///////////////////////////////////////////////////////////////////////// // $Id: bit32.cc,v 1.14 2008-08-11 18:53:23 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_CPU_LEVEL >= 3 void BX_CPP_AttrRegparmN(1) BX_CPU_C::BSF_GdEdR(bxInstruction_c *i) { Bit32u op2_32 = BX_READ_32BIT_REG(i->rm()); if (op2_32 == 0) { assert_ZF(); /* op1_32 undefined */ } else { Bit32u op1_32 = 0; while ((op2_32 & 0x01) == 0) { op1_32++; op2_32 >>= 1; } SET_FLAGS_OSZAPC_LOGIC_32(op1_32); clear_ZF(); /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), op1_32); } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BSR_GdEdR(bxInstruction_c *i) { Bit32u op2_32 = BX_READ_32BIT_REG(i->rm()); if (op2_32 == 0) { assert_ZF(); /* op1_32 undefined */ } else { Bit32u op1_32 = 31; while ((op2_32 & 0x80000000) == 0) { op1_32--; op2_32 <<= 1; } SET_FLAGS_OSZAPC_LOGIC_32(op1_32); clear_ZF(); /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), op1_32); } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EdGdM(bxInstruction_c *i) { bx_address op1_addr; Bit32u op1_32, op2_32, index; Bit32s displacement32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op2_32 = BX_READ_32BIT_REG(i->nnn()); index = op2_32 & 0x1f; displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32; op1_addr = eaddr + 4 * displacement32; if (! i->as32L()) op1_addr = (Bit16u) op1_addr; #if BX_SUPPORT_X86_64 else if (! i->as64L()) op1_addr = (Bit32u) op1_addr; #endif /* pointer, segment address pair */ op1_32 = read_virtual_dword(i->seg(), op1_addr); set_CF((op1_32 >> index) & 0x01); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EdGdR(bxInstruction_c *i) { Bit32u op1_32, op2_32; op1_32 = BX_READ_32BIT_REG(i->rm()); op2_32 = BX_READ_32BIT_REG(i->nnn()); op2_32 &= 0x1f; set_CF((op1_32 >> op2_32) & 0x01); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EdGdM(bxInstruction_c *i) { bx_address op1_addr; Bit32u op1_32, op2_32, index; Bit32s displacement32; bx_bool bit_i; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op2_32 = BX_READ_32BIT_REG(i->nnn()); index = op2_32 & 0x1f; displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32; op1_addr = eaddr + 4 * displacement32; if (! i->as32L()) op1_addr = (Bit16u) op1_addr; #if BX_SUPPORT_X86_64 else if (! i->as64L()) op1_addr = (Bit32u) op1_addr; #endif /* pointer, segment address pair */ op1_32 = read_RMW_virtual_dword(i->seg(), op1_addr); bit_i = (op1_32 >> index) & 0x01; op1_32 |= (((Bit32u) 1) << index); write_RMW_virtual_dword(op1_32); set_CF(bit_i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EdGdR(bxInstruction_c *i) { Bit32u op1_32, op2_32; op1_32 = BX_READ_32BIT_REG(i->rm()); op2_32 = BX_READ_32BIT_REG(i->nnn()); op2_32 &= 0x1f; set_CF((op1_32 >> op2_32) & 0x01); op1_32 |= (((Bit32u) 1) << op2_32); /* now write result back to the destination */ BX_WRITE_32BIT_REGZ(i->rm(), op1_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EdGdM(bxInstruction_c *i) { bx_address op1_addr; Bit32u op1_32, op2_32, index; Bit32s displacement32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op2_32 = BX_READ_32BIT_REG(i->nnn()); index = op2_32 & 0x1f; displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32; op1_addr = eaddr + 4 * displacement32; if (! i->as32L()) op1_addr = (Bit16u) op1_addr; #if BX_SUPPORT_X86_64 else if (! i->as64L()) op1_addr = (Bit32u) op1_addr; #endif /* pointer, segment address pair */ op1_32 = read_RMW_virtual_dword(i->seg(), op1_addr); bx_bool temp_cf = (op1_32 >> index) & 0x01; op1_32 &= ~(((Bit32u) 1) << index); /* now write back to destination */ write_RMW_virtual_dword(op1_32); set_CF(temp_cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EdGdR(bxInstruction_c *i) { Bit32u op1_32, op2_32; op1_32 = BX_READ_32BIT_REG(i->rm()); op2_32 = BX_READ_32BIT_REG(i->nnn()); op2_32 &= 0x1f; set_CF((op1_32 >> op2_32) & 0x01); op1_32 &= ~(((Bit32u) 1) << op2_32); /* now write result back to the destination */ BX_WRITE_32BIT_REGZ(i->rm(), op1_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EdGdM(bxInstruction_c *i) { bx_address op1_addr; Bit32u op1_32, op2_32, index_32; Bit32s displacement32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op2_32 = BX_READ_32BIT_REG(i->nnn()); index_32 = op2_32 & 0x1f; displacement32 = ((Bit32s) (op2_32 & 0xffffffe0)) / 32; op1_addr = eaddr + 4 * displacement32; if (! i->as32L()) op1_addr = (Bit16u) op1_addr; #if BX_SUPPORT_X86_64 else if (! i->as64L()) op1_addr = (Bit32u) op1_addr; #endif op1_32 = read_RMW_virtual_dword(i->seg(), op1_addr); bx_bool temp_CF = (op1_32 >> index_32) & 0x01; op1_32 ^= (((Bit32u) 1) << index_32); /* toggle bit */ set_CF(temp_CF); write_RMW_virtual_dword(op1_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EdGdR(bxInstruction_c *i) { Bit32u op1_32, op2_32; op1_32 = BX_READ_32BIT_REG(i->rm()); op2_32 = BX_READ_32BIT_REG(i->nnn()); op2_32 &= 0x1f; bx_bool temp_CF = (op1_32 >> op2_32) & 0x01; op1_32 ^= (((Bit32u) 1) << op2_32); /* toggle bit */ set_CF(temp_CF); BX_WRITE_32BIT_REGZ(i->rm(), op1_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EdIbM(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32u op1_32 = read_virtual_dword(i->seg(), eaddr); Bit8u op2_8 = i->Ib() & 0x1f; set_CF((op1_32 >> op2_8) & 0x01); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EdIbR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->rm()); Bit8u op2_8 = i->Ib() & 0x1f; set_CF((op1_32 >> op2_8) & 0x01); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EdIbM(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0x1f; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); bx_bool temp_CF = (op1_32 >> op2_8) & 0x01; op1_32 |= (((Bit32u) 1) << op2_8); write_RMW_virtual_dword(op1_32); set_CF(temp_CF); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EdIbR(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0x1f; Bit32u op1_32 = BX_READ_32BIT_REG(i->rm()); bx_bool temp_CF = (op1_32 >> op2_8) & 0x01; op1_32 |= (((Bit32u) 1) << op2_8); BX_WRITE_32BIT_REGZ(i->rm(), op1_32); set_CF(temp_CF); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EdIbM(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0x1f; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); bx_bool temp_CF = (op1_32 >> op2_8) & 0x01; op1_32 ^= (((Bit32u) 1) << op2_8); /* toggle bit */ write_RMW_virtual_dword(op1_32); set_CF(temp_CF); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EdIbR(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0x1f; Bit32u op1_32 = BX_READ_32BIT_REG(i->rm()); bx_bool temp_CF = (op1_32 >> op2_8) & 0x01; op1_32 ^= (((Bit32u) 1) << op2_8); /* toggle bit */ BX_WRITE_32BIT_REGZ(i->rm(), op1_32); set_CF(temp_CF); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EdIbM(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0x1f; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); bx_bool temp_CF = (op1_32 >> op2_8) & 0x01; op1_32 &= ~(((Bit32u) 1) << op2_8); write_RMW_virtual_dword(op1_32); set_CF(temp_CF); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EdIbR(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0x1f; Bit32u op1_32 = BX_READ_32BIT_REG(i->rm()); bx_bool temp_CF = (op1_32 >> op2_8) & 0x01; op1_32 &= ~(((Bit32u) 1) << op2_8); BX_WRITE_32BIT_REGZ(i->rm(), op1_32); set_CF(temp_CF); } /* 0F B8 */ void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPCNT_GdEdR(bxInstruction_c *i) { #if BX_SUPPORT_POPCNT || (BX_SUPPORT_SSE > 4) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0) Bit32u op2_32 = BX_READ_32BIT_REG(i->rm()); Bit32u op1_32 = 0; while (op2_32 != 0) { if (op2_32 & 1) op1_32++; op2_32 >>= 1; } Bit32u flags = op1_32 ? 0 : EFlagsZFMask; setEFlagsOSZAPC(flags); /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), op1_32); #else BX_INFO(("POPCNT_GdEd: required POPCNT support, use --enable-popcnt option")); exception(BX_UD_EXCEPTION, 0, 0); #endif } #endif // (BX_CPU_LEVEL >= 3)