// Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_USE_CPU_SMF #define this (BX_CPU(0)) #endif void BX_CPU_C::UndefinedOpcode(BxInstruction_t *i) { BX_DEBUG(("UndefinedOpcode: %02x causes exception 6", (unsigned) i->b1)); exception(BX_UD_EXCEPTION, 0, 0); } void BX_CPU_C::NOP(BxInstruction_t *i) { } void BX_CPU_C::HLT(BxInstruction_t *i) { // hack to panic if HLT comes from BIOS if ( BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value == 0xf000 ) BX_PANIC(("HALT instruction encountered")); if (CPL!=0) { BX_INFO(("HLT(): CPL!=0")); exception(BX_GP_EXCEPTION, 0, 0); return; } if ( ! BX_CPU_THIS_PTR eflags.if_ ) { BX_INFO(("WARNING: HLT instruction with IF=0!")); } // stops instruction execution and places the processor in a // HALT state. An enabled interrupt, NMI, or reset will resume // execution. If interrupt (including NMI) is used to resume // execution after HLT, the saved CS:eIP points to instruction // following HLT. // artificial trap bit, why use another variable. BX_CPU_THIS_PTR debug_trap |= 0x80000000; // artificial trap BX_CPU_THIS_PTR async_event = 1; // so processor knows to check // Execution of this instruction completes. The processor // will remain in a halt state until one of the above conditions // is met. } void BX_CPU_C::CLTS(BxInstruction_t *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("CLTS: not implemented for < 286")); #else if (v8086_mode()) BX_PANIC(("clts: v8086 mode unsupported")); /* read errata file */ // does CLTS also clear NT flag??? // #GP(0) if CPL is not 0 if (CPL!=0) { BX_INFO(("CLTS(): CPL!=0")); exception(BX_GP_EXCEPTION, 0, 0); return; } BX_CPU_THIS_PTR cr0.ts = 0; BX_CPU_THIS_PTR cr0.val32 &= ~0x08; #endif } void BX_CPU_C::INVD(BxInstruction_t *i) { BX_INFO(("---------------")); BX_INFO(("- INVD called -")); BX_INFO(("---------------")); #if BX_CPU_LEVEL >= 4 invalidate_prefetch_q(); if (BX_CPU_THIS_PTR cr0.pe) { if (CPL!=0) { BX_INFO(("INVD: CPL!=0")); exception(BX_GP_EXCEPTION, 0, 0); } } BX_INSTR_CACHE_CNTRL(BX_INSTR_INVD); #else UndefinedOpcode(i); #endif } void BX_CPU_C::WBINVD(BxInstruction_t *i) { BX_INFO(("WBINVD: (ignoring)")); #if BX_CPU_LEVEL >= 4 invalidate_prefetch_q(); if (BX_CPU_THIS_PTR cr0.pe) { if (CPL!=0) { BX_INFO(("WBINVD: CPL!=0")); exception(BX_GP_EXCEPTION, 0, 0); } } BX_INSTR_CACHE_CNTRL(BX_INSTR_WBINVD); #else UndefinedOpcode(i); #endif } void BX_CPU_C::MOV_DdRd(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("MOV_DdRd: not supported on < 386")); #else Bit32u val_32; if (v8086_mode()) BX_PANIC(("MOV_DdRd: v8086 mode unsupported")); /* NOTES: * 32bit operands always used * r/m field specifies general register * mod field should always be 11 binary * reg field specifies which special register */ if (i->mod != 0xc0) { BX_PANIC(("MOV_DdRd(): rm field not a register!")); } invalidate_prefetch_q(); if (protected_mode() && CPL!=0) { BX_PANIC(("MOV_DdRd: CPL!=0")); /* #GP(0) if CPL is not 0 */ exception(BX_GP_EXCEPTION, 0, 0); } val_32 = BX_READ_32BIT_REG(i->rm); if (bx_dbg.dreg) BX_INFO(("MOV_DdRd: DR[%u]=%08xh unhandled", (unsigned) i->nnn, (unsigned) val_32)); switch (i->nnn) { case 0: // DR0 BX_CPU_THIS_PTR dr0 = val_32; break; case 1: // DR1 BX_CPU_THIS_PTR dr1 = val_32; break; case 2: // DR2 BX_CPU_THIS_PTR dr2 = val_32; break; case 3: // DR3 BX_CPU_THIS_PTR dr3 = val_32; break; case 4: // DR4 case 6: // DR6 // DR4 aliased to DR6 by default. With Debug Extensions on, // access to DR4 causes #UD #if BX_CPU_LEVEL >= 4 if ( (i->nnn == 4) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) { // Debug extensions on BX_INFO(("MOV_DdRd: access to DR4 causes #UD")); UndefinedOpcode(i); } #endif #if BX_CPU_LEVEL <= 4 // On 386/486 bit12 is settable BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) | (val_32 & 0x0000f00f); #else // On Pentium+, bit12 is always zero BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) | (val_32 & 0x0000e00f); #endif break; case 5: // DR5 case 7: // DR7 // Note: 486+ ignore GE and LE flags. On the 386, exact // data breakpoint matching does not occur unless it is enabled // by setting the LE and/or GE flags. // DR5 