///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2011-2012 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #include "bochs.h" #include "cpu.h" #include "param_names.h" #include "generic_cpuid.h" #define LOG_THIS cpu-> bx_cpuid_t::bx_cpuid_t(BX_CPU_C *_cpu): cpu(_cpu) { #if BX_SUPPORT_SMP nthreads = SIM->get_param_num(BXPN_CPU_NTHREADS)->get(); ncores = SIM->get_param_num(BXPN_CPU_NCORES)->get(); nprocessors = SIM->get_param_num(BXPN_CPU_NPROCESSORS)->get(); #else nthreads = 1; ncores = 1; nprocessors = 1; #endif } #if BX_CPU_LEVEL >= 4 bx_generic_cpuid_t::bx_generic_cpuid_t(BX_CPU_C *cpu): bx_cpuid_t(cpu) { init_isa_extensions_bitmask(); init_cpu_extensions_bitmask(); #if BX_SUPPORT_VMX init_vmx_extensions_bitmask(); #endif #if BX_SUPPORT_SVM init_svm_extensions_bitmask(); #endif #if BX_CPU_LEVEL <= 5 // 486 and Pentium processors max_std_leaf = 1; #else // for Pentium Pro, Pentium II, Pentium 4 processors max_std_leaf = 2; // do not report CPUID functions above 0x3 if cpuid_limit_winnt is set // to workaround WinNT issue. static bx_bool cpuid_limit_winnt = SIM->get_param_bool(BXPN_CPUID_LIMIT_WINNT)->get(); if (! cpuid_limit_winnt) { if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_MONITOR_MWAIT)) max_std_leaf = 0x5; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_X2APIC)) max_std_leaf = 0xB; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_XSAVE)) max_std_leaf = 0xD; } #endif #if BX_CPU_LEVEL <= 5 max_ext_leaf = 0; #else max_ext_leaf = 0x80000008; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SVM)) max_ext_leaf = 0x8000000A; #endif } void bx_generic_cpuid_t::get_cpuid_leaf(Bit32u function, Bit32u subfunction, cpuid_function_t *leaf) const { static bx_bool cpuid_limit_winnt = SIM->get_param_bool(BXPN_CPUID_LIMIT_WINNT)->get(); if (cpuid_limit_winnt) if (function > 2 && function < 0x80000000) function = 2; #if BX_CPU_LEVEL >= 6 if (function >= 0x80000000 && function > max_ext_leaf) function = max_std_leaf; #endif if (function < 0x80000000 && function > max_std_leaf) function = max_std_leaf; switch(function) { #if BX_CPU_LEVEL >= 6 case 0x80000000: get_ext_cpuid_leaf_0(leaf); return; case 0x80000001: get_ext_cpuid_leaf_1(leaf); return; case 0x80000002: case 0x80000003: case 0x80000004: get_ext_cpuid_brand_string_leaf(function, leaf); return; case 0x80000005: get_ext_cpuid_leaf_5(leaf); return; case 0x80000006: get_ext_cpuid_leaf_6(leaf); return; case 0x80000007: get_ext_cpuid_leaf_7(leaf); return; case 0x80000008: get_ext_cpuid_leaf_8(leaf); return; #if BX_SUPPORT_SVM case 0x8000000A: get_ext_cpuid_leaf_A(leaf); return; #endif #endif case 0x00000000: get_std_cpuid_leaf_0(leaf); return; case 0x00000001: get_std_cpuid_leaf_1(leaf); return; #if BX_CPU_LEVEL >= 6 case 0x00000002: get_std_cpuid_leaf_2(leaf); return; case 0x00000003: get_reserved_leaf(leaf); return; case 0x00000004: get_std_cpuid_leaf_4(subfunction, leaf); return; case 0x00000005: get_std_cpuid_leaf_5(leaf); return; case 0x00000006: get_std_cpuid_leaf_6(leaf); return; case 0x00000007: get_std_cpuid_leaf_7(subfunction, leaf); return; case 0x00000008: case 0x00000009: get_reserved_leaf(leaf); return; case 0x0000000A: get_std_cpuid_leaf_A(leaf); return; case 0x0000000B: get_std_cpuid_extended_topology_leaf(subfunction, leaf); return; case 0x0000000C: get_reserved_leaf(leaf); return; case 0x0000000D: default: get_std_cpuid_xsave_leaf(subfunction, leaf); return; #endif } } // leaf 0x00000000 // void bx_generic_cpuid_t::get_std_cpuid_leaf_0(cpuid_function_t *leaf) const { static Bit8u *vendor_string = (Bit8u *)SIM->get_param_string(BXPN_VENDOR_STRING)->getptr(); // EAX: highest std function understood by CPUID // EBX: vendor ID string // EDX: vendor ID string // ECX: vendor ID string leaf->eax = max_std_leaf; // CPUID vendor string (e.g. GenuineIntel, AuthenticAMD, CentaurHauls, ...) memcpy(&(leaf->ebx), vendor_string, 4); memcpy(&(leaf->edx), vendor_string + 4, 4); memcpy(&(leaf->ecx), vendor_string + 8, 4); #ifdef BX_BIG_ENDIAN leaf->ebx = bx_bswap32(leaf->ebx); leaf->ecx = bx_bswap32(leaf->ecx); leaf->edx = bx_bswap32(leaf->edx); #endif } // leaf 0x00000001 // void bx_generic_cpuid_t::get_std_cpuid_leaf_1(cpuid_function_t *leaf) const { // EAX: CPU Version Information // [3:0] Stepping ID // [7:4] Model: starts at 1 // [11:8] Family: 4=486, 5=Pentium, 6=PPro, ... // [13:12] Type: 0=OEM, 1=overdrive, 2=dual cpu, 3=reserved // [19:16] Extended Model // [27:20] Extended Family leaf->eax = get_cpu_version_information(); // EBX: // [7:0] Brand ID // [15:8] CLFLUSH cache line size (value*8 = cache line size in bytes) // [23:16] Number of logical processors in one physical processor // [31:24] Local Apic ID leaf->ebx = 0; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_CLFLUSH)) { leaf->ebx |= (CACHE_LINE_SIZE / 8) << 8; } unsigned n_logical_processors = ncores*nthreads; leaf->ebx |= (n_logical_processors << 16); #if BX_SUPPORT_APIC leaf->ebx |= ((cpu->get_apic_id() & 0xff) << 24); #endif // ECX: Extended Feature Flags #if BX_CPU_LEVEL >= 6 leaf->ecx = get_extended_cpuid_features(); #else leaf->ecx = 0; #endif // EDX: Standard Feature Flags leaf->edx = get_std_cpuid_features(); } #if BX_CPU_LEVEL >= 6 // leaf 0x00000002 // void bx_generic_cpuid_t::get_std_cpuid_leaf_2(cpuid_function_t *leaf) const { // CPUID function 0x00000002 - Cache and TLB Descriptors #if BX_CPU_VENDOR_INTEL leaf->eax = 0x00410601; // for Pentium Pro compatibility leaf->ebx = 0; leaf->ecx = 0; leaf->edx = 0; #else leaf->eax = 0; // ignore for AMD leaf->ebx = 0; leaf->ecx = 0; leaf->edx = 0; #endif } // leaf 0x00000003 - Processor Serial Number (not supported) // // leaf 0x00000004 // void bx_generic_cpuid_t::get_std_cpuid_leaf_4(Bit32u subfunction, cpuid_function_t *leaf) const { // CPUID function 0x00000004 - Deterministic Cache Parameters leaf->eax = 0; leaf->ebx = 0; leaf->ecx = 0; leaf->edx = 0; } // leaf 0x00000005 // void bx_generic_cpuid_t::get_std_cpuid_leaf_5(cpuid_function_t *leaf) const { // CPUID function 0x00000005 - MONITOR/MWAIT Leaf #if BX_SUPPORT_MONITOR_MWAIT if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_MONITOR_MWAIT)) { // EAX - Smallest monitor-line size in bytes // EBX - Largest monitor-line size in bytes // ECX - // [31:2] - reserved // [1:1] - exit MWAIT even with EFLAGS.IF = 0 // [0:0] - MONITOR/MWAIT extensions are supported // EDX - // [03-00] - number of C0 sub C-states supported using MWAIT // [07-04] - number of C1 sub C-states supported using MWAIT // [11-08] - number of C2 sub C-states supported using MWAIT // [15-12] - number of C3 sub C-states supported using MWAIT // [19-16] - number of C4 sub C-states supported using MWAIT // [31-20] - reserved (MBZ) leaf->eax = CACHE_LINE_SIZE; leaf->ebx = CACHE_LINE_SIZE; leaf->ecx = 3; leaf->edx = 0x00000020; } else #endif { leaf->eax = 0; leaf->ebx = 0; leaf->ecx = 0; leaf->edx = 0; } } // leaf 0x00000006 // void bx_generic_cpuid_t::get_std_cpuid_leaf_6(cpuid_function_t *leaf) const { // CPUID function 0x00000006 - Thermal and Power Management Leaf leaf->eax = 0; leaf->ebx = 0; leaf->ecx = 0; leaf->edx = 0; } // leaf 0x00000007 // void bx_generic_cpuid_t::get_std_cpuid_leaf_7(Bit32u subfunction, cpuid_function_t *leaf) const { leaf->eax = 0; /* report max sub-leaf that supported in leaf 7 */ leaf->ebx = get_ext3_cpuid_features(); leaf->ecx = 0; leaf->edx = 0; } // leaf 0x00000008 reserved // // leaf 0x00000009 direct cache access not supported // // leaf 0x0000000A // void bx_generic_cpuid_t::get_std_cpuid_leaf_A(cpuid_function_t *leaf) const { // CPUID function 0x0000000A - Architectural Performance Monitoring Leaf leaf->eax = 0; leaf->ebx = 0; leaf->ecx = 0; leaf->edx = 0; } BX_CPP_INLINE static Bit32u ilog2(Bit32u x) { Bit32u count = 0; while(x>>=1) count++; return count; } // leaf 0x0000000B // void bx_generic_cpuid_t::get_std_cpuid_extended_topology_leaf(Bit32u subfunction, cpuid_function_t *leaf) const { // CPUID function 0x0000000B - Extended Topology Leaf leaf->eax = 0; leaf->ebx = 0; leaf->ecx = subfunction; leaf->edx = cpu->get_apic_id(); #if BX_SUPPORT_SMP switch(subfunction) { case 0: if (nthreads > 1) { leaf->eax = ilog2(nthreads-1)+1; leaf->ebx = nthreads; leaf->ecx |= (1<<8); } else if (ncores > 1) { leaf->eax = ilog2(ncores-1)+1; leaf->ebx = ncores; leaf->ecx |= (2<<8); } else if (nprocessors > 1) { leaf->eax = ilog2(nprocessors-1)+1; leaf->ebx = nprocessors; } else { leaf->eax = 1; leaf->ebx = 1; // number of logical CPUs at this level } break; case 1: if (nthreads > 1) { if (ncores > 1) { leaf->eax = ilog2(ncores-1)+1; leaf->ebx = ncores; leaf->ecx |= (2<<8); } else if (nprocessors > 1) { leaf->eax = ilog2(nprocessors-1)+1; leaf->ebx = nprocessors; } } else if (ncores > 1) { if (nprocessors > 1) { leaf->eax = ilog2(nprocessors-1)+1; leaf->ebx = nprocessors; } } break; case 2: if (nthreads > 1) { if (nprocessors > 1) { leaf->eax = ilog2(nprocessors-1)+1; leaf->ebx = nprocessors; } } break; default: break; } #endif } // leaf 0x0000000C - reserved // // leaf 0x0000000D // void bx_generic_cpuid_t::get_std_cpuid_xsave_leaf(Bit32u subfunction, cpuid_function_t *leaf) const { if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_XSAVE)) { switch(subfunction) { case 0: // EAX - valid bits of XCR0 (lower part) // EBX - Maximum size (in bytes) required by enabled features // ECX - Maximum size (in bytes) required by CPU supported features // EDX - valid bits of XCR0 (upper part) leaf->eax = cpu->xcr0_suppmask; leaf->ebx = 512+64; #if BX_SUPPORT_AVX if (cpu->xcr0.get_AVX()) leaf->ebx += 256; #endif leaf->ecx = 512+64; #if BX_SUPPORT_AVX if (cpu->xcr0_suppmask & BX_XCR0_AVX_MASK) leaf->ecx += 256; #endif leaf->edx = 0; return; case 1: leaf->eax = BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_XSAVEOPT); leaf->ebx = 0; leaf->ecx = 0; leaf->edx = 0; return; #if BX_SUPPORT_AVX case 2: // AVX leaf if (cpu->xcr0_suppmask & BX_XCR0_AVX_MASK) { leaf->eax = 256; leaf->ebx = 576; leaf->ecx = 0; leaf->edx = 0; break; } // else fall through #endif default: leaf->eax = 0; // reserved leaf->ebx = 0; // reserved leaf->ecx = 0; // reserved leaf->edx = 0; // reserved break; } } } // leaf 0x80000000 // void bx_generic_cpuid_t::get_ext_cpuid_leaf_0(cpuid_function_t *leaf) const { // EAX: highest extended function understood by CPUID // EBX: vendor ID string // EDX: vendor ID string // ECX: vendor ID string leaf->eax = max_ext_leaf; #if BX_CPU_VENDOR_INTEL leaf->ebx = 0; leaf->edx = 0; // Reserved for Intel leaf->ecx = 0; #else static Bit8u *vendor_string = (Bit8u *)SIM->get_param_string(BXPN_VENDOR_STRING)->getptr(); memcpy(&(leaf->ebx), vendor_string, 4); memcpy(&(leaf->edx), vendor_string + 4, 4); memcpy(&(leaf->ecx), vendor_string + 8, 4); #endif #ifdef BX_BIG_ENDIAN leaf->ebx = bx_bswap32(leaf->ebx); leaf->ecx = bx_bswap32(leaf->ecx); leaf->edx = bx_bswap32(leaf->edx); #endif } // leaf 0x80000001 // void bx_generic_cpuid_t::get_ext_cpuid_leaf_1(cpuid_function_t *leaf) const { // EAX: CPU Version Information leaf->eax = BX_CPU_VENDOR_INTEL ? 0 : get_cpu_version_information(); // EBX: Brand ID leaf->ebx = 0; // ECX: leaf->ecx = get_ext2_cpuid_features(); // EDX: // Many of the bits in EDX are the same as FN 0x00000001 [*] for AMD // [*] [0:0] FPU on chip // [*] [1:1] VME: Virtual-8086 Mode enhancements // [*] [2:2] DE: Debug Extensions (I/O breakpoints) // [*] [3:3] PSE: Page Size Extensions // [*] [4:4] TSC: Time Stamp Counter // [*] [5:5] MSR: RDMSR and WRMSR support // [*] [6:6] PAE: Physical Address Extensions // [*] [7:7] MCE: Machine Check Exception // [*] [8:8] CXS: CMPXCHG8B instruction // [*] [9:9] APIC: APIC on Chip // [10:10] Reserved // [11:11] SYSCALL/SYSRET support // [*] [12:12] MTRR: Memory Type Range Reg // [*] [13:13] PGE/PTE Global Bit // [*] [14:14] MCA: Machine Check Architecture // [*] [15:15] CMOV: Cond Mov/Cmp Instructions // [*] [16:16] PAT: Page Attribute Table // [*] [17:17] PSE-36: Physical Address Extensions // [18:19] Reserved // [20:20] No-Execute page protection // [21:21] Reserved // [22:22] AMD MMX Extensions // [*] [23:23] MMX Technology // [*] [24:24] FXSR: FXSAVE/FXRSTOR (also indicates CR4.OSFXSR is available) // [25:25] Fast FXSAVE/FXRSTOR mode support // [26:26] 1G paging support // [27:27] Support RDTSCP Instruction // [28:28] Reserved // [29:29] Long Mode // [30:30] AMD 3DNow! Extensions // [31:31] AMD 3DNow! Instructions leaf->edx = get_std2_cpuid_features(); } // leaf 0x80000002 // // leaf 0x80000003 // // leaf 0x80000004 // void bx_generic_cpuid_t::get_ext_cpuid_brand_string_leaf(Bit32u function, cpuid_function_t *leaf) const { // CPUID function 0x800000002-0x800000004 - Processor Name String Identifier static Bit8u *brand_string = (Bit8u *)SIM->get_param_string(BXPN_BRAND_STRING)->getptr(); switch(function) { case 0x80000002: memcpy(&(leaf->eax), brand_string , 4); memcpy(&(leaf->ebx), brand_string + 4, 4); memcpy(&(leaf->ecx), brand_string + 8, 4); memcpy(&(leaf->edx), brand_string + 12, 4); break; case 0x80000003: memcpy(&(leaf->eax), brand_string + 16, 4); memcpy(&(leaf->ebx), brand_string + 20, 4); memcpy(&(leaf->ecx), brand_string + 24, 4); memcpy(&(leaf->edx), brand_string + 28, 4); break; case 0x80000004: memcpy(&(leaf->eax), brand_string + 32, 4); memcpy(&(leaf->ebx), brand_string + 36, 4); memcpy(&(leaf->ecx), brand_string + 40, 4); memcpy(&(leaf->edx), brand_string + 44, 4); break; default: break; } #ifdef BX_BIG_ENDIAN leaf->eax = bx_bswap32(leaf->eax); leaf->ebx = bx_bswap32(leaf->ebx); leaf->ecx = bx_bswap32(leaf->ecx); leaf->edx = bx_bswap32(leaf->edx); #endif } // leaf 0x80000005 // void bx_generic_cpuid_t::get_ext_cpuid_leaf_5(cpuid_function_t *leaf) const { // CPUID function 0x800000005 - L1 Cache and TLB Identifiers leaf->eax = 0x01ff01ff; leaf->ebx = 0x01ff01ff; leaf->ecx = 0x40020140; leaf->edx = 0x40020140; } // leaf 0x80000006 // void bx_generic_cpuid_t::get_ext_cpuid_leaf_6(cpuid_function_t *leaf) const { // CPUID function 0x800000006 - L2 Cache and TLB Identifiers leaf->eax = 0; leaf->ebx = 0x42004200; leaf->ecx = 0x02008140; leaf->edx = 0; } // leaf 0x80000007 // void bx_generic_cpuid_t::get_ext_cpuid_leaf_7(cpuid_function_t *leaf) const { // CPUID function 0x800000007 - Advanced Power Management leaf->eax = 0; leaf->ebx = 0; leaf->ecx = 0; leaf->edx = 0; } // leaf 0x80000008 // void bx_generic_cpuid_t::get_ext_cpuid_leaf_8(cpuid_function_t *leaf) const { // virtual & phys address size in low 2 bytes. leaf->eax = BX_PHY_ADDRESS_WIDTH | (BX_LIN_ADDRESS_WIDTH << 8); leaf->ebx = 0; leaf->ecx = 0; // Reserved, undefined leaf->edx = 