///////////////////////////////////////////////////////////////////////// // $Id: pcipnic.cc,v 1.37 2009-04-23 15:52:53 vruppert Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2003 Fen Systems Ltd. // http://www.fensystems.co.uk/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ///////////////////////////////////////////////////////////////////////// // Define BX_PLUGGABLE in files that can be compiled into plugins. For // platforms that require a special tag on exported symbols, BX_PLUGGABLE // is used to know when we are exporting symbols and when we are importing. #define BX_PLUGGABLE #include "iodev.h" #if BX_SUPPORT_PCI && BX_SUPPORT_PCIPNIC #include "pci.h" #include "eth.h" #include "pcipnic.h" #define LOG_THIS thePNICDevice-> bx_pcipnic_c* thePNICDevice = NULL; const Bit8u pnic_iomask[16] = {2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int libpcipnic_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[]) { thePNICDevice = new bx_pcipnic_c(); BX_REGISTER_DEVICE_DEVMODEL(plugin, type, thePNICDevice, BX_PLUGIN_PCIPNIC); return 0; // Success } void libpcipnic_LTX_plugin_fini(void) { delete thePNICDevice; } bx_pcipnic_c::bx_pcipnic_c() { put("PNIC"); } bx_pcipnic_c::~bx_pcipnic_c() { BX_DEBUG(("Exit")); } void bx_pcipnic_c::init(void) { bx_list_c *base; // Read in values from config interface base = (bx_list_c*) SIM->get_param(BXPN_PNIC); memcpy(BX_PNIC_THIS s.macaddr, SIM->get_param_string("macaddr", base)->getptr(), 6); BX_PNIC_THIS s.devfunc = 0x00; DEV_register_pci_handlers(this, &BX_PNIC_THIS s.devfunc, BX_PLUGIN_PCIPNIC, "Experimental PCI Pseudo NIC"); for (unsigned i=0; i<256; i++) { BX_PNIC_THIS s.pci_conf[i] = 0x0; } // This code ripped wholesale from ne2k.cc: // Attach to the simulated ethernet dev const char *ethmod = SIM->get_param_enum("ethmod", base)->get_selected(); BX_PNIC_THIS ethdev = eth_locator_c::create(ethmod, SIM->get_param_string("ethdev", base)->getptr(), (const char *) SIM->get_param_string("macaddr", base)->getptr(), rx_handler, this, SIM->get_param_string("script", base)->getptr()); if (BX_PNIC_THIS ethdev == NULL) { BX_PANIC(("could not find eth module %s", ethmod)); // if they continue, use null. BX_INFO(("could not find eth module %s - using null instead", ethmod)); BX_PNIC_THIS ethdev = eth_locator_c::create("null", NULL, (const char *) SIM->get_param_string("macaddr", base)->getptr(), rx_handler, this, ""); if (BX_PNIC_THIS ethdev == NULL) BX_PANIC(("could not locate null module")); } BX_PNIC_THIS s.base_ioaddr = 0; BX_INFO(("PCI Pseudo NIC initialized - I/O base and IRQ assigned by PCI BIOS")); } void bx_pcipnic_c::reset(unsigned type) { unsigned i; static const struct reset_vals_t { unsigned addr; unsigned char val; } reset_vals[] = { { 0x00, PNIC_PCI_VENDOR & 0xff }, { 0x01, PNIC_PCI_VENDOR >> 8 }, { 0x02, PNIC_PCI_DEVICE & 0xff }, { 0x03, PNIC_PCI_DEVICE >> 8 }, { 0x04, 0x05 }, { 0x05, 0x00 }, // command_io { 0x06, 0x80 }, { 0x07, 