// Copyright (C) 2000 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #include "bochs.h" void BX_CPU_C::push_16(Bit16u value16) { Bit32u temp_ESP; #if BX_CPU_LEVEL >= 2 if (protected_mode()) { #if BX_CPU_LEVEL >= 3 if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_ESP = ESP; else #endif temp_ESP = SP; if (!can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, 2)) { bx_panic("push_16(): can't push on stack\n"); exception(BX_SS_EXCEPTION, 0, 0); return; } /* access within limits */ write_virtual_word(BX_SEG_REG_SS, temp_ESP - 2, &value16); if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) ESP -= 2; else SP -= 2; return; } else #endif { /* real mode */ if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { if (ESP == 1) bx_panic("CPU shutting down due to lack of stack space, ESP==1\n"); ESP -= 2; temp_ESP = ESP; } else { if (SP == 1) bx_panic("CPU shutting down due to lack of stack space, SP==1\n"); SP -= 2; temp_ESP = SP; } write_virtual_word(BX_SEG_REG_SS, temp_ESP, &value16); return; } } #if BX_CPU_LEVEL >= 3 /* push 32 bit operand size */ void BX_CPU_C::push_32(Bit32u value32) { /* must use StackAddrSize, and either ESP or SP accordingly */ if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* StackAddrSize = 32 */ /* 32bit stack size: pushes use SS:ESP */ if (protected_mode()) { if (!can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, ESP, 4)) { bx_panic("push_32(): push outside stack limits\n"); /* #SS(0) */ } } else { /* real mode */ if ((ESP>=1) && (ESP<=3)) { bx_panic("push_32: ESP=%08x\n", (unsigned) ESP); } } write_virtual_dword(BX_SEG_REG_SS, ESP-4, &value32); ESP -= 4; /* will return after error anyway */ return; } else { /* 16bit stack size: pushes use SS:SP */ if (protected_mode()) { if (!can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, SP, 4)) { bx_panic("push_32(): push outside stack limits\n"); /* #SS(0) */ } } else { /* real mode */ if ((SP>=1) && (SP<=3)) { bx_panic("push_32: SP=%08x\n", (unsigned) SP); } } write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (SP-4), &value32); SP -= 4; /* will return after error anyway */ return; } } #endif /* BX_CPU_LEVEL >= 3 */ void BX_CPU_C::pop_16(Bit16u *value16_ptr) { Bit32u temp_ESP; #if BX_CPU_LEVEL >= 3 if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_ESP = ESP; else #endif temp_ESP = SP; #if BX_CPU_LEVEL >= 2 if (protected_mode()) { if ( !can_pop(2) ) { bx_printf("pop_16(): can't pop from stack\n"); exception(BX_SS_EXCEPTION, 0, 0); return; } } #endif /* access within limits */ read_virtual_word(BX_SEG_REG_SS, temp_ESP, value16_ptr); if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) ESP += 2; else SP += 2; } #if BX_CPU_LEVEL >= 3 void BX_CPU_C::pop_32(Bit32u *value32_ptr) { Bit32u temp_ESP; /* 32 bit stack mode: use SS:ESP */ if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_ESP = ESP; else temp_ESP = SP; /* 16 bit stack mode: use SS:SP */ if (protected_mode()) { if ( !can_pop(4) ) { bx_panic("pop_32(): can't pop from stack\n"); exception(BX_SS_EXCEPTION, 0, 0); return; } } /* access within limits */ read_virtual_dword(BX_SEG_REG_SS, temp_ESP, value32_ptr); if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b==1) ESP += 4; else SP += 4; } #endif #if BX_CPU_LEVEL >= 2 Boolean BX_CPU_C::can_push(bx_descriptor_t *descriptor, Bit32u esp, Bit32u bytes) { if ( real_mode() ) { /* code not needed ??? */ bx_panic("can_push(): called in real mode\n"); return(0); /* never gets here */ } // small stack compares against 16-bit SP if (!descriptor->u.segment.d_b) esp &= 0x0000ffff; if (descriptor->valid==0) { bx_panic("can_push(): SS invalidated.\n"); return(0); } if (descriptor->p==0) { bx_panic("can_push(): not present\n"); return(0); } if (descriptor->u.segment.c_ed) { /* expand down segment */ Bit32u expand_down_limit; if (descriptor->u.segment.d_b) expand_down_limit = 0xffffffff; else expand_down_limit = 0x0000ffff; if (esp==0) { bx_panic("can_push(): esp=0, wraparound?\n"); return(0); } if (esp < bytes) { bx_panic("can_push(): expand-down: esp < N\n"); return(0); } if ( (esp - bytes) <= descriptor->u.segment.limit_scaled ) { bx_panic("can_push(): expand-down: esp-N < limit\n"); return(0); } if ( esp > expand_down_limit ) { bx_panic("can_push(): esp > expand-down-limit\n"); return(0); } return(1); } else { /* normal (expand-up) segment */ if (descriptor->u.segment.limit_scaled==0) { bx_panic("can_push(): found limit of 0\n"); return(0); } // Look at case where esp==0. Possibly, it's an intentional wraparound // If so, limit must be the maximum for the given stack size if (esp==0) { if (descriptor->u.segment.d_b && (descriptor->u.segment.limit_scaled==0xffffffff)) return(1); if ((descriptor->u.segment.d_b==0) && (descriptor->u.segment.limit_scaled>=0xffff)) return(1); bx_panic("can_push(): esp=0, normal, wraparound? limit=%08x\n", descriptor->u.segment.limit_scaled); return(0); } if (esp < bytes) { bx_printf("can_push(): expand-up: esp < N\n"); return(0); } if ((esp-1) > descriptor->u.segment.limit_scaled) { bx_printf("can_push(): expand-up: SP > limit\n"); return(0); } /* all checks pass */ return(1); } } #endif #if BX_CPU_LEVEL >= 2 Boolean BX_CPU_C::can_pop(Bit32u bytes) { Bit32u temp_ESP, expand_down_limit; /* ??? */ if (real_mode()) bx_panic("can_pop(): called in real mode?\n"); if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* Big bit set: use ESP */ temp_ESP = ESP; expand_down_limit = 0xFFFFFFFF; } else { /* Big bit clear: use SP */ temp_ESP = SP; expand_down_limit = 0xFFFF; } if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid==0) { bx_panic("can_pop(): SS invalidated.\n"); return(0); /* never gets here */ } if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p==0) { /* ??? */ bx_panic("can_pop(): SS.p = 0\n"); return(0); } if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed) { /* expand down segment */ if ( temp_ESP == expand_down_limit ) { bx_panic("can_pop(): found SP=ffff\n"); return(0); } if ( ((expand_down_limit - temp_ESP) + 1) >= bytes ) return(1); return(0); } else { /* normal (expand-up) segment */ if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled==0) { bx_panic("can_pop(): SS.limit = 0\n"); } if ( temp_ESP == expand_down_limit ) { bx_panic("can_pop(): found SP=ffff\n"); return(0); } if ( temp_ESP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled ) { bx_panic("can_pop(): eSP > SS.limit\n"); return(0); } if ( ((BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled - temp_ESP) + 1) >= bytes ) return(1); return(0); } } #endif