0; } #if BX_SUPPORT_SVM // leaf 0x8000000A // void bx_generic_cpuid_t::get_ext_cpuid_leaf_A(cpuid_function_t *leaf) const { if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SVM)) { leaf->eax = BX_SVM_REVISION; leaf->ebx = 0x40; /* number of ASIDs */ leaf->ecx = 0; // * [0:0] NP - Nested paging support // [1:1] LBR virtualization // [2:2] SVM Lock // * [3:3] NRIPS - Next RIP save on VMEXIT // [4:4] TscRate - MSR based TSC ratio control // [5:5] VMCB Clean bits support // [6:6] Flush by ASID support // [7:7] Decode assists support // [9:8] Reserved // [10:10] Pause filter support // [11:11] Reserved // [12:12] Pause filter threshold support // [31:13] Reserved leaf->edx = BX_CPUID_SVM_NESTED_PAGING | BX_CPUID_SVM_NRIP_SAVE; } else { leaf->eax = 0; leaf->ebx = 0; leaf->ecx = 0; // Reserved, undefined leaf->edx = 0; } } #endif #endif void bx_generic_cpuid_t::init_isa_extensions_bitmask(void) { Bit64u features_bitmask = 0; #if BX_SUPPORT_FPU features_bitmask |= BX_ISA_X87; #endif #if BX_CPU_LEVEL >= 4 features_bitmask |= BX_ISA_486; #if BX_CPU_LEVEL >= 5 features_bitmask |= BX_ISA_PENTIUM; static bx_bool mmx_enabled = SIM->get_param_bool(BXPN_CPUID_MMX)->get(); if (mmx_enabled) features_bitmask |= BX_ISA_MMX; #if BX_SUPPORT_3DNOW features_bitmask |= BX_ISA_3DNOW; if (! mmx_enabled) { BX_PANIC(("PANIC: 3DNOW emulation requires MMX support !")); return; } #endif #if BX_CPU_LEVEL >= 6 features_bitmask |= BX_ISA_P6; #if BX_SUPPORT_MONITOR_MWAIT static bx_bool mwait_enabled = SIM->get_param_bool(BXPN_CPUID_MWAIT)->get(); if (mwait_enabled) features_bitmask |= BX_ISA_MONITOR_MWAIT; #endif static unsigned sse_enabled = SIM->get_param_enum(BXPN_CPUID_SSE)->get(); // determine SSE in runtime switch (sse_enabled) { case BX_CPUID_SUPPORT_SSE4_2: features_bitmask |= BX_ISA_SSE4_2; case BX_CPUID_SUPPORT_SSE4_1: features_bitmask |= BX_ISA_SSE4_1; case BX_CPUID_SUPPORT_SSSE3: features_bitmask |= BX_ISA_SSSE3; case BX_CPUID_SUPPORT_SSE3: features_bitmask |= BX_ISA_SSE3; case BX_CPUID_SUPPORT_SSE2: features_bitmask |= BX_ISA_SSE2; case BX_CPUID_SUPPORT_SSE: features_bitmask |= BX_ISA_SSE; case BX_CPUID_SUPPORT_NOSSE: default: break; }; if (sse_enabled) { if (mmx_enabled == 0 || BX_CPU_LEVEL < 6) { BX_PANIC(("PANIC: SSE support requires P6 emulation with MMX enabled !")); return; } } // enable CLFLUSH only when SSE2 or higher is enabled if (sse_enabled >= BX_CPUID_SUPPORT_SSE2) features_bitmask |= BX_ISA_CLFLUSH; // enable POPCNT if SSE4.2 is enabled if (sse_enabled >= BX_CPUID_SUPPORT_SSE4_2) features_bitmask |= BX_ISA_POPCNT; static bx_bool sse4a_enabled = SIM->get_param_bool(BXPN_CPUID_SSE4A)->get(); if (sse4a_enabled) { features_bitmask |= BX_ISA_SSE4A; if (! sse_enabled) { BX_PANIC(("PANIC: SSE4A require SSE to be enabled !")); return; } } static bx_bool sep_enabled = SIM->get_param_bool(BXPN_CPUID_SEP)->get(); if (sep_enabled) features_bitmask |= BX_ISA_SYSENTER_SYSEXIT; static bx_bool xsave_enabled = SIM->get_param_bool(BXPN_CPUID_XSAVE)->get(); if (xsave_enabled) { features_bitmask |= BX_ISA_XSAVE; if (! sse_enabled) { BX_PANIC(("PANIC: XSAVE emulation requires SSE support !")); return; } } static bx_bool xsaveopt_enabled = SIM->get_param_bool(BXPN_CPUID_XSAVEOPT)->get(); if (xsaveopt_enabled) { features_bitmask |= BX_ISA_XSAVEOPT; if (! xsave_enabled) { BX_PANIC(("PANIC: XSAVEOPT emulation requires XSAVE !")); return; } } static bx_bool aes_enabled = SIM->get_param_bool(BXPN_CPUID_AES)->get(); if (aes_enabled) { features_bitmask |= BX_ISA_AES_PCLMULQDQ; // AES required 3-byte opcode (SSS3E support or more) if (sse_enabled < BX_CPUID_SUPPORT_SSSE3) { BX_PANIC(("PANIC: AES support requires SSSE3 or higher !")); return; } } static bx_bool movbe_enabled = SIM->get_param_bool(BXPN_CPUID_MOVBE)->get(); if (movbe_enabled) { features_bitmask |= BX_ISA_MOVBE; // MOVBE required 3-byte opcode (SSS3E support or more) if (sse_enabled < BX_CPUID_SUPPORT_SSSE3) { BX_PANIC(("PANIC: MOVBE support requires SSSE3 or higher !")); return; } } static bx_bool adx_enabled = SIM->get_param_bool(BXPN_CPUID_ADX)->get(); if (adx_enabled) { features_bitmask |= BX_ISA_ADX; // ADX required 3-byte opcode (SSS3E support or more) if (sse_enabled < BX_CPUID_SUPPORT_SSSE3) { BX_PANIC(("PANIC: ADX support requires SSSE3 or higher !")); return; } } #if BX_SUPPORT_X86_64 static bx_bool x86_64_enabled = SIM->get_param_bool(BXPN_CPUID_X86_64)->get(); if (x86_64_enabled) { features_bitmask |= BX_ISA_CMPXCHG16B | BX_ISA_RDTSCP | BX_ISA_LM_LAHF_SAHF; if (sse_enabled < BX_CPUID_SUPPORT_SSE2) { BX_PANIC(("PANIC: x86-64 emulation requires SSE2 support !")); return; } if (! sep_enabled) { BX_PANIC(("PANIC: x86-64 emulation requires SYSENTER/SYSEXIT support !")); return; } static bx_bool fsgsbase_enabled = SIM->get_param_bool(BXPN_CPUID_FSGSBASE)->get(); if (fsgsbase_enabled) features_bitmask |= BX_ISA_FSGSBASE; static