///////////////////////////////////////////////////////////////////////// // $Id: cdrom.cc,v 1.65 2003-11-30 20:54:42 vruppert Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2002 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // These are the low-level CDROM functions which are called // from 'harddrv.cc'. They effect the OS specific functionality // needed by the CDROM emulation in 'harddrv.cc'. Mostly, just // ioctl() calls and such. Should be fairly easy to add support // for your OS if it is not supported yet. // Define BX_PLUGGABLE in files that can be compiled into plugins. For // platforms that require a special tag on exported symbols, BX_PLUGGABLE // is used to know when we are exporting symbols and when we are importing. #define BX_PLUGGABLE #include "bochs.h" #if BX_SUPPORT_CDROM #define LOG_THIS /* no SMF tricks here, not needed */ extern "C" { #include } #ifdef __linux__ extern "C" { #include #include // I use the framesize in non OS specific code too #define BX_CD_FRAMESIZE CD_FRAMESIZE } #elif defined(__GNU__) || (defined(__CYGWIN32__) && !defined(WIN32)) extern "C" { #include #define BX_CD_FRAMESIZE 2048 #define CD_FRAMESIZE 2048 } #elif BX_WITH_MACOS #define BX_CD_FRAMESIZE 2048 #define CD_FRAMESIZE 2048 #elif defined(__sun) extern "C" { #include #include #include #include #define BX_CD_FRAMESIZE CDROM_BLK_2048 } #elif defined(__DJGPP__) extern "C" { #include #define BX_CD_FRAMESIZE 2048 #define CD_FRAMESIZE 2048 } #elif defined(__BEOS__) #include "cdrom_beos.h" #define BX_CD_FRAMESIZE 2048 #elif (defined (__NetBSD__) || defined(__OpenBSD__) || defined(__FreeBSD__)) // OpenBSD pre version 2.7 may require extern "C" { } structure around // all the includes, because the i386 sys/disklabel.h contains code which // c++ considers invalid. #include #include #include #include #include #include // ntohl(x) et al have been moved out of sys/param.h in FreeBSD 5 #include // XXX #define BX_CD_FRAMESIZE 2048 #define CD_FRAMESIZE 2048 #elif defined(__APPLE__) #include #include #include #include #include #include #include #include #include #include #include #include #include #include // These definitions were taken from mount_cd9660.c // There are some similar definitions in IOCDTypes.h // however there seems to be some dissagreement in // the definition of CDTOC.length struct _CDMSF { u_char minute; u_char second; u_char frame; }; #define MSF_TO_LBA(msf) \ (((((msf).minute * 60UL) + (msf).second) * 75UL) + (msf).frame - 150) struct _CDTOC_Desc { u_char session; u_char ctrl_adr; /* typed to be machine and compiler independent */ u_char tno; u_char point; struct _CDMSF address; u_char zero; struct _CDMSF p; }; struct _CDTOC { u_short length; /* in native cpu endian */ u_char first_session; u_char last_session; struct _CDTOC_Desc trackdesc[1]; }; static kern_return_t FindEjectableCDMedia( io_iterator_t *mediaIterator, mach_port_t *masterPort ); static kern_return_t GetDeviceFilePath( io_iterator_t mediaIterator, char *deviceFilePath, CFIndex maxPathSize ); //int OpenDrive( const char *deviceFilePath ); static struct _CDTOC * ReadTOC( const char * devpath ); static char CDDevicePath[ MAXPATHLEN ]; #define BX_CD_FRAMESIZE 2048 #define CD_FRAMESIZE 2048 #elif defined(WIN32) // windows.h included by bochs.h #include #include "aspi-win32.h" #include "scsidefs.h" DWORD (*GetASPI32SupportInfo)(void); DWORD (*SendASPI32Command)(LPSRB); BOOL (*GetASPI32Buffer)(PASPI32BUFF); BOOL (*FreeASPI32Buffer)(PASPI32BUFF); BOOL (*TranslateASPI32Address)(PDWORD,PDWORD); DWORD (*GetASPI32DLLVersion)(void); static BOOL bUseASPI = FALSE; static BOOL bHaveDev; static UINT cdromCount = 0; static HINSTANCE hASPI = NULL; #define BX_CD_FRAMESIZE 2048 #define CD_FRAMESIZE 2048 #else // all others (Irix, Tru64) #include #include #include #define BX_CD_FRAMESIZE 2048 #define CD_FRAMESIZE 2048 #endif #include #ifdef __APPLE__ static kern_return_t FindEjectableCDMedia( io_iterator_t *mediaIterator, mach_port_t *masterPort ) { kern_return_t kernResult; CFMutableDictionaryRef classesToMatch; kernResult = IOMasterPort( bootstrap_port, masterPort ); if ( kernResult != KERN_SUCCESS ) { fprintf ( stderr, "IOMasterPort returned %d\n", kernResult ); return kernResult; } // CD media are instances of class kIOCDMediaClass. classesToMatch = IOServiceMatching( kIOCDMediaClass ); if ( classesToMatch == NULL ) fprintf ( stderr, "IOServiceMatching returned a NULL dictionary.