///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2018 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR void BX_CPP_AttrRegparmN(1) BX_CPU_C::INC_EdR(bxInstruction_c *i) { Bit32u erx = ++BX_READ_32BIT_REG(i->dst()); SET_FLAGS_OSZAP_ADD_32(erx - 1, 0, erx); BX_CLEAR_64BIT_HIGH(i->dst()); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::DEC_EdR(bxInstruction_c *i) { Bit32u erx = --BX_READ_32BIT_REG(i->dst()); SET_FLAGS_OSZAP_SUB_32(erx + 1, 0, erx); BX_CLEAR_64BIT_HIGH(i->dst()); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_EdGdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op2_32 = BX_READ_32BIT_REG(i->src()); sum_32 = op1_32 + op2_32; write_RMW_linear_dword(sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_GdEdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = BX_READ_32BIT_REG(i->src()); sum_32 = op1_32 + op2_32; BX_WRITE_32BIT_REGZ(i->dst(), sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_GdEdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = read_virtual_dword(i->seg(), eaddr); sum_32 = op1_32 + op2_32; BX_WRITE_32BIT_REGZ(i->dst(), sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_EdGdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32, temp_CF = getB_CF(); bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op2_32 = BX_READ_32BIT_REG(i->src()); sum_32 = op1_32 + op2_32 + temp_CF; write_RMW_linear_dword(sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_GdEdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32, temp_CF = getB_CF(); op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = BX_READ_32BIT_REG(i->src()); sum_32 = op1_32 + op2_32 + temp_CF; BX_WRITE_32BIT_REGZ(i->dst(), sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_GdEdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32, temp_CF = getB_CF(); bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = read_virtual_dword(i->seg(), eaddr); sum_32 = op1_32 + op2_32 + temp_CF; BX_WRITE_32BIT_REGZ(i->dst(), sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_EdGdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32, temp_CF = getB_CF(); bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op2_32 = BX_READ_32BIT_REG(i->src()); diff_32 = op1_32 - (op2_32 + temp_CF); write_RMW_linear_dword(diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_GdEdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32, temp_CF = getB_CF(); op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = BX_READ_32BIT_REG(i->src()); diff_32 = op1_32 - (op2_32 + temp_CF); BX_WRITE_32BIT_REGZ(i->dst(), diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_GdEdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32, temp_CF = getB_CF(); bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = read_virtual_dword(i->seg(), eaddr); diff_32 = op1_32 - (op2_32 + temp_CF); BX_WRITE_32BIT_REGZ(i->dst(), diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_EdIdM(bxInstruction_c *i) { Bit32u op1_32, op2_32 = i->Id(), diff_32, temp_CF = getB_CF(); bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); diff_32 = op1_32 - (op2_32 + temp_CF); write_RMW_linear_dword(diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_EdIdR(bxInstruction_c *i) { Bit32u op1_32, op2_32 = i->Id(), diff_32, temp_CF = getB_CF(); op1_32 = BX_READ_32BIT_REG(i->dst()); diff_32 = op1_32 - (op2_32 + temp_CF); BX_WRITE_32BIT_REGZ(i->dst(), diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_EdGdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op2_32 = BX_READ_32BIT_REG(i->src()); diff_32 = op1_32 - op2_32; write_RMW_linear_dword(diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_GdEdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = BX_READ_32BIT_REG(i->src()); diff_32 = op1_32 - op2_32; BX_WRITE_32BIT_REGZ(i->dst(), diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_GdEdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = read_virtual_dword(i->seg(), eaddr); diff_32 = op1_32 - op2_32; BX_WRITE_32BIT_REGZ(i->dst(), diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_EdGdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = read_virtual_dword(i->seg(), eaddr); op2_32 = BX_READ_32BIT_REG(i->src()); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_GdEdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = BX_READ_32BIT_REG(i->src()); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_GdEdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = read_virtual_dword(i->seg(), eaddr); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CWDE(bxInstruction_c *i) { /* CWDE: no flags are effected */ Bit32u tmp = (Bit16s) AX; RAX = tmp; BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CDQ(bxInstruction_c *i) { /* CDQ: no flags are affected */ if (EAX & 0x80000000) { RDX = 0xFFFFFFFF; } else { RDX = 0x00000000; } BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::XADD_EdGdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; /* XADD