0x02 }, // status { 0x08, 0x01 }, // revision number { 0x09, 0x00 }, // interface { 0x0a, 0x00 }, // class_sub { 0x0b, 0x02 }, // class_base Network Controller { 0x0D, 0x20 }, // bus latency { 0x0e, 0x00 }, // header_type_generic // address space 0x20 - 0x23 { 0x20, 0x01 }, { 0x21, 0x00 }, { 0x22, 0x00 }, { 0x23, 0x00 }, { 0x3c, 0x00, }, // IRQ { 0x3d, BX_PCI_INTA }, // INT { 0x6a, 0x01 }, // PNIC clock { 0xc1, 0x20 } // PIRQ enable }; for (i = 0; i < sizeof(reset_vals) / sizeof(*reset_vals); ++i) { BX_PNIC_THIS s.pci_conf[reset_vals[i].addr] = reset_vals[i].val; } // Set up initial register values BX_PNIC_THIS s.rCmd = PNIC_CMD_NOOP; BX_PNIC_THIS s.rStatus = PNIC_STATUS_OK; BX_PNIC_THIS s.rLength = 0; BX_PNIC_THIS s.rDataCursor = 0; BX_PNIC_THIS s.recvIndex = 0; BX_PNIC_THIS s.recvQueueLength = 0; BX_PNIC_THIS s.irqEnabled = 0; // Deassert IRQ set_irq_level(0); } void bx_pcipnic_c::register_state(void) { unsigned i; char name[6]; bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "pcipnic", "PCI Pseudo NIC State", 11); new bx_shadow_num_c(list, "irqEnabled", &BX_PNIC_THIS s.irqEnabled); new bx_shadow_num_c(list, "rCmd", &BX_PNIC_THIS s.rCmd); new bx_shadow_num_c(list, "rStatus", &BX_PNIC_THIS s.rStatus); new bx_shadow_num_c(list, "rLength", &BX_PNIC_THIS s.rLength); new bx_shadow_num_c(list, "rDataCursor", &BX_PNIC_THIS s.rDataCursor); new bx_shadow_num_c(list, "recvIndex", &BX_PNIC_THIS s.recvIndex); new bx_shadow_num_c(list, "recvQueueLength", &BX_PNIC_THIS s.recvQueueLength); bx_list_c *recvRL = new bx_list_c(list, "recvRingLength", PNIC_RECV_RINGS); for (i=0; iread(address, io_len); } Bit32u bx_pcipnic_c::read(Bit32u address, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_PCIPNIC_SMF Bit32u val = 0x0; Bit8u offset; BX_DEBUG(("register read from address 0x%04x - ", (unsigned) address)); offset = address - BX_PNIC_THIS s.base_ioaddr; switch (offset) { case PNIC_REG_STAT: val = BX_PNIC_THIS s.rStatus; break; case PNIC_REG_LEN: val = BX_PNIC_THIS s.rLength; break; case PNIC_REG_DATA: if (BX_PNIC_THIS s.rDataCursor >= BX_PNIC_THIS s.rLength) BX_PANIC(("PNIC read at %u, beyond end of data register array", BX_PNIC_THIS s.rDataCursor)); val = BX_PNIC_THIS s.rData[BX_PNIC_THIS s.rDataCursor++]; break; default : val = 0; // keep compiler happy BX_PANIC(("unsupported io read from address=0x%04x!", (unsigned) address)); break; } BX_DEBUG(("val = 0x%04x", (Bit16u) val)); return(val); } // static IO port write callback handler // redirects to non-static class handler to avoid virtual functions void bx_pcipnic_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len) { #if !BX_USE_PCIPNIC_SMF bx_pcipnic_c *class_ptr = (bx_pcipnic_c *) this_ptr; class_ptr->write(address, value, io_len); } void bx_pcipnic_c::write(Bit32u address, Bit32u value, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_PCIPNIC_SMF Bit8u offset; BX_DEBUG(("register write to address 0x%04x - ", (unsigned) address)); offset = address - BX_PNIC_THIS s.base_ioaddr; switch (offset) { case PNIC_REG_CMD: BX_PNIC_THIS s.rCmd = value; BX_PNIC_THIS exec_command(); break; case PNIC_REG_LEN: if (value > PNIC_DATA_SIZE) BX_PANIC(("PNIC bad length %u written to length register, max is %u", value, PNIC_DATA_SIZE)); BX_PNIC_THIS s.rLength = value; BX_PNIC_THIS s.rDataCursor = 0; break; case PNIC_REG_DATA: if (BX_PNIC_THIS s.rDataCursor >= BX_PNIC_THIS s.rLength) BX_PANIC(("PNIC write at %u, beyond end of data register array", BX_PNIC_THIS s.rDataCursor)); BX_PNIC_THIS s.rData[BX_PNIC_THIS s.rDataCursor++] = value; break; default: BX_PANIC(("unsupported io write to address=0x%04x!", (unsigned) address)); break; } } void bx_pcipnic_c::pnic_timer_handler(void *this_ptr) { bx_pcipnic_c *class_ptr = (bx_pcipnic_c *) this_ptr; class_ptr->pnic_timer(); } // Called once every 1ms void bx_pcipnic_c::pnic_timer(void) { // Do nothing atm } // pci configuration space read callback handler Bit32u bx_pcipnic_c::pci_read_handler(Bit8u address, unsigned io_len) { Bit32u value = 0; for (unsigned i=0; i= 0x10) && (address < 0x20)) || ((address > 0x23) && (address < 0x34))) return; for (unsigned i=0; i> (i*8)) & 0xFF; oldval = BX_PNIC_THIS s.pci_conf[address+i]; switch (address+i) { case 0x3d: // case 0x05: // disallowing write to command hi-byte case 0x06: // disallowing write to status lo-byte (is that expected?) break; case 0x3c: if (value8 != oldval) { BX_INFO(("new irq line = %d", value8)); BX_PNIC_THIS s.pci_conf[address+i] = value8; } break; case 0x20: value8 = (value8 & 0xfc) | 0x01; case 0x21: case 0x22: case 0x23: baseaddr_change = (value8 != oldval); default: BX_PNIC_THIS s.pci_conf[address+i] = value8; } } if (baseaddr_change) { if (DEV_pci_set_base_io(BX_PNIC_THIS_PTR, read_handler, write_handler, &BX_PNIC_THIS s.base_ioaddr, &BX_PNIC_THIS s.pci_conf[0x20], 16, &pnic_iomask[0], "PNIC")) { BX_INFO(("new base address: 0x%04x", BX_PNIC_THIS s.base_ioaddr)); } } if (io_len == 1) BX_DEBUG(("write PCI register 0x%02x value 0x%02x", address, value)); else if (io_len == 2) BX_DEBUG(("write PCI register 0x%02x value 0x%04x", address, value)); else if (io_len == 4) BX_DEBUG(("write PCI register 0x%02x value 0x%08x", address, value)); } /* * Execute a hardware command. */ void bx_pcipnic_c::exec_command(void) { Bit16u command = BX_PNIC_THIS s.rCmd; Bit16u ilength = BX_PNIC_THIS s.rLength; Bit8u *data = BX_PNIC_THIS s.rData; // Default return values Bit16u status = PNIC_STATUS_UNKNOWN_CMD; Bit16u olength = 0; if (ilength != BX_PNIC_THIS s.rDataCursor) BX_PANIC(("PNIC command issued with incomplete data (should be %u, is %u)", ilength, BX_PNIC_THIS s.rDataCursor)); switch (command) { case PNIC_CMD_NOOP: status = PNIC_STATUS_OK; break; case PNIC_CMD_API_VER: Bit16u api_version; api_version = PNIC_API_VERSION; olength = sizeof(api_version); memcpy (data, &api_version, sizeof(api_version)); status = PNIC_STATUS_OK; break; case PNIC_CMD_READ_MAC: olength = sizeof (BX_PNIC_THIS s.macaddr); memcpy (data, BX_PNIC_THIS s.macaddr, olength); status = PNIC_STATUS_OK; break; case PNIC_CMD_RESET: /* Flush the receive queue */ BX_PNIC_THIS s.recvQueueLength = 0; status = PNIC_STATUS_OK; break; case PNIC_CMD_XMIT: BX_PNIC_THIS ethdev->sendpkt(data, ilength); if (BX_PNIC_THIS s.irqEnabled) { set_irq_level(1); } status = PNIC_STATUS_OK; break; case PNIC_CMD_RECV: if (BX_PNIC_THIS s.recvQueueLength > 0) { int idx = (BX_PNIC_THIS s.recvIndex - BX_PNIC_THIS s.recvQueueLength + PNIC_RECV_RINGS) % PNIC_RECV_RINGS; olength = BX_PNIC_THIS s.recvRingLength[idx]; memcpy (data, BX_PNIC_THIS s.recvRing[idx], olength); BX_PNIC_THIS s.recvQueueLength--; } if (! BX_PNIC_THIS s.recvQueueLength) { set_irq_level(0); } status = PNIC_STATUS_OK; break; case PNIC_CMD_RECV_QLEN: Bit16u qlen; qlen = BX_PNIC_THIS s.recvQueueLength; olength = sizeof(qlen); memcpy (data, &qlen, sizeof(qlen)); status = PNIC_STATUS_OK; break; case PNIC_CMD_MASK_IRQ: Bit8u enabled; enabled = *((Bit8u*)data); BX_PNIC_THIS s.irqEnabled = enabled; if (enabled && BX_PNIC_THIS s.recvQueueLength) { set_irq_level(1); } else { set_irq_level(0); } status = PNIC_STATUS_OK; break; case PNIC_CMD_FORCE_IRQ: set_irq_level(1); status = PNIC_STATUS_OK; break; default: BX_ERROR(("Unknown PNIC command %x (data length %u)", command, ilength)); status = PNIC_STATUS_UNKNOWN_CMD; break; } // Set registers BX_PNIC_THIS s.rStatus = status; BX_PNIC_THIS s.rLength = olength; BX_PNIC_THIS s.rDataCursor = 0; } /* * Callback from the eth system driver when a frame has arrived */ void bx_pcipnic_c::rx_handler(void *arg, const void *buf, unsigned len) { // BX_DEBUG(("rx_handler with length %d", len)); bx_pcipnic_c *class_ptr = (bx_pcipnic_c *) arg; class_ptr->rx_frame(buf, len); } /* * rx_frame() - called by the platform-specific code when an * ethernet frame has been received. The destination address * is tested to see if it should be accepted, and if the * rx ring has enough room, it is copied into it and * the receive process is updated */ void bx_pcipnic_c::rx_frame(const void *buf, unsigned io_len) { // Check packet length if (io_len > PNIC_DATA_SIZE) { BX_PANIC(("PNIC receive: data size %u exceeded buffer size %u", io_len, PNIC_DATA_SIZE)); // Truncate if user continues io_len = PNIC_DATA_SIZE; } // Check receive ring is not full if (BX_PNIC_THIS s.recvQueueLength == PNIC_RECV_RINGS) { BX_ERROR(("PNIC receive: receive ring full, discarding packet")); return; } // Copy data to receive ring and record length memcpy (BX_PNIC_THIS s.recvRing[BX_PNIC_THIS s.recvIndex], buf, io_len); BX_PNIC_THIS s.recvRingLength[BX_PNIC_THIS s.recvIndex] = io_len; // Move to next ring entry BX_PNIC_THIS s.recvIndex = (BX_PNIC_THIS s.recvIndex + 1) % PNIC_RECV_RINGS; BX_PNIC_THIS s.recvQueueLength++; // Generate interrupt if enabled if (BX_PNIC_THIS s.irqEnabled) { set_irq_level(1); } } #endif // BX_SUPPORT_PCI && BX_SUPPORT_PCIPNIC