unsigned apic_enabled = SIM->get_param_enum(BXPN_CPUID_APIC)->get(); if (apic_enabled < BX_CPUID_SUPPORT_XAPIC) { BX_PANIC(("PANIC: x86-64 emulation requires XAPIC support !")); return; } } else { if (BX_SUPPORT_VMX >= 2) { BX_PANIC(("PANIC: VMXx2 emulation requires x86-64 support !")); return; } } #if BX_SUPPORT_AVX static unsigned avx_enabled = SIM->get_param_num(BXPN_CPUID_AVX)->get(); if (avx_enabled) { features_bitmask |= BX_ISA_AVX; if (! xsave_enabled) { BX_PANIC(("PANIC: AVX emulation requires XSAVE support !")); return; } if (! x86_64_enabled) { BX_PANIC(("PANIC: AVX emulation requires x86-64 support !")); return; } if (avx_enabled >= 2) features_bitmask |= BX_ISA_AVX2; } static bx_bool avx_f16c_enabled = SIM->get_param_bool(BXPN_CPUID_AVX_F16CVT)->get(); if (avx_f16c_enabled) { if (! avx_enabled) { BX_PANIC(("PANIC: Float16 convert emulation requires AVX support !")); return; } features_bitmask |= BX_ISA_AVX_F16C; } static bx_bool avx_fma_enabled = SIM->get_param_bool(BXPN_CPUID_AVX_FMA)->get(); if (avx_fma_enabled) { if (avx_enabled < 2) { BX_PANIC(("PANIC: FMA emulation requires AVX2 support !")); return; } features_bitmask |= BX_ISA_AVX_FMA; } static unsigned bmi_enabled = SIM->get_param_num(BXPN_CPUID_BMI)->get(); if (bmi_enabled) { features_bitmask |= BX_ISA_BMI1 | BX_ISA_LZCNT; if (! avx_enabled) { BX_PANIC(("PANIC: Bit Manipulation Instructions (BMI) emulation requires AVX support !")); return; } if (bmi_enabled >= 2) features_bitmask |= BX_ISA_BMI2; } static bx_bool fma4_enabled = SIM->get_param_bool(BXPN_CPUID_FMA4)->get(); if (fma4_enabled) { if (! avx_enabled) { BX_PANIC(("PANIC: FMA4 emulation requires AVX support !")); return; } features_bitmask |= BX_ISA_FMA4; } static bx_bool xop_enabled = SIM->get_param_bool(BXPN_CPUID_XOP)->get(); if (xop_enabled) { if (! avx_enabled) { BX_PANIC(("PANIC: XOP emulation requires AVX support !")); return; } features_bitmask |= BX_ISA_XOP; } static bx_bool tbm_enabled = SIM->get_param_bool(BXPN_CPUID_TBM)->get(); if (tbm_enabled) { if (! avx_enabled || ! xop_enabled) { BX_PANIC(("PANIC: TBM emulation requires AVX and XOP support !")); return; } features_bitmask |= BX_ISA_TBM; } #endif // BX_SUPPORT_AVX #endif // BX_SUPPORT_X86_64 #if BX_SUPPORT_VMX static unsigned vmx_enabled = SIM->get_param_num(BXPN_CPUID_VMX)->get(); if (vmx_enabled) { features_bitmask |= BX_ISA_VMX; if (! sep_enabled) { BX_PANIC(("PANIC: VMX emulation requires SYSENTER/SYSEXIT support !")); return; } } #endif #if BX_SUPPORT_SVM static unsigned svm_enabled = SIM->get_param_num(BXPN_CPUID_SVM)->get(); if (svm_enabled) { features_bitmask |= BX_ISA_SVM; if (! x86_64_enabled) { BX_PANIC(("PANIC: SVM emulation requires x86-64 support !")); return; } } #endif #if BX_SUPPORT_VMX && BX_SUPPORT_SVM if (vmx_enabled && svm_enabled) { BX_PANIC(("PANIC: VMX and SVM emulation cannot be enabled together in same configuration !")); return; } #endif #endif // CPU_LEVEL >= 6 #endif // CPU_LEVEL >= 5 #endif // CPU_LEVEL >= 4 this->isa_extensions_bitmask = features_bitmask; } void bx_generic_cpuid_t::init_cpu_extensions_bitmask(void) { Bit32u features_bitmask = 0; #if BX_SUPPORT_APIC static unsigned apic_enabled = SIM->get_param_enum(BXPN_CPUID_APIC)->get(); // determine SSE in runtime switch (apic_enabled) { #if BX_CPU_LEVEL >= 6 case BX_CPUID_SUPPORT_X2APIC: features_bitmask |= BX_CPU_X2APIC | BX_CPU_XAPIC; break; case BX_CPUID_SUPPORT_XAPIC_EXT: features_bitmask |= BX_CPU_XAPIC_EXT | BX_CPU_XAPIC; break; #endif case BX_CPUID_SUPPORT_XAPIC: features_bitmask |= BX_CPU_XAPIC; break; case BX_CPUID_SUPPORT_LEGACY_APIC: break; default: BX_PANIC(("unknown APIC option %d", apic_enabled)); }; #endif #if BX_CPU_LEVEL >= 5 features_bitmask |= BX_CPU_VME; features_bitmask |= BX_CPU_DEBUG_EXTENSIONS; features_bitmask |= BX_CPU_PSE; #if BX_CPU_LEVEL >= 6 features_bitmask |= BX_CPU_PAE; features_bitmask |= BX_CPU_PGE; #if BX_PHY_ADDRESS_LONG features_bitmask |= BX_CPU_PSE36; #endif features_bitmask |= BX_CPU_MTRR; features_bitmask |= BX_CPU_PAT; #if BX_SUPPORT_MISALIGNED_SSE features_bitmask |= BX_CPU_MISALIGNED_SSE; #endif static bx_bool smep_enabled = SIM->get_param_bool(BXPN_CPUID_SMEP)->get(); if (smep_enabled) features_bitmask |= BX_CPU_SMEP; #if BX_SUPPORT_X86_64 static bx_bool x86_64_enabled = SIM->get_param_bool(BXPN_CPUID_X86_64)->get(); if (x86_64_enabled) { features_bitmask |= BX_CPU_LONG_MODE | BX_CPU_FFXSR | BX_CPU_NX; static bx_bool pcid_enabled = SIM->get_param_bool(BXPN_CPUID_PCID)->get(); if (pcid_enabled) features_bitmask |= BX_CPU_PCID; static bx_bool xlarge_pages = SIM->get_param_bool(BXPN_CPUID_1G_PAGES)->get(); if (xlarge_pages) features_bitmask |= BX_CPU_1G_PAGES; } #if BX_SUPPORT_SVM static unsigned svm_enabled = SIM->get_param_num(BXPN_CPUID_SVM)->get(); if (svm_enabled) { features_bitmask |= BX_CPU_ALT_MOV_CR8 | BX_CPU_XAPIC_EXT; // auto-enable together with SVM } #endif #endif // BX_SUPPORT_X86_64 #endif // CPU_LEVEL >= 6 #endif // CPU_LEVEL >= 5 this->cpu_extensions_bitmask = features_bitmask; } #if BX_SUPPORT_VMX void bx_generic_cpuid_t::init_vmx_extensions_bitmask(void) { Bit32u features_bitmask = 0; static unsigned vmx_enabled = SIM->get_param_num(BXPN_CPUID_VMX)->get(); if (vmx_enabled) { features_bitmask |= BX_VMX_VIRTUAL_NMI; static bx_bool x86_64_enabled = SIM->get_param_bool(BXPN_CPUID_X86_64)->get(); if (x86_64_enabled) { features_bitmask |= BX_VMX_TPR_SHADOW | BX_VMX_APIC_VIRTUALIZATION | BX_VMX_WBINVD_VMEXIT; #if BX_SUPPORT_VMX >= 2 if (vmx_enabled >= 2) { features_bitmask |= BX_VMX_PREEMPTION_TIMER | BX_VMX_PAT | BX_VMX_EFER | BX_VMX_EPT | BX_VMX_VPID | BX_VMX_UNRESTRICTED_GUEST | BX_VMX_DESCRIPTOR_TABLE_EXIT | BX_VMX_X2APIC_VIRTUALIZATION | BX_VMX_PAUSE_LOOP_EXITING; features_bitmask |= BX_VMX_SAVE_DEBUGCTL_DISABLE | /* BX_VMX_MONITOR_TRAP_FLAG | */ // not implemented yet BX_VMX_PERF_GLOBAL_CTRL; } #endif } } this->vmx_extensions_bitmask = features_bitmask; } #endif #if BX_SUPPORT_SVM void bx_generic_cpuid_t::init_svm_extensions_bitmask(void) { Bit32u features_bitmask = 0; static bx_bool svm_enabled = SIM->get_param_bool(BXPN_CPUID_SVM)->get(); if (svm_enabled) { features_bitmask = BX_CPUID_SVM_NESTED_PAGING | BX_CPUID_SVM_NRIP_SAVE; } this->svm_extensions_bitmask = features_bitmask; } #endif /* * Get CPU version information: * * [3:0] Stepping ID * [7:4] Model: starts at 1 * [11:8] Family: 4=486, 5=Pentium, 6=PPro, ... * [13:12] Type: 0=OEM, 1=overdrive, 2=dual cpu, 3=reserved * [19:16] Extended Model * [27:29] Extended Family */ Bit32u bx_generic_cpuid_t::get_cpu_version_information(void) const { static Bit32u stepping = SIM->get_param_num(BXPN_CPUID_STEPPING)->get(); static Bit32u model = SIM->get_param_num(BXPN_CPUID_MODEL)->get(); static Bit32u family = SIM->get_param_num(BXPN_CPUID_FAMILY)->get(); if (family < 6 && family != BX_CPU_LEVEL) BX_PANIC(("PANIC: CPUID family %x not matching configured cpu level %d", family, BX_CPU_LEVEL)); return ((family & 0xfff0) << 16) | ((model & 0xf0) << 12) | ((family & 0x0f) << 8) | ((model & 0x0f) << 4) | stepping; } #if BX_CPU_LEVEL >= 6 /* Get CPU extended feature flags. */ Bit32u bx_generic_cpuid_t::get_extended_cpuid_features(void) const { // [0:0] SSE3: SSE3 Instructions // [1:1] PCLMULQDQ Instruction support // [2:2] DTES64: 64-bit DS area // [3:3] MONITOR/MWAIT support // [4:4] DS-CPL: CPL qualified debug store // [5:5] VMX: Virtual Machine Technology // [6:6] SMX: Secure Virtual Machine Technology // [7:7] EST: Enhanced Intel SpeedStep Technology // [8:8] TM2: Thermal Monitor 2 // [9:9] SSSE3: SSSE3 Instructions // [10:10] CNXT-ID: L1 context ID // [11:11] reserved // [12:12] FMA Instructions support // [13:13] CMPXCHG16B: CMPXCHG16B instruction support // [14:14] xTPR update control // [15:15] PDCM - Perfon and Debug Capability MSR // [16:16] reserved // [17:17] PCID: Process Context Identifiers // [18:18] DCA - Direct Cache Access // [19:19] SSE4.1 Instructions // [20:20] SSE4.2 Instructions // [21:21] X2APIC // [22:22] MOVBE instruction // [23:23] POPCNT instruction // [24:24] TSC Deadline // [25:25] AES Instructions // [26:26] XSAVE extensions support // [27:27] OSXSAVE support // [28:28] AVX extensions support // [29:29] AVX F16C - Float16 conversion support // [30:30] RDRAND instruction // [31:31] reserved Bit32u features = 0; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSE3)) features |= BX_CPUID_EXT_SSE3; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AES_PCLMULQDQ)) features |= BX_CPUID_EXT_PCLMULQDQ; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_MONITOR_MWAIT)) features |= BX_CPUID_EXT_MONITOR_MWAIT; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_VMX)) features |= BX_CPUID_EXT_VMX; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSSE3)) features |= BX_CPUID_EXT_SSSE3; #if BX_SUPPORT_X86_64 if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_LONG_MODE)) features |= BX_CPUID_EXT_CMPXCHG16B; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PCID)) features |= BX_CPUID_EXT_PCID; #endif if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSE4_1)) features |= BX_CPUID_EXT_SSE4_1; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSE4_2)) features |= BX_CPUID_EXT_SSE4_2; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_X2APIC)) features |= BX_CPUID_EXT_X2APIC; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_MOVBE)) features |= BX_CPUID_EXT_MOVBE; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_POPCNT)) features |= BX_CPUID_EXT_POPCNT; // support for AES if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AES_PCLMULQDQ)) features |= BX_CPUID_EXT_AES; // support XSAVE extensions if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_XSAVE)) { features |= BX_CPUID_EXT_XSAVE; if (cpu->cr4.get_OSXSAVE()) features |= BX_CPUID_EXT_OSXSAVE; } #if BX_SUPPORT_AVX if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AVX)) features |= BX_CPUID_EXT_AVX; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AVX_F16C)) features |= BX_CPUID_EXT_AVX_F16C; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AVX_FMA)) features |= BX_CPUID_EXT_FMA; #endif return features; } #endif /* Get CPU feature flags. Returned by CPUID functions 1 and 80000001. */ Bit32u bx_generic_cpuid_t::get_std_cpuid_features(void) const { // [0:0] FPU on chip // [1:1] VME: Virtual-8086 Mode enhancements // [2:2] DE: Debug Extensions (I/O breakpoints) // [3:3] PSE: Page Size Extensions // [4:4] TSC: Time Stamp Counter // [5:5] MSR: RDMSR and WRMSR support // [6:6] PAE: Physical Address Extensions // [7:7] MCE: Machine Check Exception // [8:8] CXS: CMPXCHG8B instruction // [9:9] APIC: APIC on Chip // [10:10] Reserved // [11:11] SYSENTER/SYSEXIT support // [12:12] MTRR: Memory Type Range Reg // [13:13] PGE/PTE Global Bit // [14:14] MCA: Machine Check Architecture // [15:15] CMOV: Cond Mov/Cmp Instructions // [16:16] PAT: Page Attribute Table // [17:17] PSE-36: Physical Address Extensions // [18:18] PSN: Processor Serial Number // [19:19] CLFLUSH: CLFLUSH Instruction support // [20:20] Reserved // [21:21] DS: Debug Store // [22:22] ACPI: Thermal Monitor and Software Controlled Clock Facilities // [23:23] MMX Technology // [24:24] FXSR: FXSAVE/FXRSTOR (also indicates CR4.OSFXSR is available) // [25:25] SSE: SSE Extensions // [26:26] SSE2: SSE2 Extensions // [27:27] Self Snoop // [28:28] Hyper Threading Technology // [29:29] TM: Thermal Monitor // [30:30] Reserved // [31:31] PBE: Pending Break Enable Bit32u features = 0; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_X87)) features |= BX_CPUID_STD_X87; #if BX_CPU_LEVEL >= 5 if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_PENTIUM)) { // Pentium only features features |= BX_CPUID_STD_TSC; features |= BX_CPUID_STD_MSR; // support Machine Check features |= BX_CPUID_STD_MCE | BX_CPUID_STD_MCA; features |= BX_CPUID_STD_CMPXCHG8B; } if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_VME)) features |= BX_CPUID_STD_VME; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_DEBUG_EXTENSIONS)) features |= BX_CPUID_STD_DEBUG_EXTENSIONS; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PSE)) features |= BX_CPUID_STD_PSE; #endif #if BX_SUPPORT_APIC // if MSR_APICBASE APIC Global Enable bit has been cleared, // the CPUID feature flag for the APIC is set to 0. if (cpu->msr.apicbase & 0x800) features |= BX_CPUID_STD_APIC; // APIC on chip #endif if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SYSENTER_SYSEXIT)) features |= BX_CPUID_STD_SYSENTER_SYSEXIT; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_CLFLUSH)) features |= BX_CPUID_STD_CLFLUSH; #if BX_CPU_LEVEL >= 5 if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_MMX)) features |= BX_CPUID_STD_MMX; #endif #if BX_CPU_LEVEL >= 6 if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_P6)) { features |= BX_CPUID_STD_CMOV; features |= BX_CPUID_STD_ACPI; } if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_MTRR)) features |= BX_CPUID_STD_MTRR; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PAT)) features |= BX_CPUID_STD_PAT; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PAE)) features |= BX_CPUID_STD_PAE; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PGE)) features |= BX_CPUID_STD_GLOBAL_PAGES; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PSE36)) features |= BX_CPUID_STD_PSE36; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSE)) features |= BX_CPUID_STD_FXSAVE_FXRSTOR | BX_CPUID_STD_SSE; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSE2)) features |= BX_CPUID_STD_SSE2; if (BX_CPU_VENDOR_INTEL) features |= BX_CPUID_STD_SELF_SNOOP; #endif features |= BX_CPUID_STD_HT; return features; } #if BX_CPU_LEVEL >= 6 /* Get CPU feature flags. Returned by CPUID function 80000001 in EDX register */ Bit32u bx_generic_cpuid_t::get_std2_cpuid_features(void) const { // Many of the bits in EDX are the same as EAX [*] for AMD // [*] [0:0] FPU on chip // [*] [1:1] VME: Virtual-8086 Mode enhancements // [*] [2:2] DE: Debug Extensions (I/O breakpoints) // [*] [3:3] PSE: Page Size Extensions // [*] [4:4] TSC: Time Stamp Counter // [*] [5:5] MSR: RDMSR and WRMSR support // [*] [6:6] PAE: Physical Address Extensions // [*] [7:7] MCE: Machine Check Exception // [*] [8:8] CXS: CMPXCHG8B instruction // [*] [9:9] APIC: APIC on Chip // [10:10] Reserved // [11:11] SYSCALL/SYSRET support // [*] [12:12] MTRR: Memory Type Range Reg // [*] [13:13] PGE/PTE Global Bit // [*] [14:14] MCA: Machine Check Architecture // [*] [15:15] CMOV: Cond Mov/Cmp Instructions // [*] [16:16] PAT: Page Attribute Table // [*] [17:17] PSE-36: Physical Address Extensions // [18:19] Reserved // [20:20] No-Execute page protection // [21:21] Reserved // [22:22] AMD MMX Extensions // [*] [23:23] MMX Technology // [*] [24:24] FXSR: FXSAVE/FXRSTOR (also indicates CR4.OSFXSR is available) // [25:25] Fast FXSAVE/FXRSTOR mode support // [26:26] 1G paging support // [27:27] Support RDTSCP Instruction // [28:28] Reserved // [29:29] Long Mode // [30:30] AMD 3DNow! Extensions // [31:31] AMD 3DNow! Instructions Bit32u features = BX_CPU_VENDOR_INTEL ? 