///////////////////////////////////////////////////////////////////////// // $Id: stack64.cc,v 1.20 2005-03-28 06:29:22 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_X86_64 void BX_CPU_C::POP_Eq(bxInstruction_c *i) { Bit64u val64; pop_64(&val64); if (i->modC0()) { BX_WRITE_64BIT_REG(i->rm(), val64); } else { // Note: there is one little weirdism here. When 64bit addressing // is used, it is possible to use RSP in the modrm addressing. // If used, the value of RSP after the pop is used to calculate // the address. if (i->as64L() && (!i->modC0()) && (i->rm()==4) && (i->sibBase()==4)) { // call method on BX_CPU_C object BX_CPU_CALL_METHODR (i->ResolveModrm, (i)); } write_virtual_qword(i->seg(), RMAddr(i), &val64); } } void BX_CPU_C::PUSH_RRX(bxInstruction_c *i) { push_64(BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].rrx); } void BX_CPU_C::POP_RRX(bxInstruction_c *i) { Bit64u rrx; pop_64(&rrx); BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].rrx = rrx; } void BX_CPU_C::PUSH64_FS(bxInstruction_c *i) { push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value); } void BX_CPU_C::PUSH64_GS(bxInstruction_c *i) { push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value); } void BX_CPU_C::POP64_FS(bxInstruction_c *i) { Bit64u fs; pop_64(&fs); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], (Bit16u) fs); } void BX_CPU_C::POP64_GS(bxInstruction_c *i) { Bit64u gs; pop_64(&gs); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], (Bit16u) gs); } void BX_CPU_C::PUSH64_Id(bxInstruction_c *i) { Bit64u imm64 = (Bit32s) i->Id(); push_64(imm64); } void BX_CPU_C::PUSH_Eq(bxInstruction_c *i) { Bit64u op1_64; /* op1_64 is a register or memory reference */ if (i->modC0()) { op1_64 = BX_READ_64BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_qword(i->seg(), RMAddr(i), &op1_64); } push_64(op1_64); } void BX_CPU_C::ENTER64_IwIb(bxInstruction_c *i) { Bit8u level = i->Ib2(); level &= 0x1F; Bit64u bytes_to_push = 8 + level*8 + i->Iw(); if (! can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, RSP, bytes_to_push)) { BX_ERROR(("ENTER: not enough room on stack!")); exception(BX_SS_EXCEPTION, 0, 0); } push_64(RBP); Bit64u frame_ptr64 = RSP; if (level > 0) { /* do level-1 times */ while (--level) { Bit64u temp64; RBP -= 8; read_virtual_qword(BX_SEG_REG_SS, RBP, &temp64); ESP -= 8; write_virtual_qword(BX_SEG_REG_SS, RSP, &temp64); } /* while (--level) */ /* push(frame pointer) */ RSP -= 8; write_virtual_qword(BX_SEG_REG_SS, RSP, &frame_ptr64); } /* if (level > 0) ... */ RBP = frame_ptr64; RSP -= i->Iw(); } void BX_CPU_C::LEAVE64(bxInstruction_c *i) { // delete frame RSP = RBP; // restore frame pointer Bit64u temp64; pop_64(&temp64); RBP = temp64; } #endif /* if BX_SUPPORT_X86_64 */