///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2005-2019 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR bx_address bx_asize_mask[] = { 0xffff, // as16 (asize = '00) 0xffffffff, // as32 (asize = '01) #if BX_SUPPORT_X86_64 BX_CONST64(0xffffffffffffffff), // as64 (asize = '10) BX_CONST64(0xffffffffffffffff) // as64 (asize = '11) #endif }; #if BX_SUPPORT_EVEX #define BX_MAX_MEM_ACCESS_LENGTH 64 #else #if BX_SUPPORT_AVX #define BX_MAX_MEM_ACCESS_LENGTH 32 #else #define BX_MAX_MEM_ACCESS_LENGTH 16 #endif #endif bx_bool BX_CPP_AttrRegparmN(4) BX_CPU_C::write_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length, bx_bool align) { Bit32u upper_limit; length--; if (align) { Bit32u laddr = (Bit32u)(seg->cache.u.segment.base + offset); if (laddr & length) { BX_DEBUG(("write_virtual_checks(): #GP misaligned access")); exception(BX_GP_EXCEPTION, 0); } } if (seg->cache.valid==0) { BX_DEBUG(("write_virtual_checks(): segment descriptor not valid")); return 0; } if (seg->cache.p == 0) { /* not present */ BX_ERROR(("write_virtual_checks(): segment not present")); return 0; } switch (seg->cache.type) { case 0: case 1: // read only case 4: case 5: // read only, expand down case 8: case 9: // execute only case 10: case 11: // execute/read case 12: case 13: // execute only, conforming case 14: case 15: // execute/read-only, conforming BX_ERROR(("write_virtual_checks(): no write access to seg")); return 0; case 2: case 3: /* read/write */ if (seg->cache.u.segment.limit_scaled == 0xffffffff && seg->cache.u.segment.base == 0) { seg->cache.valid |= SegAccessROK | SegAccessWOK | SegAccessROK4G | SegAccessWOK4G; break; } if (offset > (seg->cache.u.segment.limit_scaled - length) || length > seg->cache.u.segment.limit_scaled) { BX_ERROR(("write_virtual_checks(): write beyond limit, r/w")); return 0; } if (seg->cache.u.segment.limit_scaled >= (BX_MAX_MEM_ACCESS_LENGTH-1)) { // Mark cache as being OK type for succeeding read/writes. The limit // checks still needs to be done though, but is more simple. We // could probably also optimize that out with a flag for the case // when limit is the maximum 32bit value. Limit should accomodate // at least a dword, since we subtract from it in the simple // limit check in other functions, and we don't want the value to roll. // Only normal segments (not expand down) are handled this way. seg->cache.valid |= SegAccessROK | SegAccessWOK; } break; case 6: case 7: /* read/write, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if (offset <= seg->cache.u.segment.limit_scaled || offset > upper_limit || (upper_limit - offset) < length) { BX_ERROR(("write_virtual_checks(): write beyond limit, r/w expand down")); return 0; } break; default: BX_PANIC(("write_virtual_checks(): unknown descriptor type=%d", seg->cache.type)); } return 1; } bx_bool BX_CPP_AttrRegparmN(4) BX_CPU_C::read_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length, bx_bool align) { Bit32u upper_limit; length--; if (align) { Bit32u laddr = (Bit32u)(seg->cache.u.segment.base + offset); if (laddr & length) { BX_DEBUG(("read_virtual_checks(): #GP misaligned access")); exception(BX_GP_EXCEPTION, 0); } } if (seg->cache.valid==0) { BX_DEBUG(("read_virtual_checks(): segment descriptor not valid")); return 0; } if (seg->cache.p == 0) { /* not present */ BX_ERROR(("read_virtual_checks(): segment not present")); return 0; } switch (seg->cache.type) { case 0: case 1: /* read only */ case 2: case 3: /* read/write */ case 10: case 11: /* execute/read */ case 14: case 15: /* execute/read-only, conforming */ if (seg->cache.u.segment.limit_scaled == 0xffffffff && seg->cache.u.segment.base == 0) { seg->cache.valid |= SegAccessROK | SegAccessROK4G; break; } if (offset > (seg->cache.u.segment.limit_scaled - length) || length > seg->cache.u.segment.limit_scaled) { BX_ERROR(("read_virtual_checks(): read beyond limit")); return 0; } if (seg->cache.u.segment.limit_scaled >= (BX_MAX_MEM_ACCESS_LENGTH-1)) { // Mark cache as being OK type for succeeding reads. See notes for // write checks; similar code. seg->cache.valid |= SegAccessROK; } break; case 4: case 5: /* read only, expand down */ case 6: case 7: /* read/write, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if (offset <= seg->cache.u.segment.limit_scaled || offset > upper_limit || (upper_limit - offset) < length) { BX_ERROR(("read_virtual_checks(): read beyond limit expand down")); return 0; } break; case 8: case 9: /* execute only */ case 12: case 13: /* execute only, conforming */ /* can't read or write an execute-only segment */ BX_ERROR(("read_virtual_checks(): execute only")); return 0; default: BX_PANIC(("read_virtual_checks(): unknown descriptor type=%d", seg->cache.type)); } return 1; } bx_bool BX_CPP_AttrRegparmN(3) BX_CPU_C::execute_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length) { Bit32u upper_limit; if (seg->cache.valid==0) { BX_DEBUG(("execute_virtual_checks(): segment descriptor not valid")); return 0; } if (seg->cache.p == 0) { /* not present */ BX_ERROR(("execute_virtual_checks(): segment not present")); return 0; } length--; switch (seg->cache.type) { case 0: case 1: /* read only */ case 2: case 3: /* read/write */ case 10: case 11: /* execute/read */ case 14: case 15: /* execute/read-only, conforming */ if (seg->cache.u.segment.limit_scaled == 0xffffffff && seg->cache.u.segment.base == 0) { seg->cache.valid |= SegAccessROK | SegAccessROK4G; break; } if (offset > (seg->cache.u.segment.limit_scaled - length) || length > seg->cache.u.segment.limit_scaled) { BX_ERROR(("execute_virtual_checks(): read beyond limit")); return 0; } if (seg->cache.u.segment.limit_scaled >= (BX_MAX_MEM_ACCESS_LENGTH-1)) { // Mark cache as being OK type for succeeding reads. See notes for // write checks; similar code. seg->cache.valid |= SegAccessROK; } break; case 8: case 9: /* execute only */ case 12: case 13: /* execute only, conforming */ if (offset > (seg->cache.u.segment.limit_scaled - length) || length > seg->cache.u.segment.limit_scaled) { BX_ERROR(("execute_virtual_checks(): read beyond limit execute only")); return 0; } break; case 4: case 5: /* read only, expand down */ case 6: case 7: /* read/write, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if (offset <= seg->cache.u.segment.limit_scaled || offset > upper_limit || (upper_limit - offset) < length) { BX_ERROR(("execute_virtual_checks(): read beyond limit expand down")); return 0; } break; default: BX_PANIC(("execute_virtual_checks(): unknown descriptor type=%d", seg->cache.type)); } return 1; } const char *BX_CPU_C::strseg(bx_segment_reg_t *seg) { if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]) return("ES"); else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]) return("CS"); else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]) return("SS"); else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]) return("DS"); else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]) return("FS"); else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS]) return("GS"); else { BX_PANIC(("undefined segment passed to strseg()!")); return("??"); } } int BX_CPU_C::int_number(unsigned s) { if (s == BX_SEG_REG_SS) return BX_SS_EXCEPTION; else return BX_GP_EXCEPTION; } Bit8u BX_CPP_AttrRegparmN(1) BX_CPU_C::system_read_byte(bx_address laddr) { Bit8u data; bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = BX_TLB_ENTRY_OF(laddr, 0); if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us read access // from this CPL. if (tlbEntry->accessBits & 0x01) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); data = *hostAddr; BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 1, tlbEntry->get_memtype(), BX_READ, (Bit8u*) &data); return data; } } if (access_read_linear(laddr, 1, 0, BX_READ, 0x0, (void *) &data) < 0) exception(BX_GP_EXCEPTION, 0); return data; } Bit16u BX_CPP_AttrRegparmN(1) BX_CPU_C::system_read_word(bx_address laddr) { Bit16u data; bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = BX_TLB_ENTRY_OF(laddr, 1); if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us read access // from this CPL. if (tlbEntry->accessBits & 0x01) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset); data = ReadHostWordFromLittleEndian(hostAddr); BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 2, tlbEntry->get_memtype(), BX_READ, (Bit8u*) &data); return data; } } if (access_read_linear(laddr, 