0 : get_std_cpuid_features(); features &= 0x0183F3FF; #if BX_SUPPORT_3DNOW // only AMD is interesting in AMD MMX extensions features |= BX_CPUID_STD2_AMD_MMX_EXT | BX_CPUID_STD2_3DNOW_EXT | BX_CPUID_STD2_3DNOW; #endif #if BX_SUPPORT_X86_64 if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_LONG_MODE)) { features |= BX_CPUID_STD2_LONG_MODE; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_RDTSCP)) features |= BX_CPUID_STD2_RDTSCP; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_NX)) features |= BX_CPUID_STD2_NX; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_FFXSR)) features |= BX_CPUID_STD2_FFXSR; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_1G_PAGES)) features |= BX_CPUID_STD2_1G_PAGES; if (cpu->long64_mode()) features |= BX_CPUID_STD2_SYSCALL_SYSRET; } #endif return features; } /* Get CPU feature flags. Returned by CPUID function 80000001 in ECX register */ Bit32u bx_generic_cpuid_t::get_ext2_cpuid_features(void) const { // ECX: // [0:0] LAHF/SAHF instructions support in 64-bit mode // [1:1] CMP_Legacy: Core multi-processing legacy mode (AMD) // [2:2] SVM: Secure Virtual Machine (AMD) // [3:3] Extended APIC Space // [4:4] AltMovCR8: LOCK MOV CR0 means MOV CR8 // [5:5] LZCNT: LZCNT instruction support // [6:6] SSE4A: SSE4A Instructions support (deprecated?) // [7:7] Misaligned SSE support // [8:8] PREFETCHW: PREFETCHW instruction support // [9:9] OSVW: OS visible workarounds (AMD) // [10:10] IBS: Instruction based sampling // [11:11] XOP: Extended Operations Support and XOP Prefix // [12:12] SKINIT support // [13:13] WDT: Watchdog timer support // [14:14] reserved // [15:15] LWP: Light weight profiling // [16:16] FMA4: Four-operand FMA instructions support // [18:17] reserved // [19:19] NodeId: Indicates support for NodeId MSR (0xc001100c) // [20:20] reserved // [21:21] TBM: trailing bit manipulation instructions support // [22:22] Topology extensions support // [31:23] reserved Bit32u features = 0; #if BX_SUPPORT_X86_64 if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_LONG_MODE)) features |= BX_CPUID_EXT2_LAHF_SAHF | BX_CPUID_EXT2_PREFETCHW; #endif #if BX_SUPPORT_MISALIGNED_SSE features |= BX_CPUID_EXT2_MISALIGNED_SSE; #endif if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_LZCNT)) features |= BX_CPUID_EXT2_LZCNT; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSE4A)) features |= BX_CPUID_EXT2_SSE4A; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_XOP)) features |= BX_CPUID_EXT2_XOP; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_FMA4)) features |= BX_CPUID_EXT2_FMA4; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_TBM)) features |= BX_CPUID_EXT2_TBM; return features; } Bit32u bx_generic_cpuid_t::get_ext3_cpuid_features(void) const { Bit32u features = 0; // [0:0] FS/GS BASE access instructions // [2:1] reserved // [3:3] BMI1: Advanced Bit Manipulation Extensions // [4:4] reserved // [5:5] AVX2 // [6:6] reserved // [7:7] SMEP: Supervisor Mode Execution Protection // [8:8] BMI2: Advanced Bit Manipulation Extensions // [9:9] Support for Enhanced REP MOVSB/STOSB // [10:10] Support for INVPCID instruction // [31:10] reserved if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_FSGSBASE)) features |= BX_CPUID_EXT3_FSGSBASE; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_BMI1)) features |= BX_CPUID_EXT3_BMI1; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AVX2)) features |= BX_CPUID_EXT3_AVX2; if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_SMEP)) features |= BX_CPUID_EXT3_SMEP; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_BMI2)) features |= BX_CPUID_EXT3_BMI2; if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_INVPCID)) features |= BX_CPUID_EXT3_INVPCID; return features; } #endif void bx_generic_cpuid_t::dump_cpuid(void) const { struct cpuid_function_t leaf; unsigned n; for (n=0; n <= max_std_leaf; n++) { get_cpuid_leaf(n, 0x00000000, &leaf); BX_INFO(("CPUID[0x%08x]: %08x %08x %08x %08x", n, leaf.eax, leaf.ebx, leaf.ecx, leaf.edx)); } #if BX_CPU_LEVEL >= 6 if (max_ext_leaf > 0) { for (n=0x80000000; n <= max_ext_leaf; n++) { get_cpuid_leaf(n, 0x00000000, &leaf); BX_INFO(("CPUID[0x%08x]: %08x %08x %08x %08x", n, leaf.eax, leaf.ebx, leaf.ecx, leaf.edx)); } } #endif } bx_cpuid_t *create_bx_generic_cpuid(BX_CPU_C *cpu) { return new bx_generic_cpuid_t(cpu); } #endif