dst(r/m), src(r) * temp <-- src + dst | sum = op2 + op1 * src <-- dst | op2 = op1 * dst <-- tmp | op1 = sum */ bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op2_32 = BX_READ_32BIT_REG(i->src()); sum_32 = op1_32 + op2_32; write_RMW_linear_dword(sum_32); /* and write destination into source */ BX_WRITE_32BIT_REGZ(i->src(), op1_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::XADD_EdGdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; /* XADD dst(r/m), src(r) * temp <-- src + dst | sum = op2 + op1 * src <-- dst | op2 = op1 * dst <-- tmp | op1 = sum */ op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = BX_READ_32BIT_REG(i->src()); sum_32 = op1_32 + op2_32; // and write destination into source // Note: if both op1 & op2 are registers, the last one written // should be the sum, as op1 & op2 may be the same register. // For example: XADD AL, AL BX_WRITE_32BIT_REGZ(i->src(), op1_32); BX_WRITE_32BIT_REGZ(i->dst(), sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_EdIdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op2_32 = i->Id(); sum_32 = op1_32 + op2_32; write_RMW_linear_dword(sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_EdIdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = i->Id(); sum_32 = op1_32 + op2_32; BX_WRITE_32BIT_REGZ(i->dst(), sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_EdIdM(bxInstruction_c *i) { Bit32u op1_32, op2_32 = i->Id(), sum_32, temp_CF = getB_CF(); bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); sum_32 = op1_32 + op2_32 + temp_CF; write_RMW_linear_dword(sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_EdIdR(bxInstruction_c *i) { Bit32u op1_32, op2_32 = i->Id(), sum_32, temp_CF = getB_CF(); op1_32 = BX_READ_32BIT_REG(i->dst()); sum_32 = op1_32 + op2_32 + temp_CF; BX_WRITE_32BIT_REGZ(i->dst(), sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_EdIdM(bxInstruction_c *i) { Bit32u op1_32, op2_32 = i->Id(), diff_32; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); diff_32 = op1_32 - op2_32; write_RMW_linear_dword(diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_EdIdR(bxInstruction_c *i) { Bit32u op1_32, op2_32 = i->Id(), diff_32; op1_32 = BX_READ_32BIT_REG(i->dst()); diff_32 = op1_32 - op2_32; BX_WRITE_32BIT_REGZ(i->dst(), diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_EdIdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); op1_32 = read_virtual_dword(i->seg(), eaddr); op2_32 = i->Id(); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_EdIdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = i->Id(); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::NEG_EdM(bxInstruction_c *i) { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op1_32 = -op1_32; write_RMW_linear_dword(op1_32); SET_FLAGS_OSZAPC_SUB_32(0, 0 - op1_32, op1_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::NEG_EdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->dst()); op1_32 = -op1_32; BX_WRITE_32BIT_REGZ(i->dst(), op1_32); SET_FLAGS_OSZAPC_SUB_32(0, 0 - op1_32, op1_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::INC_EdM(bxInstruction_c *i) { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op1_32++; write_RMW_linear_dword(op1_32); SET_FLAGS_OSZAP_ADD_32(op1_32 - 1, 0, op1_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::DEC_EdM(bxInstruction_c *i) { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op1_32--; write_RMW_linear_dword(op1_32); SET_FLAGS_OSZAP_SUB_32(op1_32 + 1, 0, op1_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG_EdGdM(bxInstruction_c *i) { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); Bit32u diff_32 = EAX - op1_32; SET_FLAGS_OSZAPC_SUB_32(EAX, op1_32, diff_32); if (diff_32 == 0) { // if accumulator == dest // dest <-- src write_RMW_linear_dword(BX_READ_32BIT_REG(i->src())); } else { // accumulator <-- dest write_RMW_linear_dword(op1_32); RAX = op1_32; } BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG_EdGdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->dst()); Bit32u diff_32 = EAX - op1_32; SET_FLAGS_OSZAPC_SUB_32(EAX, op1_32, diff_32); if (diff_32 == 0) { // if accumulator == dest // dest <-- src BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src())); } else { // accumulator <-- dest RAX = op1_32; } BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG8B(bxInstruction_c *i) { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); // check write permission for following write Bit64u op1_64 = read_RMW_virtual_qword(i->seg(), eaddr); Bit64u op2_64 = GET64_FROM_HI32_LO32(EDX, EAX); if (op1_64 == op2_64) { // if accumulator == dest // dest <-- src (ECX:EBX) op2_64 = GET64_FROM_HI32_LO32(ECX, EBX); write_RMW_linear_qword(op2_64); assert_ZF(); } else { // accumulator <-- dest write_RMW_linear_qword(op1_64); RAX = GET32L(op1_64); RDX = GET32H(op1_64); clear_ZF(); } BX_NEXT_INSTR(i); }