2, 0, BX_READ, 0x0, (void *) &data) < 0) exception(BX_GP_EXCEPTION, 0); return data; } Bit32u BX_CPP_AttrRegparmN(1) BX_CPU_C::system_read_dword(bx_address laddr) { Bit32u data; bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = BX_TLB_ENTRY_OF(laddr, 3); if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us read access // from this CPL. if (tlbEntry->accessBits & 0x01) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); data = ReadHostDWordFromLittleEndian(hostAddr); BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 4, tlbEntry->get_memtype(), BX_READ, (Bit8u*) &data); return data; } } if (access_read_linear(laddr, 4, 0, BX_READ, 0x0, (void *) &data) < 0) exception(BX_GP_EXCEPTION, 0); return data; } Bit64u BX_CPP_AttrRegparmN(1) BX_CPU_C::system_read_qword(bx_address laddr) { Bit64u data; bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = BX_TLB_ENTRY_OF(laddr, 7); if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us read access // from this CPL. if (tlbEntry->accessBits & 0x01) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset); data = ReadHostQWordFromLittleEndian(hostAddr); BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 8, tlbEntry->get_memtype(), BX_READ, (Bit8u*) &data); return data; } } if (access_read_linear(laddr, 8, 0, BX_READ, 0x0, (void *) &data) < 0) exception(BX_GP_EXCEPTION, 0); return data; } void BX_CPP_AttrRegparmN(2) BX_CPU_C::system_write_byte(bx_address laddr, Bit8u data) { bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = BX_TLB_ENTRY_OF(laddr, 0); if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (isWriteOK(tlbEntry, 0)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); bx_phy_address pAddr = tlbEntry->ppf | pageOffset; BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 1, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data); Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); pageWriteStampTable.decWriteStamp(pAddr, 1); *hostAddr = data; return; } } if (access_write_linear(laddr, 1, 0, 0x0, (void *) &data) < 0) exception(BX_GP_EXCEPTION, 0); } void BX_CPP_AttrRegparmN(2) BX_CPU_C::system_write_word(bx_address laddr, Bit16u data) { bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = BX_TLB_ENTRY_OF(laddr, 1); if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (isWriteOK(tlbEntry, 0)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); bx_phy_address pAddr = tlbEntry->ppf | pageOffset; BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data); Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset); pageWriteStampTable.decWriteStamp(pAddr, 2); WriteHostWordToLittleEndian(hostAddr, data); return; } } if (access_write_linear(laddr, 2, 0, 0x0, (void *) &data) < 0) exception(BX_GP_EXCEPTION, 0); } void BX_CPP_AttrRegparmN(2) BX_CPU_C::system_write_dword(bx_address laddr, Bit32u data) { bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = BX_TLB_ENTRY_OF(laddr, 3); if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (isWriteOK(tlbEntry, 0)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); bx_phy_address pAddr = tlbEntry->ppf | pageOffset; BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data); Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); pageWriteStampTable.decWriteStamp(pAddr, 4); WriteHostDWordToLittleEndian(hostAddr, data); return; } } if (access_write_linear(laddr, 4, 0, 0x0, (void *) &data) < 0) exception(BX_GP_EXCEPTION, 0); } Bit8u* BX_CPP_AttrRegparmN(2) BX_CPU_C::v2h_read_byte(bx_address laddr, bx_bool user) { bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = BX_TLB_ENTRY_OF(laddr, 0); if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us read access // from this CPL. if (isReadOK(tlbEntry, user)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); return hostAddr; } } return 0; } Bit8u* BX_CPP_AttrRegparmN(2) BX_CPU_C::v2h_write_byte(bx_address laddr, bx_bool user) { bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = BX_TLB_ENTRY_OF(laddr, 0); if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (isWriteOK(tlbEntry, user)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); pageWriteStampTable.decWriteStamp(tlbEntry->ppf); return hostAddr; } } return 0; }