aliased to DR7 by default. With Debug Extensions on, // access to DR5 causes #UD #if BX_CPU_LEVEL >= 4 if ( (i->nnn == 5) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) { // Debug extensions (CR4.DE) on BX_INFO(("MOV_DdRd: access to DR5 causes #UD")); UndefinedOpcode(i); } #endif // Some sanity checks... if ( val_32 & 0x00002000 ) { BX_PANIC(("MOV_DdRd: GD bit not supported yet")); // Note: processor clears GD upon entering debug exception // handler, to allow access to the debug registers } if ( (((val_32>>16) & 3)==2) || (((val_32>>20) & 3)==2) || (((val_32>>24) & 3)==2) || (((val_32>>28) & 3)==2) ) { // IO breakpoints (10b) are not yet supported. BX_PANIC(("MOV_DdRd: write of %08x contains IO breakpoint", val_32)); } if ( (((val_32>>18) & 3)==2) || (((val_32>>22) & 3)==2) || (((val_32>>26) & 3)==2) || (((val_32>>30) & 3)==2) ) { // LEN0..3 contains undefined length specifier (10b) BX_PANIC(("MOV_DdRd: write of %08x contains undefined LENx", val_32)); } if ( ((((val_32>>16) & 3)==0) && (((val_32>>18) & 3)!=0)) || ((((val_32>>20) & 3)==0) && (((val_32>>22) & 3)!=0)) || ((((val_32>>24) & 3)==0) && (((val_32>>26) & 3)!=0)) || ((((val_32>>28) & 3)==0) && (((val_32>>30) & 3)!=0)) ) { // Instruction breakpoint with LENx not 00b (1-byte length) BX_PANIC(("MOV_DdRd: write of %08x, R/W=00b LEN!=00b", val_32)); } #if BX_CPU_LEVEL <= 4 // 386/486: you can play with all the bits except b10 is always 1 BX_CPU_THIS_PTR dr7 = val_32 | 0x00000400; #else // Pentium+: bits15,14,12 are hardwired to 0, rest are settable. // Even bits 11,10 are changeable though reserved. BX_CPU_THIS_PTR dr7 = (val_32 & 0xffff2fff) | 0x00000400; #endif break; default: BX_PANIC(("MOV_DdRd: control register index out of range")); break; } #endif } void BX_CPU_C::MOV_RdDd(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("MOV_RdDd: not supported on < 386")); #else Bit32u val_32; if (v8086_mode()) { BX_INFO(("MOV_RdDd: v8086 mode causes #GP")); exception(BX_GP_EXCEPTION, 0, 0); } if (i->mod != 0xc0) { BX_PANIC(("MOV_RdDd(): rm field not a register!")); UndefinedOpcode(i); } if (protected_mode() && (CPL!=0)) { BX_INFO(("MOV_RdDd: CPL!=0 causes #GP")); exception(BX_GP_EXCEPTION, 0, 0); return; } if (bx_dbg.dreg) BX_INFO(("MOV_RdDd: DR%u not implemented yet", i->nnn)); switch (i->nnn) { case 0: // DR0 val_32 = BX_CPU_THIS_PTR dr0; break; case 1: // DR1 val_32 = BX_CPU_THIS_PTR dr1; break; case 2: // DR2 val_32 = BX_CPU_THIS_PTR dr2; break; case 3: // DR3 val_32 = BX_CPU_THIS_PTR dr3; break; case 4: // DR4 case 6: // DR6 // DR4 aliased to DR6 by default. With Debug Extensions on, // access to DR4 causes #UD #if BX_CPU_LEVEL >= 4 if ( (i->nnn == 4) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) { // Debug extensions on BX_INFO(("MOV_RdDd: access to DR4 causes #UD")); UndefinedOpcode(i); } #endif val_32 = BX_CPU_THIS_PTR dr6; break; case 5: // DR5 case 7: // DR7 // DR5 aliased to DR7 by default. With Debug Extensions on, // access to DR5 causes #UD #if BX_CPU_LEVEL >= 4 if ( (i->nnn == 5) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) { // Debug extensions on BX_INFO(("MOV_RdDd: access to DR5 causes #UD")); UndefinedOpcode(i); } #endif val_32 = BX_CPU_THIS_PTR dr7; break; default: BX_PANIC(("MOV_RdDd: control register index out of range")); val_32 = 0; } BX_WRITE_32BIT_REG(i->rm, val_32); #endif } void BX_CPU_C::LMSW_Ew(BxInstruction_t *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("LMSW_Ew(): not supported on 8086!")); #else Bit16u msw; Bit32u cr0; if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported")); if ( protected_mode() ) { if ( CPL != 0 ) { BX_INFO(("LMSW: CPL != 0, CPL=%u", (unsigned) CPL)); exception(BX_GP_EXCEPTION, 0, 0); return; } } if (i->mod == 0xc0) { msw = BX_READ_16BIT_REG(i->rm); } else { read_virtual_word(i->seg, i->rm_addr, &msw); } // LMSW does not affect PG,CD,NW,AM,WP,NE,ET bits, and cannot clear PE // LMSW cannot clear PE if ( ((msw & 0x0001)==0) && BX_CPU_THIS_PTR cr0.pe ) { msw |= 0x0001; // adjust PE bit to current value of 1 } msw &= 0x000f; // LMSW only affects last 4 flags cr0 = (BX_CPU_THIS_PTR cr0.val32 & 