///////////////////////////////////////////////////////////////////////// // $Id: bit.cc,v 1.49 2008-01-10 19:37:51 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_CPU_LEVEL >= 3 void BX_CPU_C::SETO_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = getB_OF(); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETO_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), getB_OF()); } void BX_CPU_C::SETNO_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = !getB_OF(); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETNO_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !getB_OF()); } void BX_CPU_C::SETB_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = getB_CF(); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETB_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), getB_CF()); } void BX_CPU_C::SETNB_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = !getB_CF(); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETNB_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !getB_CF()); } void BX_CPU_C::SETZ_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = getB_ZF(); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETZ_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), getB_ZF()); } void BX_CPU_C::SETNZ_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = !getB_ZF(); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETNZ_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !getB_ZF()); } void BX_CPU_C::SETBE_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = (getB_CF() | getB_ZF()); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETBE_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), (getB_CF() | getB_ZF())); } void BX_CPU_C::SETNBE_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = !(getB_CF() | getB_ZF()); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETNBE_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !(getB_CF() | getB_ZF())); } void BX_CPU_C::SETS_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = getB_SF(); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETS_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), getB_SF()); } void BX_CPU_C::SETNS_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = !getB_SF(); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETNS_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !getB_SF()); } void BX_CPU_C::SETP_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = getB_PF(); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETP_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), getB_PF()); } void BX_CPU_C::SETNP_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = !getB_PF(); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETNP_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !getB_PF()); } void BX_CPU_C::SETL_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = (getB_SF() ^ getB_OF()); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETL_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), (getB_SF() ^ getB_OF())); } void BX_CPU_C::SETNL_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = !(getB_SF() ^ getB_OF()); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETNL_EbR(bxInstruction_c *i) { BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !(getB_SF() ^ getB_OF())); } void BX_CPU_C::SETLE_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = getB_ZF() | (getB_SF() ^ getB_OF()); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETLE_EbR(bxInstruction_c *i) { Bit8u result_8 = getB_ZF() | (getB_SF() ^ getB_OF()); BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } void BX_CPU_C::SETNLE_EbM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u result_8 = !(getB_ZF() | (getB_SF() ^ getB_OF())); write_virtual_byte(i->seg(), RMAddr(i), result_8); } void BX_CPU_C::SETNLE_EbR(bxInstruction_c *i) { Bit8u result_8 = !