/////////////////////////////////////////////////////////////////////// // $Id: pit_wrap.cc,v 1.63 2006-09-17 19:19:15 vruppert Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2002 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #include "iodev.h" #if BX_USE_NEW_PIT #include "speaker.h" //Important constant #defines: #define USEC_PER_SECOND (1000000) //1.193181MHz Clock #define TICKS_PER_SECOND (1193181) // define a macro to convert floating point numbers into 64-bit integers. // In MSVC++ you can convert a 64-bit float into a 64-bit signed integer, // but it will not convert a 64-bit float into a 64-bit unsigned integer. // This macro works around that. #define F2I(x) ((Bit64u)(Bit64s) (x)) #define I2F(x) ((double)(Bit64s) (x)) //DEBUG configuration: //Set up Logging. #define LOG_THIS bx_pit. //A single instance. bx_pit_c bx_pit; #if BX_USE_PIT_SMF #define this (&bx_pit) #endif //Workaround for environments where OUT is defined. #ifdef OUT # undef OUT #endif //Generic MAX and MIN Functions #define BX_MAX(a,b) ( ((a)>(b))?(a):(b) ) #define BX_MIN(a,b) ( ((a)>(b))?(b):(a) ) //USEC_ALPHA is multiplier for the past. //USEC_ALPHA_B is 1-USEC_ALPHA, or multiplier for the present. #define USEC_ALPHA ((double)(.8)) #define USEC_ALPHA_B ((double)(((double)1)-USEC_ALPHA)) #define USEC_ALPHA2 ((double)(.5)) #define USEC_ALPHA2_B ((double)(((double)1)-USEC_ALPHA2)) #define ALPHA_LOWER(old,new) ((Bit64u)((oldget_sr_root(), "pit", "8254 PIT State", 7); new bx_shadow_num_c(list, "speaker_data_on", &BX_PIT_THIS s.speaker_data_on, BASE_HEX); new bx_shadow_bool_c(list, "refresh_clock_div2", &BX_PIT_THIS s.refresh_clock_div2); new bx_shadow_num_c(list, "last_usec", &BX_PIT_THIS s.last_usec); new bx_shadow_num_c(list, "last_next_event_time", &BX_PIT_THIS s.last_next_event_time); new bx_shadow_num_c(list, "total_ticks", &BX_PIT_THIS s.total_ticks); new bx_shadow_num_c(list, "total_usec", &BX_PIT_THIS s.total_usec); bx_list_c *counter = new bx_list_c(list, "counter"); BX_PIT_THIS s.timer.register_state(counter); } #endif void bx_pit_c::timer_handler(void *this_ptr) { bx_pit_c * class_ptr = (bx_pit_c *) this_ptr; class_ptr->handle_timer(); } void bx_pit_c::handle_timer() { Bit64u my_time_usec = bx_virt_timer.time_usec(); Bit64u time_passed = my_time_usec-BX_PIT_THIS s.last_usec; Bit32u time_passed32 = (Bit32u)time_passed; BX_DEBUG(("pit: entering timer handler")); if(time_passed32) { periodic(time_passed32); } BX_PIT_THIS s.last_usec=BX_PIT_THIS s.last_usec + time_passed; if(time_passed || (BX_PIT_THIS s.last_next_event_time != BX_PIT_THIS s.timer.get_next_event_time()) ) { BX_DEBUG(("pit: RESETting timer.")); bx_virt_timer.deactivate_timer(BX_PIT_THIS s.timer_handle[0]); BX_DEBUG(("deactivated timer.")); if(BX_PIT_THIS s.timer.get_next_event_time()) { bx_virt_timer.activate_timer(BX_PIT_THIS s.timer_handle[0], (Bit32u)BX_MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())), 0); BX_DEBUG(("activated timer.")); } BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time(); } BX_DEBUG(("s.last_usec="FMT_LL"d",BX_PIT_THIS s.last_usec)); BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0])); BX_DEBUG(("s.timer.get_next_event_time=%x",BX_PIT_THIS s.timer.get_next_event_time())); BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time)); } // static IO port read callback handler // redirects to non-static class handler to avoid virtual functions Bit32u bx_pit_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len) { #if !BX_USE_PIT_SMF bx_pit_c *class_ptr = (bx_pit_c *) this_ptr; return class_ptr->read(address, io_len); } Bit32u bx_pit_c::read(Bit32u address, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_PIT_SMF BX_DEBUG(("pit: entering read handler")); handle_timer(); Bit64u my_time_usec = bx_virt_timer.time_usec(); if (bx_dbg.pit) BX_INFO(("pit: io read from port %04x", (unsigned) address)); switch (address) { case 0x40: /* timer 0 - system ticks */ return(BX_PIT_THIS s.timer.read(0)); break; case 0x41: /* timer 1 read */ return(BX_PIT_THIS