///////////////////////////////////////////////////////////////////////// // $Id: apic.cc,v 1.144 2010-05-15 09:23:50 vruppert Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002-2009 Zwane Mwaikambo, Stanislav Shwartsman // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #include "iodev/iodev.h" #if BX_SUPPORT_APIC extern bx_bool simulate_xapic; #define LOG_THIS this-> #define BX_CPU_APIC(i) (&(BX_CPU(i)->lapic)) #define BX_LAPIC_FIRST_VECTOR 0x10 #define BX_LAPIC_LAST_VECTOR 0xff ///////////// APIC BUS ///////////// int apic_bus_deliver_interrupt(Bit8u vector, apic_dest_t dest, Bit8u delivery_mode, bx_bool logical_dest, bx_bool level, bx_bool trig_mode) { if(delivery_mode == APIC_DM_LOWPRI) { if(! logical_dest) { // I/O subsytem initiated interrupt with lowest priority delivery // which is not supported in physical destination mode return 0; } else { return apic_bus_deliver_lowest_priority(vector, dest, trig_mode, 0); } } // determine destination local apics and deliver if(! logical_dest) { // physical destination mode if((dest & apic_id_mask) == apic_id_mask) { return apic_bus_broadcast_interrupt(vector, delivery_mode, trig_mode, apic_id_mask); } else { // the destination is single agent for (unsigned i=0;iget_id() == dest) { BX_CPU_APIC(i)->deliver(vector, delivery_mode, trig_mode); return 1; } } return 0; } } else { // logical destination mode if(dest == 0) return 0; bx_bool interrupt_delivered = 0; for (int i=0; imatch_logical_addr(dest)) { BX_CPU_APIC(i)->deliver(vector, delivery_mode, trig_mode); interrupt_delivered = 1; } } return interrupt_delivered; } } int apic_bus_deliver_lowest_priority(Bit8u vector, apic_dest_t dest, bx_bool trig_mode, bx_bool broadcast) { int i; if (! BX_CPU_APIC(0)->is_xapic()) { // search for if focus processor exists for (i=0; iis_focus(vector)) { BX_CPU_APIC(i)->deliver(vector, APIC_DM_LOWPRI, trig_mode); return 1; } } } // focus processor not found, looking for lowest priority agent int lowest_priority_agent = -1, lowest_priority = 0x100, priority; for (i=0; imatch_logical_addr(dest)) { if (BX_CPU_APIC(i)->is_xapic()) priority = BX_CPU_APIC(i)->get_tpr(); else priority = BX_CPU_APIC(i)->get_apr(); if(priority < lowest_priority) { lowest_priority = priority; lowest_priority_agent = i; } } } if(lowest_priority_agent >= 0) { BX_CPU_APIC(lowest_priority_agent)->deliver(vector, APIC_DM_LOWPRI, trig_mode); return 1; } return 0; } int apic_bus_broadcast_interrupt(Bit8u vector, Bit8u delivery_mode, bx_bool trig_mode, int exclude_cpu) { if(delivery_mode == APIC_DM_LOWPRI) { return apic_bus_deliver_lowest_priority(vector, 0 /* doesn't matter */, trig_mode, 1); } // deliver to all bus agents except 'exclude_cpu' for (int i=0; ideliver(vector, delivery_mode, trig_mode); } return 1; } static void apic_bus_broadcast_eoi(Bit8u vector) { DEV_ioapic_receive_eoi(vector); } #endif // available even if APIC is not compiled in void apic_bus_deliver_smi(void) { BX_CPU(0)->deliver_SMI(); } void apic_bus_broadcast_smi(void) { for (unsigned i=0; ideliver_SMI(); } #if BX_SUPPORT_APIC //////////////////////////////////// bx_local_apic_c::bx_local_apic_c(BX_CPU_C *mycpu, unsigned id) : base_addr(BX_LAPIC_BASE_ADDR), cpu(mycpu) { apic_id = id; #if BX_SUPPORT_SMP if (apic_id >= bx_cpu_count) BX_PANIC(("PANIC: invalid APIC_ID assigned %d (max = %d)", apic_id, bx_cpu_count)); #else if (apic_id != 0) BX_PANIC(("PANIC: invalid APIC_ID