///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2009 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_X86_64==0 // Make life easier for merging cpu64 and cpu code. #define RAX EAX #define RDX EDX #endif void BX_CPP_AttrRegparmN(1) BX_CPU_C::INC_ERX(bxInstruction_c *i) { Bit32u erx = ++BX_READ_32BIT_REG(i->rm()); SET_FLAGS_OSZAPC_INC_32(erx); BX_CLEAR_64BIT_HIGH(i->rm()); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::DEC_ERX(bxInstruction_c *i) { Bit32u erx = --BX_READ_32BIT_REG(i->rm()); SET_FLAGS_OSZAPC_DEC_32(erx); BX_CLEAR_64BIT_HIGH(i->rm()); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_EdGdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op2_32 = BX_READ_32BIT_REG(i->nnn()); sum_32 = op1_32 + op2_32; write_RMW_virtual_dword(sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_GdEdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; op1_32 = BX_READ_32BIT_REG(i->nnn()); op2_32 = BX_READ_32BIT_REG(i->rm()); sum_32 = op1_32 + op2_32; BX_WRITE_32BIT_REGZ(i->nnn(), sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_EAXId(bxInstruction_c *i) { Bit32u op1_32, op2_32 = i->Id(), sum_32; op1_32 = EAX; sum_32 = op1_32 + op2_32; RAX = sum_32; SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_EdGdM(bxInstruction_c *i) { bx_bool temp_CF = getB_CF(); Bit32u op1_32, op2_32, sum_32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op2_32 = BX_READ_32BIT_REG(i->nnn()); sum_32 = op1_32 + op2_32 + temp_CF; write_RMW_virtual_dword(sum_32); SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_LF_INSTR_ADD_ADC32(temp_CF)); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_GdEdR(bxInstruction_c *i) { bx_bool temp_CF = getB_CF(); Bit32u op1_32, op2_32, sum_32; op1_32 = BX_READ_32BIT_REG(i->nnn()); op2_32 = BX_READ_32BIT_REG(i->rm()); sum_32 = op1_32 + op2_32 + temp_CF; BX_WRITE_32BIT_REGZ(i->nnn(), sum_32); SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_LF_INSTR_ADD_ADC32(temp_CF)); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_EAXId(bxInstruction_c *i) { bx_bool temp_CF = getB_CF(); Bit32u op1_32, op2_32 = i->Id(), sum_32; op1_32 = EAX; sum_32 = op1_32 + op2_32 + temp_CF; RAX = sum_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_LF_INSTR_ADD_ADC32(temp_CF)); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_EdGdM(bxInstruction_c *i) { bx_bool temp_CF = getB_CF(); Bit32u op1_32, op2_32, diff_32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op2_32 = BX_READ_32BIT_REG(i->nnn()); diff_32 = op1_32 - (op2_32 + temp_CF); write_RMW_virtual_dword(diff_32); SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_LF_INSTR_SUB_SBB32(temp_CF)); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_GdEdR(bxInstruction_c *i) { bx_bool temp_CF = getB_CF(); Bit32u op1_32, op2_32, diff_32; op1_32 = BX_READ_32BIT_REG(i->nnn()); op2_32 = BX_READ_32BIT_REG(i->rm()); diff_32 = op1_32 - (op2_32 + temp_CF); BX_WRITE_32BIT_REGZ(i->nnn(), diff_32); SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_LF_INSTR_SUB_SBB32(temp_CF)); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_EAXId(bxInstruction_c *i) { bx_bool temp_CF = getB_CF(); Bit32u op1_32, op2_32, diff_32; op1_32 = EAX; op2_32 = i->Id(); diff_32 = op1_32 - (op2_32 + temp_CF); RAX = diff_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_LF_INSTR_SUB_SBB32(temp_CF)); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_EdIdM(bxInstruction_c *i) { bx_bool temp_CF = getB_CF(); Bit32u op1_32, op2_32 = i->Id(), diff_32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); diff_32 = op1_32 - (op2_32 + temp_CF); write_RMW_virtual_dword(diff_32); SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_LF_INSTR_SUB_SBB32(temp_CF)); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_EdIdR(bxInstruction_c *i) { bx_bool temp_CF = getB_CF(); Bit32u op1_32, op2_32 = i->Id(), diff_32; op1_32 = BX_READ_32BIT_REG(i->rm()); diff_32 = op1_32 - (op2_32 + temp_CF); BX_WRITE_32BIT_REGZ(i->rm(), diff_32); SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_LF_INSTR_SUB_SBB32(temp_CF)); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_EdGdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op2_32 = BX_READ_32BIT_REG(i->nnn()); diff_32 = op1_32 - op2_32; write_RMW_virtual_dword(diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_GdEdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; op1_32 = BX_READ_32BIT_REG(i->nnn()); op2_32 = BX_READ_32BIT_REG(i->rm()); diff_32 = op1_32 - op2_32; BX_WRITE_32BIT_REGZ(i->nnn(), diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_EAXId(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; op1_32 = EAX; op2_32 = i->Id(); diff_32 = op1_32 - op2_32; RAX = diff_32; SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_EdGdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_32 = read_virtual_dword(i->seg(), eaddr); op2_32 = BX_READ_32BIT_REG(i->nnn()); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_GdEdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; op1_32 = BX_READ_32BIT_REG(i->nnn()); op2_32 = BX_READ_32BIT_REG(i->rm()); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_EAXId(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; op1_32 = EAX; op2_32 = i->Id(); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CWDE(bxInstruction_c *i) { /* CWDE: no flags are effected */ Bit32u tmp = (Bit16s) AX; RAX = tmp; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CDQ(bxInstruction_c *i) { /* CDQ: no flags are affected */ if (EAX & 0x80000000) { RDX = 0xFFFFFFFF; } else { RDX = 0x00000000; } } // Some info on the opcodes at {0F,A6} and {0F,A7} // On 386 steps A0-B0: // {OF,A6} = XBTS // {OF,A7} = IBTS // On 486 steps A0-B0: // {OF,A6} = CMPXCHG 8 // {OF,A7} = CMPXCHG 16|32 // // On 486 >= B steps, and further processors, the // CMPXCHG instructions were moved to opcodes: // {OF,B0} = CMPXCHG 8 // {OF,B1} = CMPXCHG 16|32 void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG_XBTS(bxInstruction_c *i) { BX_INFO(("CMPXCHG_XBTS: Generate #UD exception")); exception(BX_UD_EXCEPTION, 0); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG_IBTS(bxInstruction_c *i) { BX_INFO(("CMPXCHG_IBTS: Generate #UD exception")); exception(BX_UD_EXCEPTION, 0); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::XADD_EdGdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; /* XADD dst(r/m), src(r) * temp <-- src + dst | sum = op2 + op1 * src <-- dst | op2 = op1 * dst <-- tmp | op1 = sum */ bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op2_32 = BX_READ_32BIT_REG(i->nnn()); sum_32 = op1_32 + op2_32; write_RMW_virtual_dword(sum_32); /* and write destination into source */ BX_WRITE_32BIT_REGZ(i->nnn(), op1_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::XADD_EdGdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; /* XADD dst(r/m), src(r) * temp <-- src + dst | sum = op2 + op1 * src <-- dst | op2 = op1 * dst <-- tmp | op1 = sum */ op1_32 = BX_READ_32BIT_REG(i->rm()); op2_32 = BX_READ_32BIT_REG(i->nnn()); sum_32 = op1_32 + op2_32; // and write destination into source // Note: if both op1 & op2 are registers, the last one written // should be the sum, as op1 & op2 may be the same register. // For example: XADD AL, AL BX_WRITE_32BIT_REGZ(i->nnn(), op1_32); BX_WRITE_32BIT_REGZ(i->rm(), sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_EdIdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op2_32 = i->Id(); sum_32 = op1_32 + op2_32; write_RMW_virtual_dword(sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_EdIdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; op1_32 = BX_READ_32BIT_REG(i->rm()); op2_32 = i->Id(); sum_32 = op1_32 + op2_32; BX_WRITE_32BIT_REGZ(i->rm(), sum_32); SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_EdIdM(bxInstruction_c *i) { bx_bool temp_CF = getB_CF(); Bit32u op1_32, op2_32 = i->Id(), sum_32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); sum_32 = op1_32 + op2_32 + temp_CF; write_RMW_virtual_dword(sum_32); SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_LF_INSTR_ADD_ADC32(temp_CF)); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_EdIdR(bxInstruction_c *i) { bx_bool temp_CF = getB_CF(); Bit32u op1_32, op2_32 = i->Id(), sum_32; op1_32 = BX_READ_32BIT_REG(i->rm()); sum_32 = op1_32 + op2_32 + temp_CF; BX_WRITE_32BIT_REGZ(i->rm(), sum_32); SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_LF_INSTR_ADD_ADC32(temp_CF)); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_EdIdM(bxInstruction_c *i) { Bit32u op1_32, op2_32 = i->Id(), diff_32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); diff_32 = op1_32 - op2_32; write_RMW_virtual_dword(diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_EdIdR(bxInstruction_c *i) { Bit32u op1_32, op2_32 = i->Id(), diff_32; op1_32 = BX_READ_32BIT_REG(i->rm()); diff_32 = op1_32 - op2_32; BX_WRITE_32BIT_REGZ(i->rm(), diff_32); SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_EdIdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_32 = read_virtual_dword(i->seg(), eaddr); op2_32 = i->Id(); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_EdIdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; op1_32 = BX_READ_32BIT_REG(i->rm()); op2_32 = i->Id(); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::NEG_EdM(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op1_32 = - (Bit32s)(op1_32); write_RMW_virtual_dword(op1_32); SET_FLAGS_OSZAPC_RESULT_32(op1_32, BX_LF_INSTR_NEG32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::NEG_EdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->rm()); op1_32 = - (Bit32s)(op1_32); BX_WRITE_32BIT_REGZ(i->rm(), op1_32); SET_FLAGS_OSZAPC_RESULT_32(op1_32, BX_LF_INSTR_NEG32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::INC_EdM(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op1_32++; write_RMW_virtual_dword(op1_32); SET_FLAGS_OSZAPC_INC_32(op1_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::DEC_EdM(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); op1_32--; write_RMW_virtual_dword(op1_32); SET_FLAGS_OSZAPC_DEC_32(op1_32); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG_EdGdM(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); diff_32 = EAX - op1_32; SET_FLAGS_OSZAPC_SUB_32(EAX, op1_32, diff_32); if (diff_32 == 0) { // if accumulator == dest // dest <-- src op2_32 = BX_READ_32BIT_REG(i->nnn()); write_RMW_virtual_dword(op2_32); } else { // accumulator <-- dest RAX = op1_32; } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG_EdGdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, diff_32; op1_32 = BX_READ_32BIT_REG(i->rm()); diff_32 = EAX - op1_32; SET_FLAGS_OSZAPC_SUB_32(EAX, op1_32, diff_32); if (diff_32 == 0) { // if accumulator == dest // dest <-- src op2_32 = BX_READ_32BIT_REG(i->nnn()); BX_WRITE_32BIT_REGZ(i->rm(), op2_32); } else { // accumulator <-- dest RAX = op1_32; } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG8B(bxInstruction_c *i) { Bit64u op1_64, op2_64; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); // check write permission for following write op1_64 = read_RMW_virtual_qword(i->seg(), eaddr); op2_64 = ((Bit64u) EDX << 32) | EAX; if (op1_64 == op2_64) { // if accumulator == dest // dest <-- src (ECX:EBX) op2_64 = ((Bit64u) ECX << 32) | EBX; write_RMW_virtual_qword(op2_64); assert_ZF(); } else { // accumulator <-- dest RAX = GET32L(op1_64); RDX = GET32H(op1_64); clear_ZF(); } }