s.timer.read(1)); break; case 0x42: /* timer 2 read */ return(BX_PIT_THIS s.timer.read(2)); break; case 0x43: /* timer 1 read */ return(BX_PIT_THIS s.timer.read(3)); break; case 0x61: /* AT, port 61h */ BX_PIT_THIS s.refresh_clock_div2 = (bx_bool)((my_time_usec / 15) & 1); return( (BX_PIT_THIS s.timer.read_OUT(2)<<5) | (BX_PIT_THIS s.refresh_clock_div2<<4) | (BX_PIT_THIS s.speaker_data_on<<1) | (BX_PIT_THIS s.timer.read_GATE(2)?1:0) ); break; default: BX_PANIC(("pit: unsupported io read from port %04x", address)); } return(0); /* keep compiler happy */ } // static IO port write callback handler // redirects to non-static class handler to avoid virtual functions void bx_pit_c::write_handler(void *this_ptr, Bit32u address, Bit32u dvalue, unsigned io_len) { #if !BX_USE_PIT_SMF bx_pit_c *class_ptr = (bx_pit_c *) this_ptr; class_ptr->write(address, dvalue, io_len); } void bx_pit_c::write(Bit32u address, Bit32u dvalue, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_PIT_SMF Bit8u value; Bit64u my_time_usec = bx_virt_timer.time_usec(); Bit64u time_passed = my_time_usec-BX_PIT_THIS s.last_usec; Bit32u time_passed32 = (Bit32u)time_passed; BX_DEBUG(("pit: entering write handler")); if(time_passed32) { periodic(time_passed32); } BX_PIT_THIS s.last_usec=BX_PIT_THIS s.last_usec + time_passed; value = (Bit8u ) dvalue; if (bx_dbg.pit) BX_INFO(("pit: write to port %04x = %02x", (unsigned) address, (unsigned) value)); switch (address) { case 0x40: /* timer 0: write count register */ BX_PIT_THIS s.timer.write(0,value); break; case 0x41: /* timer 1: write count register */ BX_PIT_THIS s.timer.write( 1,value ); break; case 0x42: /* timer 2: write count register */ BX_PIT_THIS s.timer.write( 2,value ); break; case 0x43: /* timer 0-2 mode control */ BX_PIT_THIS s.timer.write( 3,value ); break; case 0x61: BX_PIT_THIS s.speaker_data_on = (value >> 1) & 0x01; if ( BX_PIT_THIS s.speaker_data_on ) { DEV_speaker_beep_on((float)(1193180.0 / this->get_timer(2))); } else { DEV_speaker_beep_off(); } /* ??? only on AT+ */ BX_PIT_THIS s.timer.set_GATE(2, value & 0x01); break; default: BX_PANIC(("pit: unsupported io write to port %04x = %02x", (unsigned) address, (unsigned) value)); } if(time_passed || (BX_PIT_THIS s.last_next_event_time != BX_PIT_THIS s.timer.get_next_event_time()) ) { BX_DEBUG(("pit: RESETting timer.")); bx_virt_timer.deactivate_timer(BX_PIT_THIS s.timer_handle[0]); BX_DEBUG(("deactivated timer.")); if(BX_PIT_THIS s.timer.get_next_event_time()) { bx_virt_timer.activate_timer(BX_PIT_THIS s.timer_handle[0], (Bit32u)BX_MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())), 0); BX_DEBUG(("activated timer.")); } BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time(); } BX_DEBUG(("s.last_usec="FMT_LL"d",BX_PIT_THIS s.last_usec)); BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0])); BX_DEBUG(("s.timer.get_next_event_time=%x",BX_PIT_THIS s.timer.get_next_event_time())); BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time)); } bx_bool bx_pit_c::periodic(Bit32u usec_delta) { Bit32u ticks_delta = 0; #ifdef BX_SCHEDULED_DIE_TIME if (bx_pc_system.time_ticks() > BX_SCHEDULED_DIE_TIME) { BX_ERROR (("ticks exceeded scheduled die time, quitting")); BX_EXIT (2); } #endif BX_PIT_THIS s.total_usec += usec_delta; ticks_delta=(Bit32u)((USEC_TO_TICKS((Bit64u)(BX_PIT_THIS s.total_usec)))-BX_PIT_THIS s.total_ticks); BX_PIT_THIS s.total_ticks += ticks_delta; while ((BX_PIT_THIS s.total_ticks >= TICKS_PER_SECOND) && (BX_PIT_THIS s.total_usec >= USEC_PER_SECOND)) { BX_PIT_THIS s.total_ticks -= TICKS_PER_SECOND; BX_PIT_THIS s.total_usec -= USEC_PER_SECOND; } while(ticks_delta>0) { Bit32u maxchange=BX_PIT_THIS s.timer.get_next_event_time(); Bit32u timedelta=maxchange; if((maxchange==0) || (maxchange>ticks_delta)) { timedelta=ticks_delta; } BX_PIT_THIS s.timer.clock_all(timedelta); ticks_delta-=timedelta; } return 0; } void bx_pit_c::irq_handler(bx_bool value) { if (value == 1) { DEV_pic_raise_irq(0); } else { DEV_pic_lower_irq(0); } } #endif // #if BX_USE_NEW_PIT