assigned %d", apic_id)); #endif char buffer[16]; sprintf(buffer, "APIC%x", apic_id); put(buffer); // Register a non-active timer for use when the timer is started. timer_handle = bx_pc_system.register_timer_ticks(this, BX_CPU(0)->lapic.periodic_smf, 0, 0, 0, "lapic"); timer_active = 0; xapic = simulate_xapic; // xAPIC or legacy APIC reset(BX_RESET_HARDWARE); } void bx_local_apic_c::reset(unsigned type) { int i; // default address for a local APIC, can be moved base_addr = BX_LAPIC_BASE_ADDR; error_status = shadow_error_status = 0; ldr = 0; dest_format = 0xf; icr_hi = 0; icr_lo = 0; task_priority = 0; for(i=0; i> 10) & 3; newbase &= ~((bx_phy_address) 0xfff); base_addr = newbase; BX_INFO(("allocate APIC id=%d (MMIO %s) to 0x" FMT_PHY_ADDRX, apic_id, (mode == BX_APIC_XAPIC_MODE) ? "enabled" : "disabled", newbase)); } bx_bool bx_local_apic_c::is_selected(bx_phy_address addr) { if (mode != BX_APIC_XAPIC_MODE) return 0; if((addr & ~0xfff) == base_addr) { if((addr & 0xf) != 0) BX_INFO(("warning: misaligned APIC access. addr=0x" FMT_PHY_ADDRX, addr)); return 1; } return 0; } void bx_local_apic_c::read(bx_phy_address addr, void *data, unsigned len) { if((addr & ~0x3) != ((addr+len-1) & ~0x3)) { BX_PANIC(("APIC read at address 0x" FMT_PHY_ADDRX " spans 32-bit boundary !", addr)); return; } Bit32u value = read_aligned(addr & ~0x3); if(len == 4) { // must be 32-bit aligned *((Bit32u *)data) = value; return; } // handle partial read, independent of endian-ness value >>= (addr&3)*8; if (len == 1) *((Bit8u *) data) = value & 0xff; else if (len == 2) *((Bit16u *)data) = value & 0xffff; else BX_PANIC(("Unsupported APIC read at address 0x" FMT_PHY_ADDRX ", len=%d", addr, len)); } void bx_local_apic_c::write(bx_phy_address addr, void *data, unsigned len) { if (len != 4) { BX_PANIC(("APIC write with len=%d (should be 4)", len)); return; } if(addr & 0xf) { BX_PANIC(("APIC write at unaligned address 0x" FMT_PHY_ADDRX, addr)); return; } write_aligned(addr, *((Bit32u*) data)); } #define BX_LAPIC_ID 0x020 #define BX_LAPIC_VERSION 0x030 #define BX_LAPIC_TPR 0x080 #define BX_LAPIC_ARBITRATION_PRIORITY 0x090 #define BX_LAPIC_PPR 0x0A0 #define BX_LAPIC_EOI 0x0B0 #define BX_LAPIC_LDR 0x0D0 #define BX_LAPIC_DESTINATION_FORMAT 0x0E0 #define BX_LAPIC_SPURIOUS_VECTOR 0x0F0 #define BX_LAPIC_ISR1 0x100 #define BX_LAPIC_ISR2 0x110 #define BX_LAPIC_ISR3 0x120 #define BX_LAPIC_ISR4 0x130 #define BX_LAPIC_ISR5 0x140 #define BX_LAPIC_ISR6 0x150 #define BX_LAPIC_ISR7 0x160 #define BX_LAPIC_ISR8 0x170 #define BX_LAPIC_TMR1 0x180 #define BX_LAPIC_TMR2 0x190 #define BX_LAPIC_TMR3 0x1A0 #define BX_LAPIC_TMR4 0x1B0 #define BX_LAPIC_TMR5 0x1C0 #define BX_LAPIC_TMR6 0x1D0 #define BX_LAPIC_TMR7 0x1E0 #define BX_LAPIC_TMR8 0x1F0 #define BX_LAPIC_IRR1 0x200 #define BX_LAPIC_IRR2 0x210 #define BX_LAPIC_IRR3 0x220 #define BX_LAPIC_IRR4 0x230 #define BX_LAPIC_IRR5 0x240 #define BX_LAPIC_IRR6 0x250 #define BX_LAPIC_IRR7 0x260 #define BX_LAPIC_IRR8 0x270 #define BX_LAPIC_ESR 0x280 #define BX_LAPIC_LVT_CMCI 0x2F0 #define BX_LAPIC_ICR_LO 0x300 #define BX_LAPIC_ICR_HI 0x310 #define BX_LAPIC_LVT_TIMER 0x320 #define BX_LAPIC_LVT_THERMAL 0x330 #define BX_LAPIC_LVT_PERFMON 0x340 #define BX_LAPIC_LVT_LINT0 0x350 #define BX_LAPIC_LVT_LINT1 0x360 #define BX_LAPIC_LVT_ERROR 0x370 #define BX_LAPIC_TIMER_INITIAL_COUNT 0x380 #define BX_LAPIC_TIMER_CURRENT_COUNT 0x390 #define BX_LAPIC_TIMER_DIVIDE_CFG 0x3E0 #define