\n" ); else { // Each IOMedia object has a property with key kIOMediaEjectable // which is true if the media is indeed ejectable. So add property // to CFDictionary for matching. CFDictionarySetValue( classesToMatch, CFSTR( kIOMediaEjectable ), kCFBooleanTrue ); } kernResult = IOServiceGetMatchingServices( *masterPort, classesToMatch, mediaIterator ); if ( (kernResult != KERN_SUCCESS) || (*mediaIterator == NULL) ) fprintf( stderr, "No ejectable CD media found.\n kernResult = %d\n", kernResult ); return kernResult; } static kern_return_t GetDeviceFilePath( io_iterator_t mediaIterator, char *deviceFilePath, CFIndex maxPathSize ) { io_object_t nextMedia; kern_return_t kernResult = KERN_FAILURE; nextMedia = IOIteratorNext( mediaIterator ); if ( nextMedia == NULL ) { *deviceFilePath = '\0'; } else { CFTypeRef deviceFilePathAsCFString; deviceFilePathAsCFString = IORegistryEntryCreateCFProperty( nextMedia, CFSTR( kIOBSDName ), kCFAllocatorDefault, 0 ); *deviceFilePath = '\0'; if ( deviceFilePathAsCFString ) { size_t devPathLength = strlen( _PATH_DEV ); strcpy( deviceFilePath, _PATH_DEV ); if ( CFStringGetCString( (const __CFString *) deviceFilePathAsCFString, deviceFilePath + devPathLength, maxPathSize - devPathLength, kCFStringEncodingASCII ) ) { // fprintf( stderr, "BSD path: %s\n", deviceFilePath ); kernResult = KERN_SUCCESS; } CFRelease( deviceFilePathAsCFString ); } } IOObjectRelease( nextMedia ); return kernResult; } static int OpenDrive( const char *deviceFilePath ) { int fileDescriptor; fileDescriptor = open( deviceFilePath, O_RDONLY ); if ( fileDescriptor == -1 ) fprintf( stderr, "Error %d opening device %s.\n", errno, deviceFilePath ); return fileDescriptor; } static struct _CDTOC * ReadTOC( const char * devpath ) { struct _CDTOC * toc_p = NULL; io_iterator_t iterator = 0; io_registry_entry_t service = 0; CFDictionaryRef properties = 0; CFDataRef data = 0; mach_port_t port = 0; char * devname; if (( devname = strrchr( devpath, '/' )) != NULL ) { ++devname; } else { devname = (char *) devpath; } if ( IOMasterPort(bootstrap_port, &port ) != KERN_SUCCESS ) { fprintf( stderr, "IOMasterPort failed\n" ); goto Exit; } if ( IOServiceGetMatchingServices( port, IOBSDNameMatching( port, 0, devname ), &iterator ) != KERN_SUCCESS ) { fprintf( stderr, "IOServiceGetMatchingServices failed\n" ); goto Exit; } service = IOIteratorNext( iterator ); IOObjectRelease( iterator ); iterator = 0; while ( service && !IOObjectConformsTo( service, "IOCDMedia" )) { if ( IORegistryEntryGetParentIterator( service, kIOServicePlane, &iterator ) != KERN_SUCCESS ) { fprintf( stderr, "IORegistryEntryGetParentIterator failed\n" ); goto Exit; } IOObjectRelease( service ); service = IOIteratorNext( iterator ); IOObjectRelease( iterator ); } if ( service == NULL ) { fprintf( stderr, "CD media not found\n" ); goto Exit; } if ( IORegistryEntryCreateCFProperties( service, (__CFDictionary **) &properties, kCFAllocatorDefault, kNilOptions ) != KERN_SUCCESS ) { fprintf( stderr, "IORegistryEntryGetParentIterator failed\n" ); goto Exit; } data = (CFDataRef) CFDictionaryGetValue( properties, CFSTR("TOC") ); if ( data == NULL ) { fprintf( stderr, "CFDictionaryGetValue failed\n" ); goto Exit; } else { CFRange range; CFIndex buflen; buflen = CFDataGetLength( data ) + 1; range = CFRangeMake( 0, buflen ); toc_p = (struct _CDTOC *) malloc( buflen ); if ( toc_p == NULL ) { fprintf( stderr, "Out of memory\n" ); goto Exit; } else { CFDataGetBytes( data, range, (unsigned char *) toc_p ); } /* fprintf( stderr, "Table of contents\n length %d first %d last %d\n", toc_p->length, toc_p->first_session, toc_p->last_session ); */ CFRelease( properties ); } Exit: if ( service ) { IOObjectRelease( service ); } return toc_p; } #endif #ifdef WIN32 bool ReadCDSector(unsigned int hid, unsigned int tid, unsigned int lun, unsigned long frame, unsigned char *buf, int bufsize) { HANDLE hEventSRB; SRB_ExecSCSICmd srb; DWORD dwStatus; hEventSRB = CreateEvent(NULL, TRUE, FALSE, NULL); memset(&srb,0,sizeof(SRB_ExecSCSICmd)); srb.SRB_Cmd = SC_EXEC_SCSI_CMD; srb.SRB_HaId = hid; srb.SRB_Target = tid; srb.SRB_Lun = lun; srb.