///////////////////////////////////////////////////////////////////////// // $Id: stack64.cc,v 1.44 2009-03-10 16:28:01 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_X86_64 void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EqM(bxInstruction_c *i) { RSP_SPECULATIVE; Bit64u val64 = pop_64(); // Note: there is one little weirdism here. It is possible to use // RSP in the modrm addressing. If used, the value of RSP after the // pop is used to calculate the address. bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); write_virtual_qword_64(i->seg(), eaddr, val64); RSP_COMMIT; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_RRX(bxInstruction_c *i) { push_64(BX_READ_64BIT_REG(i->opcodeReg())); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_RRX(bxInstruction_c *i) { BX_WRITE_64BIT_REG(i->opcodeReg(), pop_64()); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH64_FS(bxInstruction_c *i) { push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH64_GS(bxInstruction_c *i) { push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP64_FS(bxInstruction_c *i) { // this way is faster and RSP safe Bit64u fs = read_virtual_qword_64(BX_SEG_REG_SS, RSP); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], (Bit16u) fs); RSP += 8; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP64_GS(bxInstruction_c *i) { // this way is faster and RSP safe Bit64u gs = read_virtual_qword_64(BX_SEG_REG_SS, RSP); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], (Bit16u) gs); RSP += 8; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH64_Id(bxInstruction_c *i) { Bit64u imm64 = (Bit32s) i->Id(); push_64(imm64); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EqM(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit64u op1_64 = read_virtual_qword_64(i->seg(), eaddr); push_64(op1_64); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER64_IwIb(bxInstruction_c *i) { Bit8u level = i->Ib2(); level &= 0x1F; RSP_SPECULATIVE; push_64(RBP); Bit64u frame_ptr64 = RSP; if (level > 0) { /* do level-1 times */ while (--level) { RBP -= 8; Bit64u temp64 = read_virtual_qword_64(BX_SEG_REG_SS, RBP); RSP -= 8; write_virtual_qword_64(BX_SEG_REG_SS, RSP, temp64); } /* while (--level) */ /* push(frame pointer) */ RSP -= 8; write_virtual_qword_64(BX_SEG_REG_SS, RSP, frame_ptr64); } /* if (level > 0) ... */ RSP -= i->Iw(); // ENTER finishes with memory write check on the final stack pointer // the memory is touched but no write actually occurs // emulate it by doing RMW read access from SS:RSP read_RMW_virtual_qword_64(BX_SEG_REG_SS, RSP); RBP = frame_ptr64; RSP_COMMIT; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LEAVE64(bxInstruction_c *i) { // restore frame pointer Bit64u temp64 = read_virtual_qword_64(BX_SEG_REG_SS, RBP); RSP = RBP + 8; RBP = temp64; } #endif /* if BX_SUPPORT_X86_64 */