BX_LAPIC_SELF_IPI 0x3F0 // APIC write: 4 byte write to 16-byte aligned APIC address void bx_local_apic_c::write_aligned(bx_phy_address addr, Bit32u value) { BX_ASSERT((addr & 0xf) == 0); unsigned apic_reg = addr & 0xff0; BX_DEBUG(("LAPIC write 0x%08x to register 0x%04x", value, apic_reg)); switch(apic_reg) { case BX_LAPIC_TPR: // task priority set_tpr(value & 0xff); break; case BX_LAPIC_EOI: // EOI receive_EOI(value); break; case BX_LAPIC_LDR: // logical destination ldr = (value >> 24) & apic_id_mask; BX_DEBUG(("set logical destination to %08x", ldr)); break; case BX_LAPIC_DESTINATION_FORMAT: dest_format = (value >> 28) & 0xf; BX_DEBUG(("set destination format to %02x", dest_format)); break; case BX_LAPIC_SPURIOUS_VECTOR: write_spurious_interrupt_register(value); break; case BX_LAPIC_ESR: // error status reg // Here's what the IA-devguide-3 says on p.7-45: // The ESR is a read/write register and is reset after being written to // by the processor. A write to the ESR must be done just prior to // reading the ESR to allow the register to be updated. error_status = shadow_error_status; shadow_error_status = 0; break; case BX_LAPIC_ICR_LO: // interrupt command reg 0-31 icr_lo = value & ~(1<<12); // force delivery status bit = 0(idle) send_ipi((icr_hi >> 24) & 0xff, icr_lo); break; case BX_LAPIC_ICR_HI: // interrupt command reg 31-63 icr_hi = value & 0xff000000; break; case BX_LAPIC_LVT_TIMER: // LVT Timer Reg case BX_LAPIC_LVT_THERMAL: // LVT Thermal Monitor case BX_LAPIC_LVT_PERFMON: // LVT Performance Counter case BX_LAPIC_LVT_LINT0: // LVT LINT0 Reg case BX_LAPIC_LVT_LINT1: // LVT LINT1 Reg case BX_LAPIC_LVT_ERROR: // LVT Error Reg { static Bit32u lvt_mask[] = { 0x000310ff, /* TIMER */ 0x000117ff, /* THERMAL */ 0x000117ff, /* PERFMON */ 0x0001f7ff, /* LINT0 */ 0x0001f7ff, /* LINT1 */ 0x000110ff /* ERROR */ }; unsigned lvt_entry = (apic_reg - BX_LAPIC_LVT_TIMER) >> 4; lvt[lvt_entry] = value & lvt_mask[lvt_entry]; if(! software_enabled) lvt[lvt_entry] |= 0x10000; break; } case BX_LAPIC_TIMER_INITIAL_COUNT: set_initial_timer_count(value); break; case BX_LAPIC_TIMER_DIVIDE_CFG: // only bits 3, 1, and 0 are writable timer_divconf = value & 0xb; set_divide_configuration(timer_divconf); break; /* all read-only registers go here */ case BX_LAPIC_ID: // local APIC id case BX_LAPIC_VERSION: // local APIC version case BX_LAPIC_ARBITRATION_PRIORITY: case BX_LAPIC_PPR: // processor priority // ISRs not writable case BX_LAPIC_ISR1: case BX_LAPIC_ISR2: case BX_LAPIC_ISR3: case BX_LAPIC_ISR4: case BX_LAPIC_ISR5: case BX_LAPIC_ISR6: case BX_LAPIC_ISR7: case BX_LAPIC_ISR8: // TMRs not writable case BX_LAPIC_TMR1: case BX_LAPIC_TMR2: case BX_LAPIC_TMR3: case BX_LAPIC_TMR4: case BX_LAPIC_TMR5: case BX_LAPIC_TMR6: case BX_LAPIC_TMR7: case BX_LAPIC_TMR8: // IRRs not writable case BX_LAPIC_IRR1: case BX_LAPIC_IRR2: case BX_LAPIC_IRR3: case BX_LAPIC_IRR4: case BX_LAPIC_IRR5: case BX_LAPIC_IRR6: case BX_LAPIC_IRR7: case BX_LAPIC_IRR8: // current count for timer case BX_LAPIC_TIMER_CURRENT_COUNT: // all read-only registers should fall into this line BX_INFO(("warning: write to read-only APIC register 0x%x", apic_reg)); break; default: shadow_error_status |= APIC_ERR_ILLEGAL_ADDR; // but for now I want to know about it in case I missed some. BX_PANIC(("APIC register %x not implemented", apic_reg)); } } void bx_local_apic_c::send_ipi(apic_dest_t dest, Bit32u lo_cmd) { int