01; case 0x21: case 0x22: case 0x23: baseaddr_change = (value8 != oldval); break; case 0x30: case 0x31: case 0x32: case 0x33: if (BX_PNIC_THIS pci_rom_size > 0) { if ((address+i) == 0x30) { value8 &= 0x01; } else if ((address+i) == 0x31) { value8 &= 0xfc; } romaddr_change = 1; break; } default: value8 = oldval; } BX_PNIC_THIS pci_conf[address+i] = value8; } if (baseaddr_change) { if (DEV_pci_set_base_io(BX_PNIC_THIS_PTR, read_handler, write_handler, &BX_PNIC_THIS pci_base_address[4], &BX_PNIC_THIS pci_conf[0x20], 16, &pnic_iomask[0], "PNIC")) { BX_INFO(("new base address: 0x%04x", BX_PNIC_THIS pci_base_address[4])); } } if (romaddr_change) { if (DEV_pci_set_base_mem(BX_PNIC_THIS_PTR, mem_read_handler, mem_write_handler, &BX_PNIC_THIS pci_rom_address, &BX_PNIC_THIS pci_conf[0x30], BX_PNIC_THIS pci_rom_size)) { BX_INFO(("new ROM address: 0x%08x", BX_PNIC_THIS pci_rom_address)); } } if (io_len == 1) BX_DEBUG(("write PCI register 0x%02x value 0x%02x", address, value)); else if (io_len == 2) BX_DEBUG(("write PCI register 0x%02x value 0x%04x", address, value)); else if (io_len == 4) BX_DEBUG(("write PCI register 0x%02x value 0x%08x", address, value)); } /* * Execute a hardware command. */ void bx_pcipnic_c::exec_command(void) { Bit16u command = BX_PNIC_THIS s.rCmd; Bit16u ilength = BX_PNIC_THIS s.rLength; Bit8u *data = BX_PNIC_THIS s.rData; // Default return values Bit16u status = PNIC_STATUS_UNKNOWN_CMD; Bit16u olength = 0; if (ilength != BX_PNIC_THIS s.rDataCursor) BX_PANIC(("PNIC command issued with incomplete data (should be %u, is %u)", ilength, BX_PNIC_THIS s.rDataCursor)); switch (command) { case PNIC_CMD_NOOP: status = PNIC_STATUS_OK; break; case PNIC_CMD_API_VER: Bit16u api_version; api_version = PNIC_API_VERSION; olength = sizeof(api_version); memcpy (data, &api_version, sizeof(api_version)); status = PNIC_STATUS_OK; break; case PNIC_CMD_READ_MAC: olength = sizeof (BX_PNIC_THIS s.macaddr); memcpy (data, BX_PNIC_THIS s.macaddr, olength); status = PNIC_STATUS_OK; break; case PNIC_CMD_RESET: /* Flush the receive queue */ BX_PNIC_THIS s.recvQueueLength = 0; status = PNIC_STATUS_OK; break; case PNIC_CMD_XMIT: BX_PNIC_THIS ethdev->sendpkt(data, ilength); bx_gui->statusbar_setitem(BX_PNIC_THIS s.statusbar_id, 1, 1); if (BX_PNIC_THIS s.irqEnabled) { set_irq_level(1); } status = PNIC_STATUS_OK; break; case PNIC_CMD_RECV: if (BX_PNIC_THIS s.recvQueueLength > 0) { int idx = (BX_PNIC_THIS s.recvIndex - BX_PNIC_THIS s.recvQueueLength + PNIC_RECV_RINGS) % PNIC_RECV_RINGS; olength = BX_PNIC_THIS s.recvRingLength[idx]; memcpy (data, BX_PNIC_THIS s.recvRing[idx], olength); BX_PNIC_THIS s.recvQueueLength--; } if (! BX_PNIC_THIS s.recvQueueLength) { set_irq_level(0); } status = PNIC_STATUS_OK; break; case PNIC_CMD_RECV_QLEN: Bit16u qlen; qlen = BX_PNIC_THIS s.recvQueueLength; olength = sizeof(qlen); memcpy (data, &qlen, sizeof(qlen)); status = PNIC_STATUS_OK; break; case PNIC_CMD_MASK_IRQ: Bit8u enabled; enabled = *((Bit8u*)data); BX_PNIC_THIS s.irqEnabled = enabled; if (enabled && BX_PNIC_THIS s.recvQueueLength) { set_irq_level(1); } else { set_irq_level(0); } status = PNIC_STATUS_OK; break; case PNIC_CMD_FORCE_IRQ: set_irq_level(1); status = PNIC_STATUS_OK; break; default: BX_ERROR(("Unknown PNIC command %x (data length %u)", command, ilength)); status = PNIC_STATUS_UNKNOWN_CMD; break; } // Set registers BX_PNIC_THIS s.rStatus = status; BX_PNIC_THIS s.rLength = olength; BX_PNIC_THIS s.rDataCursor = 0; } /* * Callback from the eth system driver to check if the device can receive */ Bit32u bx_pcipnic_c::rx_status_handler(void *arg) { bx_pcipnic_c *class_ptr = (bx_pcipnic_c *) arg; return class_ptr->rx_status(); } Bit32u bx_pcipnic_c::rx_status() { Bit32u status = BX_NETDEV_100MBIT; if (BX_PNIC_THIS s.recvQueueLength < PNIC_RECV_RINGS) { status |= BX_NETDEV_RXREADY; } return status; } /* * Callback from the eth system driver when a frame has arrived */ void bx_pcipnic_c::rx_handler(void *arg, const void *buf, unsigned len) { // BX_DEBUG(("rx_handler with length %d", len)); bx_pcipnic_c *class_ptr = (bx_pcipnic_c *) arg; class_ptr->rx_frame(buf, len); } /* * rx_frame() - called by the platform-specific code when an * ethernet frame has been received. The destination address * is tested to see if it should be accepted, and if the * rx ring has enough room, it is copied into it and * the receive process is updated */ void bx_pcipnic_c::rx_frame(const void *buf, unsigned io_len) { // Check packet length if (io_len > PNIC_DATA_SIZE) { BX_PANIC(("PNIC receive: data size %u exceeded buffer size %u", io_len, PNIC_DATA_SIZE)); // Truncate if user continues io_len = PNIC_DATA_SIZE; } // Check receive ring is not full if (BX_PNIC_THIS s.recvQueueLength == PNIC_RECV_RINGS) { BX_ERROR(("PNIC receive: receive ring full, discarding packet")); return; } // Copy data to receive ring and record length memcpy (BX_PNIC_THIS s.recvRing[BX_PNIC_THIS s.recvIndex], buf, io_len); BX_PNIC_THIS s.recvRingLength[BX_PNIC_THIS s.recvIndex] = io_len; // Move to next ring entry BX_PNIC_THIS s.recvIndex = (BX_PNIC_THIS s.recvIndex + 1) % PNIC_RECV_RINGS; BX_PNIC_THIS s.recvQueueLength++; // Generate interrupt if enabled if (BX_PNIC_THIS s.irqEnabled) { set_irq_level(1); } bx_gui->statusbar_setitem(BX_PNIC_THIS s.statusbar_id, 1); } #endif // BX_SUPPORT_PCI && BX_SUPPORT_PCIPNIC