///////////////////////////////////////////////////////////////////////// // $Id: shift8.cc,v 1.36 2008-02-02 21:46:53 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR void BX_CPU_C::ROL_Eb(bxInstruction_c *i) { Bit8u op1_8, result_8; unsigned count; unsigned bit0, bit7; if (i->b1() == 0xd2) count = CL; else // 0xc0 or 0xd0 count = i->Ib(); /* op1 is a register or memory reference */ if (i->modC0()) { op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL()); } else { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_8 = read_RMW_virtual_byte(i->seg(), RMAddr(i)); } if ((count & 0x07) == 0) { if (count & 0x18) { bit0 = (op1_8 & 1); bit7 = (op1_8 >> 7); SET_FLAGS_OxxxxC(bit0 ^ bit7, bit0); } return; } count &= 0x7; // use only lowest 3 bits result_8 = (op1_8 << count) | (op1_8 >> (8 - count)); /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_RMW_virtual_byte(result_8); } /* set eflags: * ROL count affects the following flags: C, O */ bit0 = (result_8 & 1); bit7 = (result_8 >> 7); SET_FLAGS_OxxxxC(bit0 ^ bit7, bit0); } void BX_CPU_C::ROR_Eb(bxInstruction_c *i) { Bit8u op1_8, result_8; unsigned count; unsigned bit6, bit7; if (i->b1() == 0xd2) count = CL; else // 0xc0 or 0xd0 count = i->Ib(); /* op1 is a register or memory reference */ if (i->modC0()) { op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL()); } else { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_8 = read_RMW_virtual_byte(i->seg(), RMAddr(i)); } if ((count & 0x07) == 0) { if (count & 0x18) { bit6 = (op1_8 >> 6) & 1; bit7 = (op1_8 >> 7) & 1; SET_FLAGS_OxxxxC(bit6 ^ bit7, bit7); } return; } count &= 0x7; /* use only bottom 3 bits */ result_8 = (op1_8 >> count) | (op1_8 << (8 - count)); /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_RMW_virtual_byte(result_8); } /* set eflags: * ROR count affects the following flags: C, O */ bit6 = (result_8 >> 6) & 1; bit7 = (result_8 >> 7) & 1; SET_FLAGS_OxxxxC(bit6 ^ bit7, bit7); } void BX_CPU_C::RCL_Eb(bxInstruction_c *i) { Bit8u op1_8, result_8; unsigned count; unsigned of, cf; if (i->b1() == 0xd2) count = CL; else // 0xc0 or 0xd0 count = i->Ib(); /* op1 is a register or memory reference */ if (i->modC0()) { op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL()); } else { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_8 = read_RMW_virtual_byte(i->seg(), RMAddr(i)); } count = (count & 0x1f) % 9; if (! count) return; if (count==1) { result_8 = (op1_8 << 1) | getB_CF(); } else { result_8 = (op1_8 << count) | (getB_CF() << (count - 1)) | (op1_8 >> (9 - count)); } /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_RMW_virtual_byte(result_8); } cf = (op1_8 >> (8 - count)) & 0x01; of = cf ^ (result_8 >> 7); // of = cf ^ result7 SET_FLAGS_OxxxxC(of, cf); } void BX_CPU_C::RCR_Eb(bxInstruction_c *i) { Bit8u op1_8, result_8; unsigned count; unsigned cf, of; if (i->b1() == 0xd2) count = CL; else // 0xc0 or 0xd0 count = i->Ib(); /* op1 is a register or memory reference */ if (i->modC0()) { op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL()); } else { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_8 = read_RMW_virtual_byte(i->seg(), RMAddr(i)); } count = (count & 0x1f) % 9; if (! count) return; result_8 = (op1_8 >> count) | (getB_CF() << (8 - count)) | (op1_8 << (9 - count)); /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_RMW_virtual_byte(result_8); } cf = (op1_8 >> (count - 1)) & 0x1; of = ((result_8 << 1) ^ result_8) >> 7; // of = result6 ^ result7 SET_FLAGS_OxxxxC(of, cf); } void BX_CPU_C::SHL_Eb(bxInstruction_c *i) { Bit8u op1_8, result_8; unsigned count; unsigned of = 0, cf = 0; if (i->b1() == 0xd2) count = CL; else // 0xc0 or 0xd0 count = i->Ib(); count &= 0x1f; /* op1 is a register or memory reference */ if (i->modC0()) { op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL()); } else { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_8 = read_RMW_virtual_byte(i->seg(), RMAddr(i)); } if (!count) return; if (count <= 8) { result_8 = (op1_8 << count); cf = (op1_8 >> (8 - count)) & 0x1; of = cf ^ (result_8 >> 7); } else { result_8 = 0; } /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_RMW_virtual_byte(result_8); } SET_FLAGS_OSZAPC_LOGIC_8(result_8); /* handle SF, ZF and AF flags */ SET_FLAGS_OxxxxC(of, cf); } void BX_CPU_C::SHR_Eb(bxInstruction_c *i) { Bit8u op1_8, result_8; unsigned count; unsigned cf, of; if (i->b1() == 0xd2) count = CL; else // 0xc0 or 0xd0 count = i->Ib(); count &= 0x1f; /* op1 is a register or memory reference */ if (i->modC0()) { op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL()); } else { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_8 = read_RMW_virtual_byte(i->seg(), RMAddr(i)); } if (!count) return; result_8 = (op1_8 >> count); /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_RMW_virtual_byte(result_8); } cf = (op1_8 >> (count - 1)) & 0x1; // note, that of == result7 if count == 1 and // of == 0 if count >= 2 of = ((result_8 << 1) ^ result_8) >> 7; SET_FLAGS_OSZAPC_LOGIC_8(result_8); /* handle SF, ZF and AF flags */ SET_FLAGS_OxxxxC(of, cf); } void BX_CPU_C::SAR_Eb(bxInstruction_c *i) { Bit8u op1_8, result_8; unsigned count, cf; if (i->b1() == 0xd2) count = CL; else // 0xc0 or 0xd0 count = i->Ib(); count &= 0x1f; /* op1 is a register or memory reference */ if (i->modC0()) { op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL()); } else { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_8 = read_RMW_virtual_byte(i->seg(), RMAddr(i)); } if (!count) return; if (count < 8) { if (op1_8 & 0x80) { result_8 = (op1_8 >> count) | (0xff << (8 - count)); } else { result_8 = (op1_8 >> count); } cf = (op1_8 >> (count - 1)) & 0x1; } else { if (op1_8 & 0x80) { result_8 = 0xff; } else { result_8 = 0; } cf = (result_8 & 0x1); } SET_FLAGS_OSZAPC_LOGIC_8(result_8); /* handle SF, ZF and AF flags */ /* signed overflow cannot happen in SAR instruction */ SET_FLAGS_OxxxxC(0, cf); /* now write result back to destination */ if (i->modC0()) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } else { write_RMW_virtual_byte(result_8); } }