dest_shorthand = (lo_cmd >> 18) & 3; int trig_mode = (lo_cmd >> 15) & 1; int level = (lo_cmd >> 14) & 1; int logical_dest = (lo_cmd >> 11) & 1; int delivery_mode = (lo_cmd >> 8) & 7; int vector = (lo_cmd & 0xff); int accepted = 0; if(delivery_mode == APIC_DM_INIT) { if(level == 0 && trig_mode == 1) { // special mode in local apic. See "INIT Level Deassert" in the // Intel Soft. Devel. Guide Vol 3, page 7-34. This magic code // causes all APICs(regardless of dest address) to set their // arbitration ID to their APIC ID. Not supported by Pentium 4 // and Intel Xeon processors. return; // we not model APIC bus arbitration ID anyway } } switch(dest_shorthand) { case 0: // no shorthand, use real destination value accepted = apic_bus_deliver_interrupt(vector, dest, delivery_mode, logical_dest, level, trig_mode); break; case 1: // self trigger_irq(vector, trig_mode); accepted = 1; break; case 2: // all including self accepted = apic_bus_broadcast_interrupt(vector, delivery_mode, trig_mode, apic_id_mask); break; case 3: // all but self accepted = apic_bus_broadcast_interrupt(vector, delivery_mode, trig_mode, get_id()); break; default: BX_PANIC(("Invalid desination shorthand %#x\n", dest_shorthand)); } if(! accepted) { BX_DEBUG(("An IPI wasn't accepted, raise APIC_ERR_TX_ACCEPT_ERR")); shadow_error_status |= APIC_ERR_TX_ACCEPT_ERR; } } void bx_local_apic_c::write_spurious_interrupt_register(Bit32u value) { BX_DEBUG(("write of %08x to spurious interrupt register", value)); if (xapic) spurious_vector = value & 0xff; else // bits 0-3 of the spurious vector hardwired to '1 spurious_vector = (value & 0xf0) | 0xf; software_enabled = (value >> 8) & 1; focus_disable = (value >> 9) & 1; if(! software_enabled) { for(unsigned i=0; ideliver_SIPI(vector); } // APIC read: 4 byte read from 16-byte aligned APIC address Bit32u bx_local_apic_c::read_aligned(bx_phy_address addr) { BX_ASSERT((addr & 0xf) == 0); Bit32u data = 0; // default value for unimplemented registers unsigned apic_reg = addr & 0xff0; BX_DEBUG(("LAPIC read from register 0x%04x", apic_reg)); switch(apic_reg) { case BX_LAPIC_ID: // local APIC id data = apic_id << 24; break; case BX_LAPIC_VERSION: // local APIC version data = apic_version_id; break; case BX_LAPIC_TPR: // task priority data = task_priority & 0xff; break; case BX_LAPIC_ARBITRATION_PRIORITY: data = get_apr(); break; case BX_LAPIC_PPR: // processor priority data = get_ppr(); break; case BX_LAPIC_EOI: // EOI /* * Read-modify-write operations should operate without generating * exceptions, and are used by some operating systems to EOI. * The results of reads should be ignored by the OS. */ break; case BX_LAPIC_LDR: // logical destination data = (ldr & apic_id_mask) << 24; break; case BX_LAPIC_DESTINATION_FORMAT: data = ((dest_format & 0xf) << 28) | 0x0fffffff; break; case BX_LAPIC_SPURIOUS_VECTOR: { Bit32u reg = spurious_vector; if(software_enabled) reg |= 0x100; if(focus_disable) reg |= 0x200; data = reg; } break; case BX_LAPIC_ISR1: case BX_LAPIC_ISR2: case BX_LAPIC_ISR3: case BX_LAPIC_ISR4: case BX_LAPIC_ISR5: case BX_LAPIC_ISR6: case BX_LAPIC_ISR7: case BX_LAPIC_ISR8: { unsigned index = (apic_reg - BX_LAPIC_ISR1) << 1; Bit32u value = 0, mask = 1; for(int i=0;i<32;i++) { if(isr[index+i]) value |= mask; mask <<= 1; } data = value; } break; case BX_LAPIC_TMR1: case BX_LAPIC_TMR2: case BX_LAPIC_TMR3: case BX_LAPIC_TMR4: case BX_LAPIC_TMR5: case