0xfffffff0) | msw; SetCR0(cr0); #endif /* BX_CPU_LEVEL < 2 */ } void BX_CPU_C::SMSW_Ew(BxInstruction_t *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("SMSW_Ew: not supported yet!")); #else Bit16u msw; #if BX_CPU_LEVEL == 2 msw = 0xfff0; /* 80286 init value */ msw |= (BX_CPU_THIS_PTR cr0.ts << 3) | (BX_CPU_THIS_PTR cr0.em << 2) | (BX_CPU_THIS_PTR cr0.mp << 1) | BX_CPU_THIS_PTR cr0.pe; #else /* 386+ */ /* reserved bits 0 ??? */ /* should NE bit be included here ??? */ // should ET bit be included here (AW) msw = (BX_CPU_THIS_PTR cr0.ts << 3) | (BX_CPU_THIS_PTR cr0.em << 2) | (BX_CPU_THIS_PTR cr0.mp << 1) | BX_CPU_THIS_PTR cr0.pe; #endif if (i->mod == 0xc0) { if (i->os_32) { BX_WRITE_32BIT_REG(i->rm, msw); // zeros out high 16bits } else { BX_WRITE_16BIT_REG(i->rm, msw); } } else { write_virtual_word(i->seg, i->rm_addr, &msw); } #endif } void BX_CPU_C::MOV_CdRd(BxInstruction_t *i) { // mov general register data to control register #if BX_CPU_LEVEL < 3 BX_PANIC(("MOV_CdRd: not supported on < 386")); #else Bit32u val_32; if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported")); /* NOTES: * 32bit operands always used * r/m field specifies general register * mod field should always be 11 binary * reg field specifies which special register */ if (i->mod != 0xc0) { BX_PANIC(("MOV_CdRd(): rm field not a register!")); } invalidate_prefetch_q(); if (protected_mode() && CPL!=0) { BX_PANIC(("MOV_CdRd: CPL!=0")); /* #GP(0) if CPL is not 0 */ exception(BX_GP_EXCEPTION, 0, 0); return; } val_32 = BX_READ_32BIT_REG(i->rm); switch (i->nnn) { case 0: // CR0 (MSW) // BX_INFO(("MOV_CdRd:CR0: R32 = %08x\n @CS:EIP %04x:%04x ", // (unsigned) val_32, // (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, // (unsigned) BX_CPU_THIS_PTR eip)); SetCR0(val_32); break; case 1: /* CR1 */ BX_PANIC(("MOV_CdRd: CR1 not implemented yet")); break; case 2: /* CR2 */ BX_DEBUG(("MOV_CdRd: CR2 not implemented yet")); BX_DEBUG(("MOV_CdRd: CR2 = reg")); BX_CPU_THIS_PTR cr2 = val_32; break; case 3: // CR3 if (bx_dbg.creg) BX_INFO(("MOV_CdRd:CR3 = %08x", (unsigned) val_32)); // Reserved bits take on value of MOV instruction CR3_change(val_32); BX_INSTR_TLB_CNTRL(BX_INSTR_MOV_CR3, val_32); break; case 4: // CR4 #if BX_CPU_LEVEL == 3 BX_PANIC(("MOV_CdRd: write to CR4 of 0x%08x on 386", val_32)); UndefinedOpcode(i); #else // Protected mode: #GP(0) if attempt to write a 1 to // any reserved bit of CR4 BX_INFO(("MOV_CdRd: ignoring write to CR4 of 0x%08x", val_32)); if (val_32) { BX_INFO(("MOV_CdRd: (CR4) write of 0x%08x not supported!", val_32)); } // Only allow writes of 0 to CR4 for now. // Writes to bits in CR4 should not be 1s as CPUID // returns not-supported for all of these features. BX_CPU_THIS_PTR cr4 = 0; #endif break; default: BX_PANIC(("MOV_CdRd: control register index out of range")); break; } #endif } void BX_CPU_C::MOV_RdCd(BxInstruction_t *i) { // mov control register data to register #if BX_CPU_LEVEL < 3 BX_PANIC(("MOV_RdCd: not supported on < 386")); #else Bit32u val_32; if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported")); /* NOTES: * 32bit operands always used * r/m field specifies general register * mod field should always be 11 binary * reg field specifies which special register */ if (i->mod != 0xc0) { BX_PANIC(("MOV_RdCd(): rm field not a register!")); } if (protected_mode() && CPL!=0) { BX_PANIC(("MOV_RdCd: CPL!=0")); /* #GP(0) if CPL is not 0 */ exception(BX_GP_EXCEPTION, 0, 0); return; } switch (i->nnn) { case 0: // CR0 (MSW) val_32 = BX_CPU_THIS_PTR cr0.val32; #if 0 BX_INFO(("MOV_RdCd:CR0: R32 = %08x\n @CS:EIP %04x:%04x", (unsigned) val_32, (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, (unsigned) BX_CPU_THIS_PTR eip)); #endif break; case 1: /* CR1 */ BX_PANIC(("MOV_RdCd: CR1 not implemented yet")); val_32 = 0; break; case 2: /* CR2 */ if (bx_dbg.creg) BX_INFO(("MOV_RdCd: CR2")); val_32 = BX_CPU_THIS_PTR cr2; break; case 3: // CR3 if (bx_dbg.creg) BX_INFO(("MOV_RdCd: reading CR3")); val_32 = BX_CPU_THIS_PTR cr3; break; case 4: // CR4 #if BX_CPU_LEVEL == 3 val_32 = 0; BX_INFO(("MOV_RdCd: read of CR4 causes #UD")); UndefinedOpcode(i); #else