(getB_ZF() | (getB_SF() ^ getB_OF())); BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8); } void BX_CPU_C::BSWAP_ERX(bxInstruction_c *i) { #if BX_CPU_LEVEL >= 4 Bit32u val32, b0, b1, b2, b3; if (i->os32L() == 0) { BX_ERROR(("BSWAP with 16-bit opsize: undefined behavior !")); } val32 = BX_READ_32BIT_REG(i->opcodeReg()); b0 = val32 & 0xff; val32 >>= 8; b1 = val32 & 0xff; val32 >>= 8; b2 = val32 & 0xff; val32 >>= 8; b3 = val32; val32 = (b0<<24) | (b1<<16) | (b2<<8) | b3; // zero extended // in 64-bit mode, hi-order 32 bits are not modified BX_WRITE_32BIT_REGZ(i->opcodeReg(), val32); #else BX_INFO(("BSWAP_ERX: required CPU >= 4, use --enable-cpu-level=4 option")); UndefinedOpcode(i); #endif } #if BX_SUPPORT_X86_64 void BX_CPU_C::BSWAP_RRX(bxInstruction_c *i) { Bit64u val64, b0, b1, b2, b3, b4, b5, b6, b7; val64 = BX_READ_64BIT_REG(i->opcodeReg()); b0 = val64 & 0xff; val64 >>= 8; b1 = val64 & 0xff; val64 >>= 8; b2 = val64 & 0xff; val64 >>= 8; b3 = val64 & 0xff; val64 >>= 8; b4 = val64 & 0xff; val64 >>= 8; b5 = val64 & 0xff; val64 >>= 8; b6 = val64 & 0xff; val64 >>= 8; b7 = val64; val64 = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b4<<16) | (b4<<8) | b7; BX_WRITE_64BIT_REG(i->opcodeReg(), val64); } #endif // 3-byte opcodes #if (BX_SUPPORT_SSE >= 4) || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0) #define CRC32_POLYNOMIAL BX_CONST64(0x11edc6f41) #if (BX_SUPPORT_SSE >= 5) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0) // primitives for CRC32 usage static Bit8u BitReflect8(Bit8u val8) { return ((val8 & 0x80) >> 7) | ((val8 & 0x40) >> 5) | ((val8 & 0x20) >> 3) | ((val8 & 0x10) >> 1) | ((val8 & 0x08) << 1) | ((val8 & 0x04) << 3) | ((val8 & 0x02) << 5) | ((val8 & 0x01) << 7); } BX_CPP_INLINE Bit16u BitReflect16(Bit16u val16) { return ((Bit16u)(BitReflect8(val16 & 0xff)) << 8) | BitReflect8(val16 >> 8); } BX_CPP_INLINE Bit32u BitReflect32(Bit32u val32) { return ((Bit32u)(BitReflect16(val32 & 0xffff)) << 16) | BitReflect16(val32 >> 16); } static Bit32u mod2_64bit(Bit64u divisor, Bit64u dividend) { Bit64u remainder = dividend >> 32; for (int bitpos=31; bitpos>=0; bitpos--) { // copy one more bit from the dividend remainder = (remainder << 1) | ((dividend >> bitpos) & 1); // if MSB is set, then XOR divisor and get new remainder if (((remainder >> 32) & 1) == 1) { remainder ^= divisor; } } return remainder; } #endif // (BX_SUPPORT_SSE >= 5) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0) void BX_CPU_C::CRC32_GdEb(bxInstruction_c *i) { #if (BX_SUPPORT_SSE >= 5) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0) Bit8u op1; if (i->modC0()) { op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL()); } else { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1 = read_virtual_byte(i->seg(), RMAddr(i)); } Bit32u op2 = BX_READ_32BIT_REG(i->nnn()); op2 = BitReflect32(op2); Bit64u tmp1 = ((Bit64u) BitReflect8 (op1)) << 32; Bit64u tmp2 = ((Bit64u) op2) << 8; Bit64u tmp3 = tmp1 ^ tmp2; op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3); /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), BitReflect32(op2)); #else BX_INFO(("CRC32_GdEb: required SSE4_2 support, required SSE4.2, use --enable-sse and --enable-sse-extension options")); UndefinedOpcode(i); #endif } void BX_CPU_C::CRC32_GdEv(bxInstruction_c *i) { #if (BX_SUPPORT_SSE >= 5) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0) Bit32u op2 = BX_READ_32BIT_REG(i->nnn()); op2 = BitReflect32(op2); BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); #if BX_SUPPORT_X86_64 if (i->os64L()) /* 64 bit operand size */ { Bit64u op1; if (i->modC0()) { op1 = BX_READ_64BIT_REG(i->rm()); } else { op1 = read_virtual_qword(i->seg(), RMAddr(i)); } Bit64u tmp1 = ((Bit64u) BitReflect32(op1 & 0xffffffff)) << 32; Bit64u tmp2 = ((Bit64u) op2) << 32; Bit64u tmp3 = tmp1 ^ tmp2; op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3); tmp1 = ((Bit64u) BitReflect32(op1 >> 32)) << 32; tmp2 = ((Bit64u) op2) << 32; tmp3 = tmp1 ^ tmp2; op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3); } else #endif { if (i->os32L()) /* 32 bit operand size */ { Bit32u op1; if (i->modC0()) { op1 = BX_READ_32BIT_REG(i->rm()); } else { op1 = read_virtual_dword(i->seg(), RMAddr(i)); } Bit64u tmp1 = ((Bit64u) BitReflect32(op1)) << 32; Bit64u tmp2 = ((Bit64u) op2) << 32; Bit64u tmp3 = tmp1 ^ tmp2; op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3); } else { /* 16 bit operand size */ Bit16u op1; if (i->modC0()) { op1 = BX_READ_16BIT_REG(i->rm()); } else { op1 = read_virtual_word(i->seg(), RMAddr(i)); } Bit64u tmp1 = ((Bit64u) BitReflect16(op1)) << 32; Bit64u tmp2 = ((Bit64u) op2) << 16; Bit64u tmp3 = tmp1 ^ tmp2; op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3); } } /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), BitReflect32(op2)); #else BX_INFO(("CRC32_GdEv: required SSE4_2 support, required SSE4.2, use --enable-sse and --enable-sse-extension options")); UndefinedOpcode(i); #endif } #endif // (BX_SUPPORT_SSE >= 4) || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0) #endif // (BX_CPU_LEVEL >= 3)