BX_LAPIC_TMR6: case BX_LAPIC_TMR7: case BX_LAPIC_TMR8: { unsigned index = (apic_reg - BX_LAPIC_TMR1) << 1; Bit32u value = 0, mask = 1; for(int i=0;i<32;i++) { if(tmr[index+i]) value |= mask; mask <<= 1; } data = value; } break; case BX_LAPIC_IRR1: case BX_LAPIC_IRR2: case BX_LAPIC_IRR3: case BX_LAPIC_IRR4: case BX_LAPIC_IRR5: case BX_LAPIC_IRR6: case BX_LAPIC_IRR7: case BX_LAPIC_IRR8: { unsigned index = (apic_reg - BX_LAPIC_IRR1) << 1; Bit32u value = 0, mask = 1; for(int i=0;i<32;i++) { if(irr[index+i]) value |= mask; mask <<= 1; } data = value; } break; case BX_LAPIC_ESR: // error status reg data = error_status; break; case BX_LAPIC_ICR_LO: // interrupt command reg 0-31 data = icr_lo; break; case BX_LAPIC_ICR_HI: // interrupt command reg 31-63 data = icr_hi; break; case BX_LAPIC_LVT_TIMER: // LVT Timer Reg case BX_LAPIC_LVT_THERMAL: // LVT Thermal Monitor case BX_LAPIC_LVT_PERFMON: // LVT Performance Counter case BX_LAPIC_LVT_LINT0: // LVT LINT0 Reg case BX_LAPIC_LVT_LINT1: // LVT Lint1 Reg case BX_LAPIC_LVT_ERROR: // LVT Error Reg { int index = (apic_reg - BX_LAPIC_LVT_TIMER) >> 4; data = lvt[index]; break; } case BX_LAPIC_TIMER_INITIAL_COUNT: // initial count for timer data = timer_initial; break; case BX_LAPIC_TIMER_CURRENT_COUNT: // current count for timer if(timer_active==0) { data = timer_current; } else { Bit64u delta64 = (bx_pc_system.time_ticks() - ticksInitial) / timer_divide_factor; Bit32u delta32 = (Bit32u) delta64; if(delta32 > timer_initial) BX_PANIC(("APIC: R(curr timer count): delta < initial")); timer_current = timer_initial - delta32; data = timer_current; } break; case BX_LAPIC_TIMER_DIVIDE_CFG: // timer divide configuration data = timer_divconf; break; default: BX_INFO(("APIC register %08x not implemented", apic_reg)); } BX_DEBUG(("read from APIC address 0x" FMT_PHY_ADDRX " = %08x", addr, data)); return data; } int bx_local_apic_c::highest_priority_int(Bit8u *array) { for(int i=BX_LAPIC_LAST_VECTOR; i>=BX_LAPIC_FIRST_VECTOR; i--) if(array[i]) return i; return -1; } void bx_local_apic_c::service_local_apic(void) { if(bx_dbg.apic) { BX_INFO(("service_local_apic()")); print_status(); } if(INTR) return; // INTR already up; do nothing // find first interrupt in irr. int first_irr = highest_priority_int(irr); if (first_irr < 0) return; // no interrupts, leave INTR=0 int first_isr = highest_priority_int(isr); if (first_isr >= 0 && first_irr <= first_isr) { BX_DEBUG(("lapic(%d): not delivering int 0x%02x because int 0x%02x is in service", apic_id, first_irr, first_isr)); return; } if(((Bit32u)(first_irr) & 0xf0) <= (task_priority & 0xf0)) { BX_DEBUG(("lapic(%d): not delivering int 0x%02X because task_priority is 0x%02X", apic_id, first_irr, task_priority)); return; } // interrupt has appeared in irr. Raise INTR. When the CPU // acknowledges, we will run highest_priority_int again and // return it. BX_DEBUG(("service_local_apic(): setting INTR=1 for vector 0x%02x", first_irr)); INTR = 1; cpu->async_event = 1; } bx_bool bx_local_apic_c::deliver(Bit8u vector, Bit8u delivery_mode, Bit8u trig_mode) { switch(delivery_mode) { case APIC_DM_FIXED: case APIC_DM_LOWPRI: BX_DEBUG(("Deliver lowest priority of fixed interrupt vector %02x", vector)); trigger_irq(vector, trig_mode); break; case APIC_DM_SMI: BX_INFO(("Deliver SMI")); cpu->deliver_SMI(); return 1; case APIC_DM_NMI: BX_INFO(("Deliver NMI")); cpu->deliver_NMI(); return 1; case APIC_DM_INIT: BX_INFO(("Deliver INIT IPI")); cpu->deliver_INIT(); break; case APIC_DM_SIPI: BX_INFO(("Deliver Start Up IPI")); startup_msg(vector); break; case APIC_DM_EXTINT: BX_DEBUG(("Deliver EXTINT vector %02x", vector)); trigger_irq(vector, trig_mode, 1); break; default: return 0; } return 1; } void bx_local_apic_c::trigger_irq(Bit8u vector, unsigned trigger_mode, bx_bool bypass_irr_isr) { BX_DEBUG(("trigger interrupt vector=0x%02x", vector)); if(/* vector > BX_LAPIC_LAST_VECTOR || */ vector < BX_LAPIC_FIRST_VECTOR) { shadow_error_status |= APIC_ERR_RX_ILLEGAL_VEC; BX_INFO(("bogus vector %#x, ignoring ...", vector)); return; } BX_DEBUG(("triggered vector %#02x", vector)); if(bypass_irr_isr) { goto service_vector; } if(irr[vector] != 0) { BX_DEBUG(("triggered vector %#02x not accepted", vector)); return; } service_vector: irr[vector] = 1; tmr[vector] = trigger_mode; // set for level triggered service_local_apic(); } void bx_local_apic_c::untrigger_irq(Bit8u vector, unsigned trigger_mode) { BX_DEBUG(("untrigger interrupt vector=0x%02x", vector)); // hardware says "no more". clear the bit. If the CPU hasn't yet // acknowledged the interrupt, it will never be serviced. BX_ASSERT(irr[vector] == 1); irr[vector] = 0; if(bx_dbg.apic) print_status(); } Bit8u bx_local_apic_c::acknowledge_int(void) { // CPU calls this when it is ready to service one interrupt if(!INTR) BX_PANIC(("APIC %d acknowledged an interrupt, but INTR=0", apic_id)); BX_ASSERT(INTR); int vector = highest_priority_int(irr); if (vector < 0) goto spurious; if((vector & 0xf0) <= get_ppr()) goto spurious; BX_ASSERT(irr[vector] == 1); BX_DEBUG(("acknowledge_int() returning vector 0x%02x", vector)); irr[vector] = 0; isr[vector] = 1; if(bx_dbg.apic) { BX_INFO(("Status after setting isr:")); print_status(); } INTR = 0; cpu->async_event = 1; service_local_apic(); // will set INTR again if another is ready return vector; spurious: INTR = 0; cpu->async_event = 1; return spurious_vector; } void bx_local_apic_c::print_status(void) { BX_INFO(("lapic %d: status is {:", apic_id)); for(int vec=0; vec %s", address, ldr, match ? "Match" : "Not a match")); } else if (dest_format == 0) { // cluster model if (address == 0xff) // broadcast all return 1; if ((unsigned)(address & 0xf0) == (unsigned)(ldr & 0xf0)) match = ((address & ldr & 0x0f) != 0); } else { BX_PANIC(("bx_local_apic_c::match_logical_addr: unsupported dest format 0x%x", dest_format)); } return match; } Bit8u bx_local_apic_c::get_ppr(void) { int ppr = highest_priority_int(isr); if((ppr < 0) || ((task_priority & 0xF0) >= ((Bit32u) ppr & 0xF0))) ppr = task_priority; else ppr &= 0xF0; return ppr; } void bx_local_apic_c::set_tpr(Bit8u priority) { if(priority < task_priority) { task_priority = priority; service_local_apic(); } else { task_priority = priority; } } Bit8u bx_local_apic_c::get_apr(void) { Bit32u tpr = (task_priority >> 4) & 0xf; int first_isr = highest_priority_int(isr); if (first_isr < 0) first_isr = 0; int first_irr = highest_priority_int(irr); if (first_irr < 0) first_irr = 0; Bit32u isrv = (first_isr >> 4) & 0xf; Bit32u irrv = (first_irr >> 4) & 0xf; Bit8u apr; if((tpr >= irrv) && (tpr > isrv)) { apr = task_priority & 0xff; } else { apr = ((tpr & isrv) > irrv) ?(tpr & isrv) : irrv; apr <<= 4; } BX_DEBUG(("apr = %d\n", apr)); return(Bit8u) apr; } bx_bool bx_local_apic_c::is_focus(Bit8u vector) { if(focus_disable) return 0; return(irr[vector] || isr[vector]) ? 