BX_INFO(("MOV_RdCd: read of CR4")); val_32 = BX_CPU_THIS_PTR cr4; #endif break; default: BX_PANIC(("MOV_RdCd: control register index out of range")); val_32 = 0; } BX_WRITE_32BIT_REG(i->rm, val_32); #endif } void BX_CPU_C::MOV_TdRd(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("MOV_TdRd:")); #elif BX_CPU_LEVEL <= 4 BX_PANIC(("MOV_TdRd:")); #else // Pentium+ does not have TRx. They were redesigned using the MSRs. BX_INFO(("MOV_TdRd: causes #UD")); UndefinedOpcode(i); #endif } void BX_CPU_C::MOV_RdTd(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("MOV_RdTd:")); #elif BX_CPU_LEVEL <= 4 BX_PANIC(("MOV_RdTd:")); #else // Pentium+ does not have TRx. They were redesigned using the MSRs. BX_INFO(("MOV_RdTd: causes #UD")); UndefinedOpcode(i); #endif } void BX_CPU_C::LOADALL(BxInstruction_t *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("undocumented LOADALL instruction not supported on 8086")); #else Bit16u msw, tr, flags, ip, ldtr; Bit16u ds_raw, ss_raw, cs_raw, es_raw; Bit16u di, si, bp, sp, bx, dx, cx, ax; Bit16u base_15_0, limit; Bit8u base_23_16, access; if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported")); #if BX_CPU_LEVEL > 2 BX_PANIC(("loadall: not implemented for 386")); /* ??? need to set G and other bits, and compute .limit_scaled also */ /* for all segments CS,DS,SS,... */ #endif if (BX_CPU_THIS_PTR cr0.pe) { BX_PANIC(( "LOADALL not yet supported for protected mode")); } BX_PANIC(("LOADALL: handle CR0.val32")); /* MSW */ BX_CPU_THIS_PTR mem->read_physical(this, 0x806, 2, &msw); BX_CPU_THIS_PTR cr0.pe = (msw & 0x01); msw >>= 1; BX_CPU_THIS_PTR cr0.mp = (msw & 0x01); msw >>= 1; BX_CPU_THIS_PTR cr0.em = (msw & 0x01); msw >>= 1; BX_CPU_THIS_PTR cr0.ts = (msw & 0x01); //BX_INFO(("LOADALL: pe=%u, mp=%u, em=%u, ts=%u", // (unsigned) BX_CPU_THIS_PTR cr0.pe, (unsigned) BX_CPU_THIS_PTR cr0.mp, // (unsigned) BX_CPU_THIS_PTR cr0.em, (unsigned) BX_CPU_THIS_PTR cr0.ts)); if (BX_CPU_THIS_PTR cr0.pe || BX_CPU_THIS_PTR cr0.mp || BX_CPU_THIS_PTR cr0.em || BX_CPU_THIS_PTR cr0.ts) BX_PANIC(("LOADALL set PE, MP, EM or TS bits in MSW!")); /* TR */ BX_CPU_THIS_PTR mem->read_physical(this, 0x816, 2, &tr); BX_CPU_THIS_PTR tr.selector.value = tr; BX_CPU_THIS_PTR tr.selector.rpl = (tr & 0x03); tr >>= 2; BX_CPU_THIS_PTR tr.selector.ti = (tr & 0x01); tr >>= 1; BX_CPU_THIS_PTR tr.selector.index = tr; BX_CPU_THIS_PTR mem->read_physical(this, 0x860, 2, &base_15_0); BX_CPU_THIS_PTR mem->read_physical(this, 0x862, 1, &base_23_16); BX_CPU_THIS_PTR mem->read_physical(this, 0x863, 1, &access); BX_CPU_THIS_PTR mem->read_physical(this, 0x864, 2, &limit); BX_CPU_THIS_PTR tr.cache.valid = BX_CPU_THIS_PTR tr.cache.p = (access & 0x80) >> 7; BX_CPU_THIS_PTR tr.cache.dpl = (access & 0x60) >> 5; BX_CPU_THIS_PTR tr.cache.segment = (access & 0x10) >> 4; BX_CPU_THIS_PTR tr.cache.type = (access & 0x0f); BX_CPU_THIS_PTR tr.cache.u.tss286.base = (base_23_16 << 16) | base_15_0; BX_CPU_THIS_PTR tr.cache.u.tss286.limit = limit; if ( (BX_CPU_THIS_PTR tr.selector.value & 0xfffc) == 0 ) { BX_CPU_THIS_PTR tr.cache.valid = 0; } if ( BX_CPU_THIS_PTR tr.cache.valid == 0 ) { } if ( BX_CPU_THIS_PTR tr.cache.u.tss286.limit < 43 ) { BX_CPU_THIS_PTR tr.cache.valid = 0; } if ( BX_CPU_THIS_PTR tr.cache.type != 1 ) { BX_CPU_THIS_PTR tr.cache.valid = 0; } if ( BX_CPU_THIS_PTR tr.cache.segment ) { BX_CPU_THIS_PTR tr.cache.valid = 0; } if (BX_CPU_THIS_PTR tr.cache.valid==0) { BX_CPU_THIS_PTR tr.cache.u.tss286.base = 0; BX_CPU_THIS_PTR tr.cache.u.tss286.limit = 0; BX_CPU_THIS_PTR tr.cache.p = 0; BX_CPU_THIS_PTR tr.selector.value = 0; BX_CPU_THIS_PTR tr.selector.index = 0; BX_CPU_THIS_PTR tr.selector.ti = 0; BX_CPU_THIS_PTR tr.selector.rpl = 0; } /* FLAGS */ BX_CPU_THIS_PTR mem->read_physical(this, 0x818, 2, &flags); write_flags(flags, 1, 1); /* IP */ BX_CPU_THIS_PTR mem->read_physical(this, 0x81a, 2, &ip); IP = ip; /* LDTR */ BX_CPU_THIS_PTR mem->read_physical(this, 0x81c, 2, &ldtr); BX_CPU_THIS_PTR ldtr.selector.value = ldtr; BX_CPU_THIS_PTR ldtr.selector.rpl = (ldtr & 0x03); ldtr >>= 2; BX_CPU_THIS_PTR ldtr.selector.ti = (ldtr & 0x01); ldtr >>= 1; BX_CPU_THIS_PTR