////////c///////////////////////////////////////////////////////////////// // $Id: ctrl_xfer64.cc,v 1.67 2008-05-10 18:10:52 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_X86_64 BX_CPP_INLINE void BX_CPP_AttrRegparmN(1) BX_CPU_C::branch_near64(bxInstruction_c *i) { Bit64u new_RIP = RIP + (Bit32s) i->Id(); if (! IsCanonical(new_RIP)) { BX_ERROR(("branch_near64: canonical RIP violation")); exception(BX_GP_EXCEPTION, 0, 0); } #if BX_SUPPORT_TRACE_CACHE && !defined(BX_TRACE_CACHE_NO_SPECULATIVE_TRACING) // assert magic async_event to stop trace execution BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE; #endif RIP = new_RIP; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RETnear64_Iw(bxInstruction_c *i) { #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_ret; #endif Bit64u return_RIP = read_virtual_qword_64(BX_SEG_REG_SS, RSP); if (! IsCanonical(return_RIP)) { BX_ERROR(("RETnear64_Iw: canonical RIP violation")); exception(BX_GP_EXCEPTION, 0, 0); } RIP = return_RIP; RSP += 8 + i->Iw(); BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET, RIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RETnear64(bxInstruction_c *i) { #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_ret; #endif Bit64u return_RIP = read_virtual_qword_64(BX_SEG_REG_SS, RSP); if (! IsCanonical(return_RIP)) { BX_ERROR(("RETnear64: canonical RIP violation %08x%08x", GET32H(return_RIP), GET32L(return_RIP))); exception(BX_GP_EXCEPTION, 0, 0); } RIP = return_RIP; RSP += 8; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET, RIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RETfar64_Iw(bxInstruction_c *i) { invalidate_prefetch_q(); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_ret; #endif BX_ASSERT(protected_mode()); BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; // return_protected is not RSP safe return_protected(i, i->Iw()); BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RETfar64(bxInstruction_c *i) { invalidate_prefetch_q(); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_ret; #endif BX_ASSERT(protected_mode()); BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; // return_protected is not RSP safe return_protected(i, 0); BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL_Jq(bxInstruction_c *i) { Bit64u new_RIP = RIP + (Bit32s) i->Id(); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_call; #endif if (! IsCanonical(new_RIP)) { BX_ERROR(("CALL_Jq: canonical RIP violation")); exception(BX_GP_EXCEPTION, 0, 0); } /* push 64 bit EA of next instruction */ push_64(RIP); RIP = new_RIP; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, RIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL_EqM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_call; #endif Bit64u op1_64 = read_virtual_qword_64(i->seg(), RMAddr(i)); if (! IsCanonical(op1_64)) { BX_ERROR(("CALL_Eq: canonical RIP violation")); exception(BX_GP_EXCEPTION, 0, 0); } push_64(RIP); RIP = op1_64; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, RIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL_EqR(bxInstruction_c *i) { #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_call; #endif Bit64u op1_64 = BX_READ_64BIT_REG(i->rm()); if (! IsCanonical(op1_64)) { BX_ERROR(("CALL_Eq: canonical RIP violation")); exception(BX_GP_EXCEPTION, 0, 0); } push_64(RIP); RIP = op1_64; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, RIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL64_Ep(bxInstruction_c *i) { Bit16u cs_raw; Bit64u op1_64; invalidate_prefetch_q(); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_call; #endif BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_64 = read_virtual_qword_64(i->seg(), RMAddr(i)); cs_raw = read_virtual_word_64(i->seg(), RMAddr(i)+8); BX_ASSERT(protected_mode()); BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; // call_protected is not RSP safe call_protected(i, cs_raw, op1_64); BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP_Jq(bxInstruction_c *i) { Bit64u new_RIP = RIP + (Bit32s) i->Id(); if (! IsCanonical(new_RIP)) { BX_ERROR(("JMP_Jq: canonical RIP violation")); exception(BX_GP_EXCEPTION, 0, 0); } RIP = new_RIP; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, RIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JO_Jq(bxInstruction_c *i) { if (get_OF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNO_Jq(bxInstruction_c *i) { if (! get_OF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JB_Jq(bxInstruction_c *i) { if (get_CF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNB_Jq(bxInstruction_c *i) { if (! get_CF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JZ_Jq(bxInstruction_c *i) { if (get_ZF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNZ_Jq(bxInstruction_c *i) { if (! get_ZF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JBE_Jq(bxInstruction_c *i) { if (get_CF() || get_ZF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNBE_Jq(bxInstruction_c *i) { if (! (get_CF() || get_ZF())) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JS_Jq(bxInstruction_c *i) { if (get_SF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNS_Jq(bxInstruction_c *i) { if (! get_SF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JP_Jq(bxInstruction_c *i) { if (get_PF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNP_Jq(bxInstruction_c *i) { if (! get_PF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JL_Jq(bxInstruction_c *i) { if (getB_SF() != getB_OF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNL_Jq(bxInstruction_c *i) { if (getB_SF() == getB_OF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JLE_Jq(bxInstruction_c *i) { if (get_ZF() || (getB_SF() != getB_OF())) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNLE_Jq(bxInstruction_c *i) { if (! get_ZF() && (getB_SF() == getB_OF())) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP_EqM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit64u op1_64 = read_virtual_qword_64(i->seg(), RMAddr(i)); if (! IsCanonical(op1_64)) { BX_ERROR(("JMP_Eq: canonical RIP violation")); exception(BX_GP_EXCEPTION, 0, 0); } RIP = op1_64; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, RIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP_EqR(bxInstruction_c *i) { Bit64u op1_64 = BX_READ_64BIT_REG(i->rm()); if (! IsCanonical(op1_64)) { BX_ERROR(("JMP_Eq: canonical RIP violation")); exception(BX_GP_EXCEPTION, 0, 0); } RIP = op1_64; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, RIP); } /* Far indirect jump */ void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP64_Ep(bxInstruction_c *i) { Bit16u cs_raw; Bit32u op1_64; invalidate_prefetch_q(); BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_64 = read_virtual_qword_64(i->seg(), RMAddr(i)); cs_raw = read_virtual_word_64(i->seg(), RMAddr(i)+8); BX_ASSERT(protected_mode()); jump_protected(i, cs_raw, op1_64); BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::IRET64(bxInstruction_c *i) { invalidate_prefetch_q(); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_iret; #endif BX_CPU_THIS_PTR nmi_disable = 0; BX_ASSERT(protected_mode()); BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; // long_iret is not RSP safe long_iret(i); BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_IRET, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JCXZ64_Jb(bxInstruction_c *i) { if (i->as64L()) { if (RCX == 0) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } } else { if (ECX == 0) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); return; } } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } // // There is some weirdness in LOOP instructions definition. If an exception // was generated during the instruction execution (for example #GP fault // because EIP was beyond CS segment limits) CPU state should restore the // state prior to instruction execution. // // The final point that we are not allowed to decrement ECX register before // it is known that no exceptions can happen. // void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOOPNE64_Jb(bxInstruction_c *i) { if (i->as64L()) { Bit64u count = RCX; if (((--count) != 0) && (get_ZF()==0)) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif RCX = count; } else { Bit32u count = ECX; if (((--count) != 0) && (get_ZF()==0)) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif RCX = count; } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOOPE64_Jb(bxInstruction_c *i) { if (i->as64L()) { Bit64u count = RCX; if (((--count) != 0) && get_ZF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif RCX = count; } else { Bit32u count = ECX; if (((--count) != 0) && get_ZF()) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif RCX = count; } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOOP64_Jb(bxInstruction_c *i) { if (i->as64L()) { Bit64u count = RCX; if ((--count) != 0) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif RCX = count; } else { Bit32u count = ECX; if ((--count) != 0) { branch_near64(i); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif RCX = count; } } #endif /* if BX_SUPPORT_X86_64 */