///////////////////////////////////////////////////////////////////////// // $Id: stack32.cc,v 1.51 2008-04-16 16:44:06 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR // Make code more tidy with a few macros. #if BX_SUPPORT_X86_64==0 #define RSP ESP #endif void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EdM(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit32u val32 = pop_32(); // Note: there is one little weirdism here. It is possible to use // ESP in the modrm addressing. If used, the value of ESP after the // pop is used to calculate the address. BX_CPU_CALL_METHODR (i->ResolveModrm, (i)); write_virtual_dword(i->seg(), RMAddr(i), val32); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_ERX(bxInstruction_c *i) { push_32(BX_READ_32BIT_REG(i->opcodeReg())); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_ERX(bxInstruction_c *i) { BX_WRITE_32BIT_REGZ(i->opcodeReg(), pop_32()); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_CS(bxInstruction_c *i) { push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_DS(bxInstruction_c *i) { push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_ES(bxInstruction_c *i) { push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_FS(bxInstruction_c *i) { push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_GS(bxInstruction_c *i) { push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_SS(bxInstruction_c *i) { push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_DS(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit32u ds = pop_32(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], (Bit16u) ds); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_ES(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit32u es = pop_32(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], (Bit16u) es); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_FS(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit32u fs = pop_32(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], (Bit16u) fs); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_GS(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit32u gs = pop_32(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], (Bit16u) gs); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_SS(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit32u ss = pop_32(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], (Bit16u) ss); BX_CPU_THIS_PTR speculative_rsp = 0; // POP SS inhibits interrupts, debug exceptions and single-step // trap exceptions until the execution boundary following the // next instruction is reached. // Same code as MOV_SwEw() BX_CPU_THIS_PTR inhibit_mask |= BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG; BX_CPU_THIS_PTR async_event = 1; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_Id(bxInstruction_c *i) { push_32(i->Id()); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EdM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32u op1_32 = read_virtual_dword(i->seg(), RMAddr(i)); push_32(op1_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSHAD32(bxInstruction_c *i) { Bit32u temp_ESP = ESP; Bit16u temp_SP = SP; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 4), EAX); write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 8), ECX); write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 12), EDX); write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 16), EBX); write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 20), temp_ESP); write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 24), EBP); write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 28), ESI); write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 32), EDI); ESP -= 32; } else { write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 4), EAX); write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 8), ECX); write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 12), EDX); write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 16), EBX); write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 20), temp_ESP); write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 24), EBP); write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 28), ESI); write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 32), EDI); SP -= 32; } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPAD32(bxInstruction_c *i) { Bit32u edi, esi, ebp, ebx, edx, ecx, eax; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { Bit32u temp_ESP = ESP; edi = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 0)); esi = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 4)); ebp = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 8)); ebx = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 16)); edx = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 20)); ecx = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 24)); eax = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 28)); ESP += 32; } else { Bit16u temp_SP = SP; edi = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 0)); esi = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 4)); ebp = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 8)); ebx = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 16)); edx = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 20)); ecx = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 24)); eax = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 28)); SP += 32; } EDI = edi; ESI = esi; EBP = ebp; EBX = ebx; EDX = edx; ECX = ecx; EAX = eax; } #if BX_CPU_LEVEL >= 2 void BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER16_IwIb(bxInstruction_c *i) { unsigned ss32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b; Bit16u imm16 = i->Iw(); Bit8u level = i->Ib2(); level &= 0x1F; BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit32u ebp; // Use temp copy in case of exception. push_16(BP); Bit32u frame_ptr32 = ESP; if (ss32) { ebp = EBP; } else { ebp = BP; } if (level > 0) { /* do level-1 times */ while (--level) { Bit16u temp16; if (ss32) { ebp -= 2; temp16 = read_virtual_word(BX_SEG_REG_SS, ebp); } else { /* 16bit stacksize */ ebp -= 2; ebp &= 0xffff; temp16 = read_virtual_word(BX_SEG_REG_SS, ebp); } push_16(temp16); } /* push(frame pointer) */ push_16((Bit16u)frame_ptr32); } BX_CPU_THIS_PTR speculative_rsp = 0; if (ss32) { EBP = frame_ptr32; ESP -= imm16; } else { BP = (Bit16u) frame_ptr32; SP -= imm16; } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER32_IwIb(bxInstruction_c *i) { unsigned ss32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b; Bit16u imm16 = i->Iw(); Bit8u level = i->Ib2(); level &= 0x1F; BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit32u ebp; // Use temp copy in case of exception. push_32(EBP); Bit32u frame_ptr32 = ESP; if (ss32) { ebp = EBP; } else { ebp = BP; } if (level > 0) { /* do level-1 times */ while (--level) { Bit32u temp32; if (ss32) { ebp -= 4; temp32 = read_virtual_dword(BX_SEG_REG_SS, ebp); } else { /* 16bit stacksize */ ebp -= 4; ebp &= 0xffff; temp32 = read_virtual_dword(BX_SEG_REG_SS, ebp); } push_32(temp32); } /* push(frame pointer) */ push_32(frame_ptr32); } BX_CPU_THIS_PTR speculative_rsp = 0; if (ss32) { EBP = frame_ptr32; ESP -= imm16; } else { BP = (Bit16u) frame_ptr32; SP -= imm16; } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LEAVE(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; // delete frame if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) ESP = EBP; else SP = BP; // restore frame pointer if (i->os32L()) EBP = pop_32(); else BP = pop_16(); BX_CPU_THIS_PTR speculative_rsp = 0; } #endif