ldtr.selector.index = ldtr; if ( (BX_CPU_THIS_PTR ldtr.selector.value & 0xfffc) == 0 ) { BX_CPU_THIS_PTR ldtr.cache.valid = 0; BX_CPU_THIS_PTR ldtr.cache.p = 0; BX_CPU_THIS_PTR ldtr.cache.segment = 0; BX_CPU_THIS_PTR ldtr.cache.type = 0; BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = 0; BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = 0; BX_CPU_THIS_PTR ldtr.selector.value = 0; BX_CPU_THIS_PTR ldtr.selector.index = 0; BX_CPU_THIS_PTR ldtr.selector.ti = 0; } else { BX_CPU_THIS_PTR mem->read_physical(this, 0x854, 2, &base_15_0); BX_CPU_THIS_PTR mem->read_physical(this, 0x856, 1, &base_23_16); BX_CPU_THIS_PTR mem->read_physical(this, 0x857, 1, &access); BX_CPU_THIS_PTR mem->read_physical(this, 0x858, 2, &limit); BX_CPU_THIS_PTR ldtr.cache.valid = BX_CPU_THIS_PTR ldtr.cache.p = access >> 7; BX_CPU_THIS_PTR ldtr.cache.dpl = (access >> 5) & 0x03; BX_CPU_THIS_PTR ldtr.cache.segment = (access >> 4) & 0x01; BX_CPU_THIS_PTR ldtr.cache.type = (access & 0x0f); BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = (base_23_16 << 16) | base_15_0; BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = limit; if (access == 0) { BX_PANIC(("loadall: LDTR case access byte=0.")); } if ( BX_CPU_THIS_PTR ldtr.cache.valid==0 ) { BX_PANIC(("loadall: ldtr.valid=0")); } if (BX_CPU_THIS_PTR ldtr.cache.segment) { /* not a system segment */ BX_INFO((" AR byte = %02x", (unsigned) access)); BX_PANIC(("loadall: LDTR descriptor cache loaded with non system segment")); } if ( BX_CPU_THIS_PTR ldtr.cache.type != 2 ) { BX_PANIC(("loadall: LDTR.type(%u) != 2", (unsigned) (access & 0x0f))); } } /* DS */ BX_CPU_THIS_PTR mem->read_physical(this, 0x81e, 2, &ds_raw); BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = ds_raw; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl = (ds_raw & 0x03); ds_raw >>= 2; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti = (ds_raw & 0x01); ds_raw >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index = ds_raw; BX_CPU_THIS_PTR mem->read_physical(this, 0x848, 2, &base_15_0); BX_CPU_THIS_PTR mem->read_physical(this, 0x84a, 1, &base_23_16); BX_CPU_THIS_PTR mem->read_physical(this, 0x84b, 1, &access); BX_CPU_THIS_PTR mem->read_physical(this, 0x84c, 2, &limit); BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = (base_23_16 << 16) | base_15_0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = limit; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = (access & 0x03); access >>= 2; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = (access & 0x01); if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value & 0xfffc) == 0 ) { BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0; } if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid==0 || BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment==0) { BX_PANIC(("loadall: DS invalid")); } /* SS */ BX_CPU_THIS_PTR mem->read_physical(this, 0x820, 2, &ss_raw); BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = ss_raw; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = (ss_raw & 0x03); ss_raw >>= 2; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = (ss_raw & 0x01); ss_raw >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = ss_raw; BX_CPU_THIS_PTR mem->read_physical(this, 0x842, 2, &base_15_0); BX_CPU_THIS_PTR mem->read_physical(this, 0x844, 1, &base_23_16); BX_CPU_THIS_PTR mem->read_physical(this, 0x845, 1, &access); BX_CPU_THIS_PTR mem->read_physical(this, 0x846, 2, &limit); BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = (base_23_16 << 16) | base_15_0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = limit; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl = (access & 0x03); access >>= 2; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p = (access & 0x01); if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value & 0xfffc) == 0 ) { BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0; } if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid==0 || BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment==0) { BX_PANIC(("loadall: SS invalid")); } /* CS */ BX_CPU_THIS_PTR mem->read_physical(this, 0x822, 