1 : 0; } void bx_local_apic_c::periodic_smf(void *this_ptr) { bx_local_apic_c *class_ptr = (bx_local_apic_c *) this_ptr; class_ptr->periodic(); } void bx_local_apic_c::periodic(void) { if(!timer_active) { BX_ERROR(("bx_local_apic_c::periodic called, timer_active==0")); return; } // timer reached zero since the last call to periodic. Bit32u timervec = lvt[APIC_LVT_TIMER]; if(timervec & 0x20000) { // Periodic mode. // If timer is not masked, trigger interrupt. if((timervec & 0x10000)==0) { trigger_irq(timervec & 0xff, APIC_EDGE_TRIGGERED); } else { BX_DEBUG(("local apic timer LVT masked")); } // Reload timer values. timer_current = timer_initial; ticksInitial = bx_pc_system.time_ticks(); // Take a reading. BX_DEBUG(("local apic timer(periodic) triggered int, reset counter to 0x%08x", timer_current)); } else { // one-shot mode timer_current = 0; // If timer is not masked, trigger interrupt. if((timervec & 0x10000)==0) { trigger_irq(timervec & 0xff, APIC_EDGE_TRIGGERED); } else { BX_DEBUG(("local apic timer LVT masked")); } timer_active = 0; BX_DEBUG(("local apic timer(one-shot) triggered int")); bx_pc_system.deactivate_timer(timer_handle); } } void bx_local_apic_c::set_divide_configuration(Bit32u value) { BX_ASSERT(value == (value & 0x0b)); // move bit 3 down to bit 0. value = ((value & 8) >> 1) | (value & 3); BX_ASSERT(value >= 0 && value <= 7); timer_divide_factor = (value==7) ? 1 : (2 << value); BX_INFO(("set timer divide factor to %d", timer_divide_factor)); } void bx_local_apic_c::set_initial_timer_count(Bit32u value) { // If active before, deactive the current timer before changing it. if(timer_active) { bx_pc_system.deactivate_timer(timer_handle); timer_active = 0; } timer_initial = value; timer_current = 0; if(timer_initial != 0) // terminate the counting if timer_initial = 0 { // This should trigger the counter to start. If already started, // restart from the new start value. BX_DEBUG(("APIC: Initial Timer Count Register = %u", value)); timer_current = timer_initial; timer_active = 1; Bit32u timervec = lvt[APIC_LVT_TIMER]; bx_bool continuous = (timervec & 0x20000) > 0; ticksInitial = bx_pc_system.time_ticks(); // Take a reading. bx_pc_system.activate_timer_ticks(timer_handle, Bit64u(timer_initial) * Bit64u(timer_divide_factor), continuous); } } #if BX_SUPPORT_X2APIC // return false when x2apic is not supported/not readable bx_bool bx_local_apic_c::read_x2apic(unsigned index, Bit64u *val_64) { index = (index - 0x800) << 4; switch(index) { // return full 32-bit lapic id case BX_LAPIC_ID: *val_64 = apic_id; break; case BX_LAPIC_LDR: *val_64 = ldr; break; // full 64-bit access to ICR case BX_LAPIC_ICR_LO: *val_64 = ((Bit64u) icr_lo) | (((Bit64u) icr_hi) << 32); break; // not supported/not readable in x2apic mode case BX_LAPIC_ARBITRATION_PRIORITY: case BX_LAPIC_DESTINATION_FORMAT: case BX_LAPIC_ICR_HI: case BX_LAPIC_EOI: // write only case BX_LAPIC_SELF_IPI: // write only return 0; // compatible to legacy lapic mode case BX_LAPIC_VERSION: case BX_LAPIC_TPR: case BX_LAPIC_PPR: case BX_LAPIC_SPURIOUS_VECTOR: case BX_LAPIC_ISR1: case BX_LAPIC_ISR2: case BX_LAPIC_ISR3: case BX_LAPIC_ISR4: case BX_LAPIC_ISR5: case BX_LAPIC_ISR6: case BX_LAPIC_ISR7: case BX_LAPIC_ISR8: case BX_LAPIC_TMR1: case BX_LAPIC_TMR2: case BX_LAPIC_TMR3: case BX_LAPIC_TMR4: case BX_LAPIC_TMR5: case BX_LAPIC_TMR6: case BX_LAPIC_TMR7: case BX_LAPIC_TMR8: case BX_LAPIC_IRR1: case BX_LAPIC_IRR2: case BX_LAPIC_IRR3: case BX_LAPIC_IRR4: case BX_LAPIC_IRR5: case BX_LAPIC_IRR6: case BX_LAPIC_IRR7: case BX_LAPIC_IRR8: case BX_LAPIC_ESR: case BX_LAPIC_LVT_TIMER: case BX_LAPIC_LVT_THERMAL: case BX_LAPIC_LVT_PERFMON: case BX_LAPIC_LVT_LINT0: case BX_LAPIC_LVT_LINT1: case BX_LAPIC_LVT_ERROR: case BX_LAPIC_TIMER_INITIAL_COUNT: case BX_LAPIC_TIMER_CURRENT_COUNT: case BX_LAPIC_TIMER_DIVIDE_CFG: *val_64 = read_aligned(index); break; default: BX_DEBUG(("read_x2apic: not supported apic register 0x%08x", index)); return 0; } return 1; } // return false when x2apic is not supported/not writeable bx_bool bx_local_apic_c::write_x2apic(unsigned index, Bit64u val_64) { Bit32u val32_lo = GET32L(val_64); index = (index - 0x800) << 4; switch(index) { // read only/not available in x2apic mode case BX_LAPIC_ID: case BX_LAPIC_VERSION: case BX_LAPIC_ARBITRATION_PRIORITY: case BX_LAPIC_PPR: case BX_LAPIC_LDR: case BX_LAPIC_DESTINATION_FORMAT: case BX_LAPIC_ISR1: case BX_LAPIC_ISR2: case BX_LAPIC_ISR3: case BX_LAPIC_ISR4: case BX_LAPIC_ISR5: case BX_LAPIC_ISR6: case BX_LAPIC_ISR7: case BX_LAPIC_ISR8: case BX_LAPIC_TMR1: case BX_LAPIC_TMR2: case BX_LAPIC_TMR3: case BX_LAPIC_TMR4: case BX_LAPIC_TMR5: case BX_LAPIC_TMR6: case BX_LAPIC_TMR7: case BX_LAPIC_TMR8: case BX_LAPIC_IRR1: case BX_LAPIC_IRR2: case BX_LAPIC_IRR3: case BX_LAPIC_IRR4: case BX_LAPIC_IRR5: case BX_LAPIC_IRR6: case BX_LAPIC_IRR7: case BX_LAPIC_IRR8: case BX_LAPIC_ICR_HI: case BX_LAPIC_TIMER_CURRENT_COUNT: return 0; // send self ipi case BX_LAPIC_SELF_IPI: trigger_irq(val32_lo & 0xff, APIC_EDGE_TRIGGERED); break; // handle full 64-bit write case BX_LAPIC_ICR_LO: send_ipi(GET32H(val_64), val32_lo); break; case BX_LAPIC_TPR: // handle reserved bits, only bits 0-7 are writeable if ((val32_lo & 0xffffff00) != 0) return 0; break; // use legacy write case BX_LAPIC_SPURIOUS_VECTOR: // handle reserved bits, only bits 0-8, 12 are writeable // we do not support directed EOI capability, so reserve bit 12 as well if ((val32_lo & 0xfffffe00) != 0) return 0; break; // use legacy write case BX_LAPIC_EOI: case BX_LAPIC_ESR: if (val_64 != 0) return 0; break; // use legacy write case BX_LAPIC_LVT_TIMER: case BX_LAPIC_LVT_THERMAL: case BX_LAPIC_LVT_PERFMON: case BX_LAPIC_LVT_LINT0: case BX_LAPIC_LVT_LINT1: case BX_LAPIC_LVT_ERROR: case BX_LAPIC_TIMER_INITIAL_COUNT: case BX_LAPIC_TIMER_DIVIDE_CFG: break; // use legacy write default: BX_DEBUG(("write_x2apic: not supported apic register 0x%08x", index)); return 0; } if (GET32H(val_64) != 0) // upper 32-bit are reserved for all x2apic MSRs return 0; write_aligned(index, val32_lo); return 1; } #endif void bx_local_apic_c::register_state(bx_param_c *parent) { unsigned i; char name[6]; bx_list_c *lapic = new bx_list_c(parent, "local_apic", 25); BXRS_HEX_PARAM_SIMPLE(lapic, base_addr); BXRS_HEX_PARAM_SIMPLE(lapic, apic_id); BXRS_HEX_PARAM_SIMPLE(lapic, mode); BXRS_HEX_PARAM_SIMPLE(lapic, spurious_vector); BXRS_PARAM_BOOL(lapic, software_enabled, software_enabled); BXRS_PARAM_BOOL(lapic, focus_disable, focus_disable); BXRS_HEX_PARAM_SIMPLE(lapic, task_priority); BXRS_HEX_PARAM_SIMPLE(lapic, ldr); BXRS_HEX_PARAM_SIMPLE(lapic, dest_format); bx_list_c *ISR = new bx_list_c(lapic, "isr", BX_LAPIC_MAX_INTS); bx_list_c *TMR = new bx_list_c(lapic, "tmr", BX_LAPIC_MAX_INTS); bx_list_c *IRR = new bx_list_c(lapic, "irr", BX_LAPIC_MAX_INTS); for (i=0; i