///////////////////////////////////////////////////////////////////////// // $Id: ctrl_xfer32.cc,v 1.75 2008-06-23 15:58:22 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR // Make code more tidy with a few macros. #if BX_SUPPORT_X86_64==0 #define RSP ESP #define RIP EIP #endif #if BX_CPU_LEVEL >= 3 BX_CPP_INLINE void BX_CPP_AttrRegparmN(1) BX_CPU_C::branch_near32(Bit32u new_EIP) { // check always, not only in protected mode if (new_EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("branch_near32: offset outside of CS limits")); exception(BX_GP_EXCEPTION, 0, 0); } RIP = new_EIP; #if BX_SUPPORT_TRACE_CACHE && !defined(BX_TRACE_CACHE_NO_SPECULATIVE_TRACING) // assert magic async_event to stop trace execution BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE; #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RETnear32_Iw(bxInstruction_c *i) { #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_ret; #endif BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u imm16 = i->Iw(); Bit32u return_EIP = pop_32(); if (return_EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("RETnear32_Iw: offset outside of CS limits")); exception(BX_GP_EXCEPTION, 0, 0); } RIP = return_EIP; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) ESP += imm16; else SP += imm16; BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RETnear32(bxInstruction_c *i) { #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_ret; #endif BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit32u return_EIP = pop_32(); if (return_EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("RETnear32: offset outside of CS limits")); exception(BX_GP_EXCEPTION, 0, 0); } RIP = return_EIP; BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RETfar32_Iw(bxInstruction_c *i) { invalidate_prefetch_q(); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_ret; #endif Bit16u imm16 = i->Iw(); Bit16u cs_raw; Bit32u eip; BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; if (protected_mode()) { BX_CPU_THIS_PTR return_protected(i, imm16); goto done; } eip = pop_32(); cs_raw = (Bit16u) pop_32(); /* 32bit pop, MSW discarded */ // CS.LIMIT can't change when in real/v8086 mode if (eip > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("RETfar32_Iw: instruction pointer not within code segment limits")); exception(BX_GP_EXCEPTION, 0, 0); } load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw); RIP = eip; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) ESP += imm16; else SP += imm16; done: BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RETfar32(bxInstruction_c *i) { Bit32u eip; Bit16u cs_raw; invalidate_prefetch_q(); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_ret; #endif BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; if (protected_mode()) { BX_CPU_THIS_PTR return_protected(i, 0); goto done; } eip = pop_32(); // CS.LIMIT can't change when in real/v8086 mode if (eip > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("RETfar32: instruction pointer not within code segment limits")); exception(BX_GP_EXCEPTION, 0, 0); } cs_raw = (Bit16u) pop_32(); /* 32bit pop, MSW discarded */ load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw); RIP = eip; done: BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL_Jd(bxInstruction_c *i) { #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_call; #endif Bit32u new_EIP = EIP + i->Id(); if (new_EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("CALL_Jd: offset outside of CS limits")); exception(BX_GP_EXCEPTION, 0, 0); } /* push 32 bit EA of next instruction */ push_32(EIP); RIP = new_EIP; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL32_Ap(bxInstruction_c *i) { Bit16u cs_raw; Bit32u disp32; invalidate_prefetch_q(); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_call; #endif disp32 = i->Id(); cs_raw = i->Iw2(); BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; if (protected_mode()) { BX_CPU_THIS_PTR call_protected(i, cs_raw, disp32); goto done; } // CS.LIMIT can't change when in real/v8086 mode if (disp32 > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("CALL32_Ap: instruction pointer not within code segment limits")); exception(BX_GP_EXCEPTION, 0, 0); } push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_32(EIP); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw); RIP = disp32; done: BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL_EdM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_call; #endif Bit32u op1_32 = read_virtual_dword(i->seg(), RMAddr(i)); if (op1_32 > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("CALL_Ed: EIP out of CS limits!")); exception(BX_GP_EXCEPTION, 0, 0); } push_32(EIP); RIP = op1_32; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL_EdR(bxInstruction_c *i) { #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_call; #endif Bit32u op1_32 = BX_READ_32BIT_REG(i->rm()); if (op1_32 > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("CALL_Ed: EIP out of CS limits!")); exception(BX_GP_EXCEPTION, 0, 0); } push_32(EIP); RIP = op1_32; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL32_Ep(bxInstruction_c *i) { Bit16u cs_raw; Bit32u op1_32; invalidate_prefetch_q(); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_call; #endif BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_32 = read_virtual_dword(i->seg(), RMAddr(i)); cs_raw = read_virtual_word (i->seg(), RMAddr(i)+4); BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; if (protected_mode()) { BX_CPU_THIS_PTR call_protected(i, cs_raw, op1_32); goto done; } // CS.LIMIT can't change when in real/v8086 mode if (op1_32 > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("CALL32_Ep: instruction pointer not within code segment limits")); exception(BX_GP_EXCEPTION, 0, 0); } push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_32(EIP); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw); RIP = op1_32; done: BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP_Jd(bxInstruction_c *i) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, new_EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JO_Jd(bxInstruction_c *i) { if (get_OF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNO_Jd(bxInstruction_c *i) { if (! get_OF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JB_Jd(bxInstruction_c *i) { if (get_CF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNB_Jd(bxInstruction_c *i) { if (! get_CF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JZ_Jd(bxInstruction_c *i) { if (get_ZF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNZ_Jd(bxInstruction_c *i) { if (! get_ZF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JBE_Jd(bxInstruction_c *i) { if (get_CF() || get_ZF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNBE_Jd(bxInstruction_c *i) { if (! (get_CF() || get_ZF())) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JS_Jd(bxInstruction_c *i) { if (get_SF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNS_Jd(bxInstruction_c *i) { if (! get_SF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JP_Jd(bxInstruction_c *i) { if (get_PF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNP_Jd(bxInstruction_c *i) { if (! get_PF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JL_Jd(bxInstruction_c *i) { if (getB_SF() != getB_OF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNL_Jd(bxInstruction_c *i) { if (getB_SF() == getB_OF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JLE_Jd(bxInstruction_c *i) { if (get_ZF() || (getB_SF() != getB_OF())) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNLE_Jd(bxInstruction_c *i) { if (! get_ZF() && (getB_SF() == getB_OF())) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP_Ap(bxInstruction_c *i) { Bit32u disp32; Bit16u cs_raw; invalidate_prefetch_q(); if (i->os32L()) { disp32 = i->Id(); } else { disp32 = i->Iw(); } cs_raw = i->Iw2(); // jump_protected doesn't affect RSP so it is RSP safe if (protected_mode()) { BX_CPU_THIS_PTR jump_protected(i, cs_raw, disp32); goto done; } // CS.LIMIT can't change when in real/v8086 mode if (disp32 > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("JMP_Ap: instruction pointer not within code segment limits")); exception(BX_GP_EXCEPTION, 0, 0); } load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw); RIP = disp32; done: BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP_EdM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ Bit32u new_EIP = read_virtual_dword(i->seg(), RMAddr(i)); branch_near32(new_EIP); BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, new_EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP_EdR(bxInstruction_c *i) { Bit32u new_EIP = BX_READ_32BIT_REG(i->rm()); branch_near32(new_EIP); BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, new_EIP); } /* Far indirect jump */ void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP32_Ep(bxInstruction_c *i) { Bit16u cs_raw; Bit32u op1_32; invalidate_prefetch_q(); BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_32 = read_virtual_dword(i->seg(), RMAddr(i)); cs_raw = read_virtual_word (i->seg(), RMAddr(i)+4); // jump_protected doesn't affect RSP so it is RSP safe if (protected_mode()) { BX_CPU_THIS_PTR jump_protected(i, cs_raw, op1_32); goto done; } // CS.LIMIT can't change when in real/v8086 mode if (op1_32 > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("JMP32_Ep: instruction pointer not within code segment limits")); exception(BX_GP_EXCEPTION, 0, 0); } load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw); RIP = op1_32; done: BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::IRET32(bxInstruction_c *i) { Bit32u eip, eflags32; Bit16u cs_raw; invalidate_prefetch_q(); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_iret; #endif BX_CPU_THIS_PTR nmi_disable = 0; BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; if (v8086_mode()) { // IOPL check in stack_return_from_v86() iret32_stack_return_from_v86(i); goto done; } if (protected_mode()) { iret_protected(i); goto done; } eip = pop_32(); cs_raw = (Bit16u) pop_32(); // #SS has higher priority eflags32 = pop_32(); // CS.LIMIT can't change when in real/v8086 mode if (eip > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("IRET32: instruction pointer not within code segment limits")); exception(BX_GP_EXCEPTION, 0, 0); } load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw); RIP = eip; writeEFlags(eflags32, 0x00257fd5); // VIF, VIP, VM unchanged done: BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_IRET, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JECXZ_Jb(bxInstruction_c *i) { // it is impossible to get this instruction in long mode BX_ASSERT(i->as64L() == 0); Bit32u temp_ECX; if (i->as32L()) temp_ECX = ECX; else temp_ECX = CX; if (temp_ECX == 0) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif } // // There is some weirdness in LOOP instructions definition. If an exception // was generated during the instruction execution (for example #GP fault // because EIP was beyond CS segment limits) CPU state should restore the // state prior to instruction execution. // // The final point that we are not allowed to decrement ECX register before // it is known that no exceptions can happen. // void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOOPNE32_Jb(bxInstruction_c *i) { // it is impossible to get this instruction in long mode BX_ASSERT(i->as64L() == 0); if (i->as32L()) { Bit32u count = ECX; count--; if (count != 0 && (get_ZF()==0)) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif ECX = count; } else { Bit16u count = CX; count--; if (count != 0 && (get_ZF()==0)) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif CX = count; } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOOPE32_Jb(bxInstruction_c *i) { // it is impossible to get this instruction in long mode BX_ASSERT(i->as64L() == 0); if (i->as32L()) { Bit32u count = ECX; count--; if (count != 0 && get_ZF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif ECX = count; } else { Bit16u count = CX; count--; if (count != 0 && get_ZF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif CX = count; } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOOP32_Jb(bxInstruction_c *i) { // it is impossible to get this instruction in long mode BX_ASSERT(i->as64L() == 0); if (i->as32L()) { Bit32u count = ECX; count--; if (count != 0) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif ECX = count; } else { Bit16u count = CX; count--; if (count != 0) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID); } #endif CX = count; } } #endif