2, &cs_raw); BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = cs_raw; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = (cs_raw & 0x03); cs_raw >>= 2; //BX_INFO(("LOADALL: setting cs.selector.rpl to %u", // (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl)); BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = (cs_raw & 0x01); cs_raw >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = cs_raw; BX_CPU_THIS_PTR mem->read_physical(this, 0x83c, 2, &base_15_0); BX_CPU_THIS_PTR mem->read_physical(this, 0x83e, 1, &base_23_16); BX_CPU_THIS_PTR mem->read_physical(this, 0x83f, 1, &access); BX_CPU_THIS_PTR mem->read_physical(this, 0x840, 2, &limit); BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = (base_23_16 << 16) | base_15_0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = limit; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = (access & 0x03); access >>= 2; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = (access & 0x01); if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value & 0xfffc) == 0 ) { BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0; } if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid==0 || BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment==0) { BX_PANIC(("loadall: CS invalid")); } /* ES */ BX_CPU_THIS_PTR mem->read_physical(this, 0x824, 2, &es_raw); BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = es_raw; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl = (es_raw & 0x03); es_raw >>= 2; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti = (es_raw & 0x01); es_raw >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index = es_raw; BX_CPU_THIS_PTR mem->read_physical(this, 0x836, 2, &base_15_0); BX_CPU_THIS_PTR mem->read_physical(this, 0x838, 1, &base_23_16); BX_CPU_THIS_PTR mem->read_physical(this, 0x839, 1, &access); BX_CPU_THIS_PTR mem->read_physical(this, 0x83a, 2, &limit); BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base = (base_23_16 << 16) | base_15_0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit = limit; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.a = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.r_w = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.c_ed = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.executable = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment = (access & 0x01); access >>= 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl = (access & 0x03); access >>= 2; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p = (access & 0x01); #if 0 BX_INFO(("cs.dpl = %02x", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl)); BX_INFO(("ss.dpl = %02x", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl)); BX_INFO(("BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].dpl = %02x", (unsigned) BX_CPU_THIS_PTR ds.cache.dpl)); BX_INFO(("BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].dpl = %02x", (unsigned) BX_CPU_THIS_PTR es.cache.dpl)); BX_INFO(("LOADALL: setting cs.selector.rpl to %u", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl)); BX_INFO(("LOADALL: setting ss.selector.rpl to %u", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl)); BX_INFO(("LOADALL: setting ds.selector.rpl to %u", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl)); BX_INFO(("LOADALL: setting es.selector.rpl to %u", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl)); #endif if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value & 0xfffc) == 0 ) { BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0; } if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid==0 || BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment==0) { BX_PANIC(("loadall: ES invalid")); } /* DI */ BX_CPU_THIS_PTR mem->read_physical(this, 0x826, 2, &di); DI = di; /* SI */ BX_CPU_THIS_PTR mem->read_physical(this, 0x828, 2, &si); SI = si; /* BP */ BX_CPU_THIS_PTR mem->read_physical(this, 0x82a, 2, &bp); BP = bp; /* SP */ BX_CPU_THIS_PTR mem->read_physical(this, 0x82c, 2, &sp); SP = sp; /* BX */ BX_CPU_THIS_PTR mem->read_physical(this, 0x82e, 2, &bx); BX = bx; /* DX */ BX_CPU_THIS_PTR