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY; srb.SRB_SenseLen = SENSE_LEN; srb.SRB_PostProc = hEventSRB; srb.SRB_BufPointer = buf; srb.SRB_BufLen = bufsize; srb.SRB_CDBLen = 10; srb.CDBByte[0] = SCSI_READ10; srb.CDBByte[2] = (unsigned char) (frame>>24); srb.CDBByte[3] = (unsigned char) (frame>>16); srb.CDBByte[4] = (unsigned char) (frame>>8); srb.CDBByte[5] = (unsigned char) (frame); srb.CDBByte[7] = 0; srb.CDBByte[8] = 1; /* read 1 frames */ ResetEvent(hEventSRB); dwStatus = SendASPI32Command((SRB *)&srb); if(dwStatus == SS_PENDING) { WaitForSingleObject(hEventSRB, 100000); } CloseHandle(hEventSRB); return (srb.SRB_TargStat == STATUS_GOOD); } int GetCDCapacity(unsigned int hid, unsigned int tid, unsigned int lun) { HANDLE hEventSRB; SRB_ExecSCSICmd srb; DWORD dwStatus; unsigned char buf[8]; hEventSRB = CreateEvent(NULL, TRUE, FALSE, NULL); memset(&buf, 0, sizeof(buf)); memset(&srb,0,sizeof(SRB_ExecSCSICmd)); srb.SRB_Cmd = SC_EXEC_SCSI_CMD; srb.SRB_HaId = hid; srb.SRB_Target = tid; srb.SRB_Lun = lun; srb.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY; srb.SRB_SenseLen = SENSE_LEN; srb.SRB_PostProc = hEventSRB; srb.SRB_BufPointer = (unsigned char *)buf; srb.SRB_BufLen = 8; srb.SRB_CDBLen = 10; srb.CDBByte[0] = SCSI_READCDCAP; srb.CDBByte[2] = 0; srb.CDBByte[3] = 0; srb.CDBByte[4] = 0; srb.CDBByte[5] = 0; srb.CDBByte[8] = 0; ResetEvent(hEventSRB); dwStatus = SendASPI32Command((SRB *)&srb); if(dwStatus == SS_PENDING) { WaitForSingleObject(hEventSRB, 100000); } CloseHandle(hEventSRB); return ((buf[0] << 24) + (buf[1] << 16) + (buf[2] << 8) + buf[3]) * ((buf[4] << 24) + (buf[5] << 16) + (buf[6] << 8) + buf[7]); } #endif cdrom_interface::cdrom_interface(char *dev) { put("CD"); settype(CDLOG); fd = -1; // File descriptor not yet allocated if ( dev == NULL ) path = NULL; else { path = strdup(dev); } using_file=0; } void cdrom_interface::init(void) { BX_DEBUG(("Init $Id: cdrom.cc,v 1.65 2003-11-30 20:54:42 vruppert Exp $")); BX_INFO(("file = '%s'",path)); } cdrom_interface::~cdrom_interface(void) { #ifdef WIN32 #else if (fd >= 0) close(fd); #endif if (path) free(path); BX_DEBUG(("Exit")); } bx_bool cdrom_interface::insert_cdrom(char *dev) { unsigned char buffer[BX_CD_FRAMESIZE]; ssize_t ret; // Load CD-ROM. Returns false if CD is not ready. if (dev != NULL) path = strdup(dev); BX_INFO (("load cdrom with path=%s", path)); #ifdef WIN32 char drive[256]; OSVERSIONINFO osi; if ( (path[1] == ':') && (strlen(path) == 2) ) { osi.dwOSVersionInfoSize = sizeof(osi); GetVersionEx(&osi); if(osi.dwPlatformId == VER_PLATFORM_WIN32_NT) { // Use direct device access under windows NT/2k // With all the backslashes it's hard to see, but to open D: drive // the name would be: \\.\d: sprintf(drive, "\\\\.\\%s", path); using_file = 0; BX_INFO (("Using direct access for cdrom.")); // This trick only works for Win2k and WinNT, so warn the user of that. } else { BX_INFO(("Using ASPI for cdrom. Drive letters are unused yet.")); bUseASPI = TRUE; } } else { strcpy(drive,path); using_file = 1; bUseASPI = FALSE; BX_INFO (("Opening image file as a cd")); } if(bUseASPI) { DWORD d; UINT cdr, cnt, max; UINT i, j, k; SRB_HAInquiry sh; SRB_GDEVBlock sd; if (!hASPI) { hASPI = LoadLibrary("WNASPI32.DLL"); } if(hASPI) { SendASPI32Command = (DWORD(*)(LPSRB))GetProcAddress( hASPI, "SendASPI32Command" ); GetASPI32DLLVersion = (DWORD(*)(void))GetProcAddress( hASPI, "GetASPI32DLLVersion" ); GetASPI32SupportInfo = (DWORD(*)(void))GetProcAddress( hASPI, "GetASPI32SupportInfo" ); // BX_INFO(("Using first CDROM. Please upgrade your ASPI drivers to version 4.01 or later if you wish to specify a cdrom driver.")); cdr = 0; bHaveDev = FALSE; d = GetASPI32SupportInfo(); cnt = LOBYTE(LOWORD(d)); for(i = 0; i < cnt; i++) { memset(&sh, 0, sizeof(sh)); sh.SRB_Cmd = SC_HA_INQUIRY; sh.SRB_HaId = i; SendASPI32Command((LPSRB)&sh); if(sh.SRB_Status != SS_COMP) continue; max = (int)sh.HA_Unique[3]; for(j = 0; j < max; j++) { for(k = 0; k < 8; k++) { memset(&sd, 0, sizeof(sd)); sd.SRB_Cmd = SC_GET_DEV_TYPE; sd.SRB_HaId = i; sd.SRB_Target = j; sd.SRB_Lun = k; SendASPI32Command((LPSRB)&sd); if(sd.SRB_Status == SS_COMP) { if(sd.SRB_DeviceType == DTYPE_CDROM) { cdr++; if(cdr > cdromCount) { hid = i; tid = j; lun = k; cdromCount++; bHaveDev = TRUE; } } } if(bHaveDev) break; } if(bHaveDev) break; } } } else { BX_PANIC(("Could not load ASPI drivers, so cdrom access will fail")); } fd=1; } else { BX_INFO(("Using direct access for CDROM")); hFile=CreateFile((char *)&drive, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_FLAG_RANDOM_ACCESS, NULL); if (hFile !=(void *)0xFFFFFFFF) fd=1; } #elif defined(__APPLE__) if(strcmp(path, "drive") == 0) { mach_port_t masterPort = NULL; io_iterator_t mediaIterator; kern_return_t kernResult; BX_INFO(( "Insert CDROM" )); kernResult = FindEjectableCDMedia( &mediaIterator, &masterPort ); if ( kernResult != KERN_SUCCESS ) { BX_INFO (("Unable to find CDROM")); return false; } kernResult = GetDeviceFilePath( mediaIterator, CDDevicePath, sizeof( CDDevicePath ) ); if ( kernResult != KERN_SUCCESS ) { BX_INFO (("Unable to get CDROM device file path" )); return false; } // Here a cdrom was found so see if we can read from it. // At this point a failure will result in panic. if ( strlen( CDDevicePath ) ) { fd = open(CDDevicePath, O_RDONLY); } } else { fd = open(path, O_RDONLY); } #else // all platforms except win32 fd = open(path, O_RDONLY); #endif if (fd < 0) { BX_ERROR(( "open cd failed for %s: %s", path, strerror(errno))); return(false); } // I just see if I can read a sector to verify that a // CD is in the drive and readable. #ifdef WIN32 if(bUseASPI) { return ReadCDSector(hid, tid, lun, 0, buffer, BX_CD_FRAMESIZE); } else { if (!ReadFile(hFile, (void *) buffer, BX_CD_FRAMESIZE, (unsigned long *) &ret, NULL)) { CloseHandle(hFile); fd = -1; BX_DEBUG(( "insert_cdrom: read returns error." )); return(false); } } #else // do fstat to determine if it's a file or a device, then set using_file. struct stat stat_buf; ret = fstat (fd, &stat_buf); if (ret) { BX_PANIC (("fstat cdrom file returned error: %s", strerror (errno))); } if (S_ISREG (stat_buf.st_mode)) { using_file = 1; BX_INFO (("Opening image file %s as a cd.", path)); } else { using_file = 0; BX_INFO (("Using direct access for cdrom.")); } ret = read(fd, (char*) &buffer, BX_CD_FRAMESIZE); if (ret < 0) { close(fd); fd = -1; BX_DEBUG(( "insert_cdrom: read returns error: %s", strerror (errno) )); return(false); } #endif return(true); } int cdrom_interface::start_cdrom() { // Spin up the cdrom drive. if (fd >= 0) { #if defined(__NetBSD__) if (ioctl (fd, CDIOCSTART) < 0) BX_DEBUG(( "start_cdrom: start returns error: %s", strerror (errno) )); return(true); #else BX_INFO(("start_cdrom: your OS is not supported yet.")); return(false); // OS not supported yet, return false always. #endif } return(false); } void cdrom_interface::eject_cdrom() { // Logically eject the CD. I suppose we could stick in // some ioctl() calls to really eject the CD as well. if (fd >= 0) { #if (defined(__OpenBSD__) || defined(__FreeBSD__)) (void) ioctl (fd, CDIOCALLOW); if (ioctl (fd, CDIOCEJECT) < 0) BX_DEBUG(( "eject_cdrom: eject returns error." )); #endif #ifdef WIN32 if (using_file == 0) { if(bUseASPI) { } else { DWORD lpBytesReturned; DeviceIoControl(hFile, IOCTL_STORAGE_EJECT_MEDIA, NULL, 0, NULL, 0, &lpBytesReturned, NULL); } } #else // WIN32 #if __linux__ if (!using_file) ioctl (fd, CDROMEJECT, NULL); #endif close(fd); #endif // WIN32 fd = -1; } } bx_bool cdrom_interface::read_toc(uint8* buf, int* length, bx_bool msf, int start_track) { // Read CD TOC. Returns false if start track is out of bounds. if (fd < 0) { BX_PANIC(("cdrom: read_toc: file not open.")); } #if defined(WIN32) if (1) { // This is a hack and works okay if there's one rom track only #else if (using_file) { #endif // From atapi specs : start track can be 0-63, AA if ((start_track > 1) && (start_track != 0xaa)) return false; buf[2] = 1; buf[3] = 1; int len = 4; if (start_track <= 1) { buf[len++] = 0; // Reserved buf[len++] = 0x14; // ADR, control buf[len++] = 1; // Track number buf[len++] = 0; // Reserved // Start address if (msf) { buf[len++] = 0; // reserved buf[len++] = 0; // minute buf[len++] = 2; // second buf[len++] = 0; // frame } else { buf[len++] = 0; buf[len++] = 0; buf[len++] = 0; buf[len++] = 0; // logical sector 0 } } // Lead out track buf[len++] = 0; // Reserved buf[len++] = 0x16; // ADR, control buf[len++] = 0xaa; // Track number buf[len++] = 0; // Reserved uint32 blocks = capacity(); // Start address if (msf) { buf[len++] = 0; // reserved buf[len++] = (uint8)(((blocks + 150) / 75) / 60); // minute buf[len++] = (uint8)(((blocks + 150) / 75) % 60); // second buf[len++] = (uint8)((blocks + 150) % 75); // frame; } else { buf[len++] = (blocks >> 24) & 0xff; buf[len++] = (blocks >> 16) & 0xff; buf[len++] = (blocks >> 8) & 0xff; buf[len++] = (blocks >> 0) & 0xff; } buf[0] = ((len-2) >> 8) & 0xff; buf[1] = (len-2) & 0xff; *length = len; return true; } // all these implementations below are the platform-dependent code required // to read the TOC from a physical cdrom. #ifdef WIN32 { /* #define IOCTL_CDROM_BASE FILE_DEVICE_CD_ROM #define IOCTL_CDROM_READ_TOC CTL_CODE(IOCTL_CDROM_BASE, 0x0000, METHOD_BUFFERED, FILE_READ_ACCESS) unsigned long iBytesReturned; DeviceIoControl(hFile, IOCTL_CDROM_READ_TOC, NULL, 0, NULL, 0, &iBytesReturned, NULL); */ BX_ERROR (("WARNING: read_toc is not implemented, just returning length=1")); *length = 1; return true; } #elif __linux__ || defined(__sun) { struct cdrom_tochdr tochdr; if (ioctl(fd, CDROMREADTOCHDR, &tochdr)) BX_PANIC(("cdrom: read_toc: READTOCHDR failed.")); if ((start_track > tochdr.cdth_trk1) && (start_track != 0xaa)) return false; buf[2] = tochdr.cdth_trk0; buf[3] = tochdr.cdth_trk1; if (start_track < tochdr.cdth_trk0) start_track = tochdr.cdth_trk0; int len = 4; for (int i = start_track; i <= tochdr.cdth_trk1; i++) { struct cdrom_tocentry tocentry; tocentry.cdte_format = (msf) ? CDROM_MSF : CDROM_LBA; tocentry.cdte_track = i; if (ioctl(fd, CDROMREADTOCENTRY, &tocentry)) BX_PANIC(("cdrom: read_toc: READTOCENTRY failed.")); buf[len++] = 0; // Reserved buf[len++] = (tocentry.cdte_adr << 4) | tocentry.cdte_ctrl ; // ADR, control buf[len++] = i; // Track number buf[len++] = 0; // Reserved // Start address if (msf) { buf[len++] = 0; // reserved buf[len++] = tocentry.cdte_addr.msf.minute; buf[len++] = tocentry.cdte_addr.msf.second; buf[len++] = tocentry.cdte_addr.msf.frame; } else { buf[len++] = (((unsigned)tocentry.cdte_addr.lba) >> 24) & 0xff; buf[len++] = (((unsigned)tocentry.cdte_addr.lba) >> 16) & 0xff; buf[len++] = (((unsigned)tocentry.cdte_addr.lba) >> 8) & 0xff; buf[len++] = (((unsigned)tocentry.cdte_addr.lba) >> 0) & 0xff; } } // Lead out track struct cdrom_tocentry tocentry; tocentry.cdte_format = (msf) ? CDROM_MSF : CDROM_LBA; #ifdef CDROM_LEADOUT tocentry.cdte_track = CDROM_LEADOUT; #else tocentry.cdte_track = 0xaa; #endif if (ioctl(fd, CDROMREADTOCENTRY, &tocentry)) BX_PANIC(("cdrom: read_toc: READTOCENTRY lead-out failed.")); buf[len++] = 0; // Reserved buf[len++] = (tocentry.cdte_adr << 4) | tocentry.cdte_ctrl ; // ADR, control buf[len++] = 0xaa; // Track number buf[len++] = 0; // Reserved // Start address if (msf) { buf[len++] = 0; // reserved buf[len++] = tocentry.cdte_addr.msf.minute; buf[len++] = tocentry.cdte_addr.msf.second; buf[len++] = tocentry.cdte_addr.msf.frame; } else { buf[len++] = (((unsigned)tocentry.cdte_addr.lba) >> 24) & 0xff; buf[len++] = (((unsigned)tocentry.cdte_addr.lba) >> 16) & 0xff; buf[len++] = (((unsigned)tocentry.cdte_addr.lba) >> 8) & 0xff; buf[len++] = (((unsigned)tocentry.cdte_addr.lba) >> 0) & 0xff; } buf[0] = ((len-2) >> 8) & 0xff; buf[1] = (len-2) & 0xff; *length = len; return true; } #elif (defined(__NetBSD__) || defined(__OpenBSD__) || defined(__FreeBSD__)) { struct ioc_toc_header h; struct ioc_read_toc_entry t; if (ioctl (fd, CDIOREADTOCHEADER, &h) < 0) BX_PANIC(("cdrom: read_toc: READTOCHDR failed.")); if ((start_track > h.ending_track) && (start_track != 0xaa)) return false; buf[2] = h.starting_track; buf[3] = h.ending_track; if (start_track < h.starting_track) start_track = h.starting_track; int len = 4; for (int i = start_track; i <= h.ending_track; i++) { struct cd_toc_entry tocentry; t.address_format = (msf) ? CD_MSF_FORMAT : CD_LBA_FORMAT; t.starting_track = i; t.data_len = sizeof(tocentry); t.data = &tocentry; if (ioctl (fd, CDIOREADTOCENTRYS, &t) < 0) BX_PANIC(("cdrom: read_toc: READTOCENTRY failed.")); buf[len++] = 0; // Reserved buf[len++] = (tocentry.addr_type << 4) | tocentry.control ; // ADR, control buf[len++] = i; // Track number buf[len++] = 0; // Reserved // Start address if (msf) { buf[len++] = 0; // reserved buf[len++] = tocentry.addr.msf.minute; buf[len++] = tocentry.addr.msf.second; buf[len++] = tocentry.addr.msf.frame; } else { buf[len++] = (((unsigned)tocentry.addr.lba) >> 24) & 0xff; buf[len++] = (((unsigned)tocentry.addr.lba) >> 16) & 0xff; buf[len++] = (((unsigned)tocentry.addr.lba) >> 8) & 0xff; buf[len++] = (((unsigned)tocentry.addr.lba) >> 0) & 0xff; } } // Lead out track struct cd_toc_entry tocentry; t.address_format = (msf) ? CD_MSF_FORMAT : CD_LBA_FORMAT; t.starting_track = 0xaa; t.data_len = sizeof(tocentry); t.data = &tocentry; if (ioctl (fd, CDIOREADTOCENTRYS, &t) < 0) BX_PANIC(("cdrom: read_toc: READTOCENTRY lead-out failed.")); buf[len++] = 0; // Reserved buf[len++] = (tocentry.addr_type << 4) | tocentry.control ; // ADR, control buf[len++] = 0xaa; // Track number buf[len++] = 0; // Reserved // Start address if (msf) { buf[len++] = 0; // reserved buf[len++] = tocentry.addr.msf.minute; buf[len++] = tocentry.addr.msf.second; buf[len++] = tocentry.addr.msf.frame; } else { buf[len++] = (((unsigned)tocentry.addr.lba) >> 24) & 0xff; buf[len++] = (((unsigned)tocentry.addr.lba) >> 16) & 0xff; buf[len++] = (((unsigned)tocentry.addr.lba) >> 8) & 0xff; buf[len++] = (((unsigned)tocentry.addr.lba) >> 0) & 0xff; } buf[0] = ((len-2) >> 8) & 0xff; buf[1] = (len-2) & 0xff; *length = len; return true; } #elif defined(__APPLE__) // Read CD TOC. Returns false if start track is out of bounds. #if 1 { struct _CDTOC * toc = ReadTOC( CDDevicePath ); if ((start_track > toc->last_session) && (start_track != 0xaa)) return false; buf[2] = toc->first_session; buf[3] = toc->last_session; if (start_track < toc->first_session) start_track = toc->first_session; int len = 4; for (int i = start_track; i <= toc->last_session; i++) { buf[len++] = 0; // Reserved buf[len++] = toc->trackdesc[i].ctrl_adr ; // ADR, control buf[len++] = i; // Track number buf[len++] = 0; // Reserved // Start address if (msf) { buf[len++] = 0; // reserved buf[len++] = toc->trackdesc[i].address.minute; buf[len++] = toc->trackdesc[i].address.second; buf[len++] = toc->trackdesc[i].address.frame; } else { unsigned lba = (unsigned)(MSF_TO_LBA(toc->trackdesc[i].address)); buf[len++] = (lba >> 24) & 0xff; buf[len++] = (lba >> 16) & 0xff; buf[len++] = (lba >> 8) & 0xff; buf[len++] = (lba >> 0) & 0xff; } } // Lead out track buf[len++] = 0; // Reserved buf[len++] = 0x16; // ADR, control buf[len++] = 0xaa; // Track number buf[len++] = 0; // Reserved uint32 blocks = capacity(); // Start address if (msf) { buf[len++] = 0; // reserved buf[len++] = (uint8)(((blocks + 150) / 75) / 60); // minute buf[len++] = (uint8)(((blocks + 150) / 75) % 60); // second buf[len++] = (uint8)((blocks + 150) % 75); // frame; } else { buf[len++] = (blocks >> 24) & 0xff; buf[len++] = (blocks >> 16) & 0xff; buf[len++] = (blocks >> 8) & 0xff; buf[len++] = (blocks >> 0) & 0xff; } buf[0] = ((len-2) >> 8) & 0xff; buf[1] = (len-2) & 0xff; *length = len; return true; // BX_INFO(( "Read TOC - Not Implemented" )); // return false; } #else BX_INFO(( "Read TOC - Not Implemented" )); return false; #endif #else BX_INFO(("read_toc: your OS is not supported yet.")); return(false); // OS not supported yet, return false always. #endif } uint32 cdrom_interface::capacity() { // Return CD-ROM capacity. I believe you want to return // the number of blocks of capacity the actual media has. #if !defined WIN32 // win32 has its own way of doing this if (using_file) { // return length of the image file struct stat stat_buf; int ret = fstat (fd, &stat_buf); if (ret) { BX_PANIC (("fstat on cdrom image returned err: %s", strerror(errno))); } BX_INFO (("cdrom size is %lld bytes", stat_buf.st_size)); if ((stat_buf.st_size % 2048) != 0) { BX_ERROR (("expected cdrom image to be a multiple of 2048 bytes")); } return stat_buf.st_size / 2048; } #endif #ifdef __BEOS__ return GetNumDeviceBlocks(fd, BX_CD_FRAMESIZE); #elif defined(__sun) { struct stat buf = {0}; if (fd < 0) { BX_PANIC(("cdrom: capacity: file not open.")); } if( fstat(fd, &buf) != 0 ) BX_PANIC(("cdrom: capacity: stat() failed.")); return(buf.st_size); } #elif (defined(__NetBSD__) || defined(__OpenBSD__)) { // We just read the disklabel, imagine that... struct disklabel lp; if (fd < 0) BX_PANIC(("cdrom: capacity: file not open.")); if (ioctl(fd, DIOCGDINFO, &lp) < 0) BX_PANIC(("cdrom: ioctl(DIOCGDINFO) failed")); BX_DEBUG(( "capacity: %u", lp.d_secperunit )); return(lp.d_secperunit); } #elif defined(__linux__) { // Read the TOC to get the data size, since BLKGETSIZE doesn't work on // non-ATAPI drives. This is based on Keith Jones code below. // 21 June 2001 int i, dtrk_lba, num_sectors; int dtrk = 0; struct cdrom_tochdr td; struct cdrom_tocentry te; if (fd < 0) BX_PANIC(("cdrom: capacity: file not open.")); if (ioctl(fd, CDROMREADTOCHDR, &td) < 0) BX_PANIC(("cdrom: ioctl(CDROMREADTOCHDR) failed")); num_sectors = -1; dtrk_lba = -1; for (i = td.cdth_trk0; i <= td.cdth_trk1; i++) { te.cdte_track = i; te.cdte_format = CDROM_LBA; if (ioctl(fd, CDROMREADTOCENTRY, &te) < 0) BX_PANIC(("cdrom: ioctl(CDROMREADTOCENTRY) failed")); if (dtrk_lba != -1) { num_sectors = te.cdte_addr.lba - dtrk_lba; break; } if (te.cdte_ctrl & CDROM_DATA_TRACK) { dtrk = i; dtrk_lba = te.cdte_addr.lba; } } if (num_sectors < 0) { if (dtrk_lba != -1) { te.cdte_track = CDROM_LEADOUT; te.cdte_format = CDROM_LBA; if (ioctl(fd, CDROMREADTOCENTRY, &te) < 0) BX_PANIC(("cdrom: ioctl(CDROMREADTOCENTRY) failed")); num_sectors = te.cdte_addr.lba - dtrk_lba; } else BX_PANIC(("cdrom: no data track found")); } BX_INFO(("cdrom: Data track %d, length %d", dtrk, num_sectors)); return(num_sectors); } #elif defined(__FreeBSD__) { // Read the TOC to get the size of the data track. // Keith Jones , 16 January 2000 #define MAX_TRACKS 100 int i, num_tracks, num_sectors; struct ioc_toc_header td; struct ioc_read_toc_entry rte; struct cd_toc_entry toc_buffer[MAX_TRACKS + 1]; if (fd < 0) BX_PANIC(("cdrom: capacity: file not open.")); if (ioctl(fd, CDIOREADTOCHEADER, &td) < 0) BX_PANIC(("cdrom: ioctl(CDIOREADTOCHEADER) failed")); num_tracks = (td.ending_track - td.starting_track) + 1; if (num_tracks > MAX_TRACKS) BX_PANIC(("cdrom: TOC is too large")); rte.address_format = CD_LBA_FORMAT; rte.starting_track = td.starting_track; rte.data_len = (num_tracks + 1) * sizeof(struct cd_toc_entry); rte.data = toc_buffer; if (ioctl(fd, CDIOREADTOCENTRYS, &rte) < 0) BX_PANIC(("cdrom: ioctl(CDIOREADTOCENTRYS) failed")); num_sectors = -1; for (i = 0; i < num_tracks; i++) { if (rte.data[i].control & 4) { /* data track */ num_sectors = ntohl(rte.data[i + 1].addr.lba) - ntohl(rte.data[i].addr.lba); BX_INFO(( "cdrom: Data track %d, length %d", rte.data[i].track, num_sectors)); break; } } if (num_sectors < 0) BX_PANIC(("cdrom: no data track found")); return(num_sectors); } #elif defined WIN32 { if(bUseASPI) { return (GetCDCapacity(hid, tid, lun) / 2352); } else if(using_file) { ULARGE_INTEGER FileSize; FileSize.LowPart = GetFileSize(hFile, &FileSize.HighPart); return (FileSize.QuadPart / 2048); } else { /* direct device access */ DWORD SectorsPerCluster; DWORD TotalNumOfClusters; GetDiskFreeSpace( path, &SectorsPerCluster, NULL, NULL, &TotalNumOfClusters); return (TotalNumOfClusters * SectorsPerCluster); } } #elif defined __APPLE__ // Find the size of the first data track on the cd. This has produced // the same results as the linux version on every cd I have tried, about // 5. The differences here seem to be that the entries in the TOC when // retrieved from the IOKit interface appear in a reversed order when // compared with the linux READTOCENTRY ioctl. { // Return CD-ROM capacity. I believe you want to return // the number of bytes of capacity the actual media has. BX_INFO(( "Capacity" )); struct _CDTOC * toc = ReadTOC( CDDevicePath ); if ( toc == NULL ) { BX_PANIC(( "capacity: Failed to read toc" )); } size_t toc_entries = ( toc->length - 2 ) / sizeof( struct _CDTOC_Desc ); BX_DEBUG(( "reading %d toc entries\n", toc_entries )); int start_sector = -1; int data_track = -1; // Iterate through the list backward. Pick the first data track and // get the address of the immediately previous (or following depending // on how you look at it). The difference in the sector numbers // is returned as the sized of the data track. for ( int i=toc_entries - 1; i>=0; i-- ) { BX_DEBUG(( "session %d ctl_adr %d tno %d point %d lba %d z %d p lba %d\n", (int)toc->trackdesc[i].session, (int)toc->trackdesc[i].ctrl_adr, (int)toc->trackdesc[i].tno, (int)toc->trackdesc[i].point, MSF_TO_LBA( toc->trackdesc[i].address ), (int)toc->trackdesc[i].zero, MSF_TO_LBA(toc->trackdesc[i].p ))); if ( start_sector != -1 ) { start_sector = MSF_TO_LBA(toc->trackdesc[i].p) - start_sector; break; } if (( toc->trackdesc[i].ctrl_adr >> 4) != 1 ) continue; if ( toc->trackdesc[i].ctrl_adr & 0x04 ) { data_track = toc->trackdesc[i].point; start_sector = MSF_TO_LBA(toc->trackdesc[i].p); } } free( toc ); if ( start_sector == -1 ) { start_sector = 0; } BX_INFO(("first data track %d data size is %d", data_track, start_sector)); return start_sector; } #else BX_ERROR(( "capacity: your OS is not supported yet." )); return(0); #endif } void BX_CPP_AttrRegparmN(2) cdrom_interface::read_block(uint8* buf, int lba) { // Read a single block from the CD #ifdef WIN32 LARGE_INTEGER pos; #else off_t pos; #endif ssize_t n; #ifdef WIN32 if(bUseASPI) { ReadCDSector(hid, tid, lun, lba, buf, BX_CD_FRAMESIZE); n = BX_CD_FRAMESIZE; } else { pos.QuadPart = (LONGLONG)lba*BX_CD_FRAMESIZE; pos.LowPart = SetFilePointer(hFile, pos.LowPart, &pos.HighPart, SEEK_SET); if ((pos.LowPart == 0xffffffff) && (GetLastError() != NO_ERROR)) { BX_PANIC(("cdrom: read_block: SetFilePointer returned error.")); } ReadFile(hFile, (void *) buf, BX_CD_FRAMESIZE, (unsigned long *) &n, NULL); } #elif defined(__APPLE__) #define CD_SEEK_DISTANCE kCDSectorSizeWhole if(using_file) { pos = lseek(fd, lba*BX_CD_FRAMESIZE, SEEK_SET); if (pos < 0) { BX_PANIC(("cdrom: read_block: lseek returned error.")); } n = read(fd, buf, BX_CD_FRAMESIZE); } else { // This seek will leave us 16 bytes from the start of the data // hence the magic number. pos = lseek(fd, lba*CD_SEEK_DISTANCE + 16, SEEK_SET); if (pos < 0) { BX_PANIC(("cdrom: read_block: lseek returned error.")); } n = read(fd, buf, CD_FRAMESIZE); } #else pos = lseek(fd, lba*BX_CD_FRAMESIZE, SEEK_SET); if (pos < 0) { BX_PANIC(("cdrom: read_block: lseek returned error.")); } n = read(fd, (char*) buf, BX_CD_FRAMESIZE); #endif if (n != BX_CD_FRAMESIZE) { BX_PANIC(("cdrom: read_block: read returned %d", (int) n)); } } #endif /* if BX_SUPPORT_CDROM */