mem->read_physical(this, 0x830, 2, &dx); DX = dx; /* CX */ BX_CPU_THIS_PTR mem->read_physical(this, 0x832, 2, &cx); CX = cx; /* AX */ BX_CPU_THIS_PTR mem->read_physical(this, 0x834, 2, &ax); AX = ax; /* GDTR */ BX_CPU_THIS_PTR mem->read_physical(this, 0x84e, 2, &base_15_0); BX_CPU_THIS_PTR mem->read_physical(this, 0x850, 1, &base_23_16); BX_CPU_THIS_PTR mem->read_physical(this, 0x851, 1, &access); BX_CPU_THIS_PTR mem->read_physical(this, 0x852, 2, &limit); BX_CPU_THIS_PTR gdtr.base = (base_23_16 << 16) | base_15_0; BX_CPU_THIS_PTR gdtr.limit = limit; #if 0 if (access) BX_INFO(("LOADALL: GDTR access bits not 0 (%02x).", (unsigned) access)); #endif /* IDTR */ BX_CPU_THIS_PTR mem->read_physical(this, 0x85a, 2, &base_15_0); BX_CPU_THIS_PTR mem->read_physical(this, 0x85c, 1, &base_23_16); BX_CPU_THIS_PTR mem->read_physical(this, 0x85d, 1, &access); BX_CPU_THIS_PTR mem->read_physical(this, 0x85e, 2, &limit); BX_CPU_THIS_PTR idtr.base = (base_23_16 << 16) | base_15_0; BX_CPU_THIS_PTR idtr.limit = limit; #endif } void BX_CPU_C::CPUID(BxInstruction_t *i) { #if BX_CPU_LEVEL >= 4 unsigned type, family, model, stepping, features; #endif invalidate_prefetch_q(); #if BX_CPU_LEVEL >= 4 switch (EAX) { case 0: // EAX: highest input value understood by CPUID // EBX: vendor ID string // EDX: vendor ID string // ECX: vendor ID string EAX = 1; // 486 or pentium EBX = 0x756e6547; // "Genu" EDX = 0x49656e69; // "ineI" ECX = 0x6c65746e; // "ntel" break; case 1: // EAX[3:0] Stepping ID // EAX[7:4] Model: starts at 1 // EAX[11:8] Family: 4=486, 5=Pentium, 6=PPro // EAX[13:12] Type: 0=OEM,1=overdrive,2=dual cpu,3=reserved // EAX[31:14] Reserved // EBX: Reserved (0) // ECX: Reserved (0) // EDX: Feature Flags // [0:0] FPU on chip // [1:1] VME: Virtual-8086 Mode enhancements // [2:2] DE: Debug Extensions (I/O breakpoints) // [3:3] PSE: Page Size Extensions // [4:4] TSC: Time Stamp Counter // [5:5] MSR: RDMSR and WRMSR support // [6:6] PAE: Physical Address Extensions // [7:7] MCE: Machine Check Exception // [8:8] CXS: CMPXCHG8B instruction // [9:9] APIC: APIC on Chip // [11:10] Reserved // [12:12] MTRR: Memory Type Range Reg // [13:13] PGE/PTE Global Bit // [14:14] MCA: Machine Check Architecture // [15:15] CMOV: Cond Mov/Cmp Instructions // [22:16] Reserved // [23:23] MMX Technology // [31:24] Reserved features = 0; // start with none type = 0; // OEM #if BX_CPU_LEVEL == 4 family = 4; # if BX_SUPPORT_FPU // 486dx model = 1; stepping = 3; features |= 0x01; # else // 486sx model = 2; stepping = 3; # endif #elif BX_CPU_LEVEL == 5 family = 5; model = 1; // Pentium (60,66) stepping = 3; // ??? features |= (1<<4); // implement TSC # if BX_SUPPORT_FPU features |= 0x01; # endif #elif BX_CPU_LEVEL == 6 family = 6; model = 1; // Pentium Pro stepping = 3; // ??? features |= (1<<4); // implement TSC # if BX_SUPPORT_APIC features |= (1<<9); // APIC on chip # endif # if BX_SUPPORT_FPU features |= 0x01; // has FPU # endif #else BX_PANIC(("CPUID: not implemented for > 6")); #endif EAX = (family <<8) | (model<<4) | stepping; EBX = ECX = 0; // reserved EDX = features; break; default: EAX = EBX = ECX = EDX = 0; // Reserved, undefined break; } #else BX_PANIC(("CPUID: not available on < late 486")); #endif } void BX_CPU_C::SetCR0(Bit32u val_32) { // from either MOV_CdRd() or debug functions // protection checks made already or forcing from debug Boolean prev_pe, prev_pg; prev_pe = BX_CPU_THIS_PTR cr0.pe; prev_pg = BX_CPU_THIS_PTR cr0.pg; BX_CPU_THIS_PTR cr0.pe = val_32 & 0x01; BX_CPU_THIS_PTR cr0.mp = (val_32 >> 1) & 0x01; BX_CPU_THIS_PTR cr0.em = (val_32 >> 2) & 0x01; BX_CPU_THIS_PTR cr0.ts = (val_32 >> 3) & 0x01; // cr0.et is hardwired to 1 #if BX_CPU_LEVEL >= 4 BX_CPU_THIS_PTR cr0.ne = (val_32 >> 5) & 0x01; BX_CPU_THIS_PTR cr0.wp = (val_32 >> 16) & 0x01; BX_CPU_THIS_PTR cr0.am = (val_32 >> 18) & 0x01; BX_CPU_THIS_PTR cr0.nw = (val_32 >> 29) & 0x01; BX_CPU_THIS_PTR cr0.cd = (val_32 >> 30) & 0x01; #endif BX_CPU_THIS_PTR cr0.pg = (val_32 >> 31) & 0x01; // handle reserved bits behaviour #if BX_CPU_LEVEL == 3 BX_CPU_THIS_PTR cr0.val32 = val_32 | 0x7ffffff0; #elif BX_CPU_LEVEL == 4 BX_CPU_THIS_PTR cr0.val32 = (val_32 | 0x00000010) & 0xe005003f; #elif BX_CPU_LEVEL == 5 BX_CPU_THIS_PTR cr0.val32 = val_32 | 0x00000010; #elif BX_CPU_LEVEL == 6 BX_CPU_THIS_PTR cr0.val32 = (val_32 | 0x00000010) & 0xe005003f; #else #error "MOV_CdRd: implement reserved bits behaviour for this CPU_LEVEL" #endif //if (BX_CPU_THIS_PTR cr0.ts) // BX_INFO(("MOV_CdRd:CR0.TS set 0x%x", (unsigned) val_32)); if (prev_pe==0 && BX_CPU_THIS_PTR cr0.pe) { enter_protected_mode(); } else if (prev_pe==1 && BX_CPU_THIS_PTR cr0.pe==0) { enter_real_mode(); } if (prev_pg==0 && BX_CPU_THIS_PTR cr0.pg) enable_paging(); else if (prev_pg==1 && BX_CPU_THIS_PTR cr0.pg==0) disable_paging(); } void BX_CPU_C::RSM(BxInstruction_t *i) { #if BX_CPU_LEVEL >= 4 invalidate_prefetch_q(); BX_PANIC(("RSM: System Management Mode not implemented yet")); #else UndefinedOpcode(i); #endif } void BX_CPU_C::RDTSC(BxInstruction_t *i) { #if BX_CPU_LEVEL >= 5 Boolean tsd = (BX_CPU_THIS_PTR cr4 & 4)? 1 : 0; Boolean cpl = CPL; if ((tsd==0) || (tsd==1 && cpl==0)) { // return ticks Bit64u ticks = bx_pc_system.time_ticks (); EAX = (Bit32u) (ticks & 0xffffffff); EDX = (Bit32u) ((ticks >> 32) & 0xffffffff); //BX_INFO(("RDTSC: returning EDX:EAX = %08x:%08x", EDX, EAX)); } else { // not allowed to use RDTSC! exception (BX_GP_EXCEPTION, 0, 0); } #else UndefinedOpcode(i); #endif } void BX_CPU_C::RDMSR(BxInstruction_t *i) { #if BX_CPU_LEVEL >= 5 BX_ERROR(("RDMSR: not implemented yet")); UndefinedOpcode(i); #else UndefinedOpcode(i); #endif } void BX_CPU_C::WRMSR(BxInstruction_t *i) { #if BX_CPU_LEVEL >= 5 invalidate_prefetch_q(); BX_PANIC(( "WRMSR: not implemented yet")); #else UndefinedOpcode(i); #endif } #if BX_X86_DEBUGGER Bit32u BX_CPU_C::hwdebug_compare(Bit32u laddr_0, unsigned size, unsigned opa, unsigned opb) { // Support x86 hardware debug facilities (DR0..DR7) Bit32u dr7 = BX_CPU_THIS_PTR dr7; Boolean ibpoint_found = 0; Bit32u laddr_n = laddr_0 + (size - 1); Bit32u dr0, dr1, dr2, dr3; Bit32u dr0_n, dr1_n, dr2_n, dr3_n; Bit32u len0, len1, len2, len3; static unsigned alignment_mask[4] = // 00b=1 01b=2 10b=undef 11b=4 { 0xffffffff, 0xfffffffe, 0xffffffff, 0xfffffffc }; Bit32u dr0_op, dr1_op, dr2_op, dr3_op; len0 = (dr7>>18) & 3; len1 = (dr7>>22) & 3; len2 = (dr7>>26) & 3; len3 = (dr7>>30) & 3; dr0 = BX_CPU_THIS_PTR dr0 & alignment_mask[len0]; dr1 = BX_CPU_THIS_PTR dr1 & alignment_mask[len1]; dr2 = BX_CPU_THIS_PTR dr2 & alignment_mask[len2]; dr3 = BX_CPU_THIS_PTR dr3 & alignment_mask[len3]; dr0_n = dr0 + len0; dr1_n = dr1 + len1; dr2_n = dr2 + len2; dr3_n = dr3 + len3; dr0_op = (dr7>>16) & 3; dr1_op = (dr7>>20) & 3; dr2_op = (dr7>>24) & 3; dr3_op = (dr7>>28) & 3; // See if this instruction address matches any breakpoints if ( (dr7 & 0x00000003) ) { if ( (dr0_op==opa || dr0_op==opb) && (laddr_0 <= dr0_n) && (laddr_n >= dr0) ) ibpoint_found = 1; } if ( (dr7 & 0x0000000c) ) { if ( (dr1_op==opa || dr1_op==opb) && (laddr_0 <= dr1_n) && (laddr_n >= dr1) ) ibpoint_found = 1; } if ( (dr7 & 0x00000030) ) { if ( (dr2_op==opa || dr2_op==opb) && (laddr_0 <= dr2_n) && (laddr_n >= dr2) ) ibpoint_found = 1; } if ( (dr7 & 0x000000c0) ) { if ( (dr3_op==opa || dr3_op==opb) && (laddr_0 <= dr3_n) && (laddr_n >= dr3) ) ibpoint_found = 1; } // If *any* enabled breakpoints matched, then we need to // set status bits for *all* breakpoints, even disabled ones, // as long as they meet the other breakpoint criteria. // This code is similar to that above, only without the // breakpoint enabled check. Seems weird to duplicate effort, // but its more efficient to do it this way. if (ibpoint_found) { // dr6_mask is the return value. These bits represent the bits to // be OR'd into DR6 as a result of the debug event. Bit32u dr6_mask=0; if ( (dr0_op==opa || dr0_op==opb) && (laddr_0 <= dr0_n) && (laddr_n >= dr0) ) dr6_mask |= 0x01; if ( (dr1_op==opa || dr1_op==opb) && (laddr_0 <= dr1_n) && (laddr_n >= dr1) ) dr6_mask |= 0x02; if ( (dr2_op==opa || dr2_op==opb) && (laddr_0 <= dr2_n) && (laddr_n >= dr2) ) dr6_mask |= 0x04; if ( (dr3_op==opa || dr3_op==opb) && (laddr_0 <= dr3_n) && (laddr_n >= dr3) ) dr6_mask |= 0x08; return(dr6_mask); } return(0); } #endif