///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2002-2016 The Bochs Project // // I/O port handlers API Copyright (C) 2003 by Frank Cornelis // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #include "iodev.h" #include "iodev/virt_timer.h" #include "iodev/slowdown_timer.h" #define LOG_THIS bx_devices. /* main memory size (in Kbytes) * subtract 1k for extended BIOS area * report only base memory, not extended mem */ #define BASE_MEMORY_IN_K 640 bx_devices_c bx_devices; // constructor for bx_devices_c bx_devices_c::bx_devices_c() { put("devices", "DEV"); read_port_to_handler = NULL; write_port_to_handler = NULL; io_read_handlers.next = NULL; io_read_handlers.handler_name = NULL; io_write_handlers.next = NULL; io_write_handlers.handler_name = NULL; init_stubs(); for (unsigned i=0; i < BX_MAX_IRQS; i++) { irq_handler_name[i] = NULL; } } bx_devices_c::~bx_devices_c() { // nothing needed for now timer_handle = BX_NULL_TIMER_HANDLE; } void bx_devices_c::init_stubs() { pluginPci2IsaBridge = &stubPci2Isa; pluginPciIdeController = &stubPciIde; #if BX_SUPPORT_PCI pluginACPIController = &stubACPIController; #endif pluginKeyboard = &stubKeyboard; pluginDmaDevice = &stubDma; pluginFloppyDevice = &stubFloppy; pluginCmosDevice = &stubCmos; pluginVgaDevice = &stubVga; pluginPicDevice = &stubPic; pluginHardDrive = &stubHardDrive; pluginSpeaker = &stubSpeaker; #if BX_SUPPORT_IODEBUG pluginIODebug = &stubIODebug; #endif #if BX_SUPPORT_APIC pluginIOAPIC = &stubIOAPIC; #endif #if BX_SUPPORT_GAMEPORT pluginGameport = &stubGameport; #endif #if BX_SUPPORT_PCIUSB pluginUsbDevCtl = &stubUsbDevCtl; #endif #if BX_SUPPORT_SOUNDLOW pluginSoundModCtl = &stubSoundModCtl; #endif #if BX_NETWORKING pluginNetModCtl = &stubNetModCtl; #endif } void bx_devices_c::init(BX_MEM_C *newmem) { unsigned i, chipset; const char def_name[] = "Default"; const char *vga_ext; BX_DEBUG(("Init $Id$")); mem = newmem; /* set builtin default handlers, will be overwritten by the real default handler */ register_default_io_read_handler(NULL, &default_read_handler, def_name, 7); io_read_handlers.next = &io_read_handlers; io_read_handlers.prev = &io_read_handlers; io_read_handlers.usage_count = 0; // not used with the default handler register_default_io_write_handler(NULL, &default_write_handler, def_name, 7); io_write_handlers.next = &io_write_handlers; io_write_handlers.prev = &io_write_handlers; io_write_handlers.usage_count = 0; // not used with the default handler if (read_port_to_handler) delete [] read_port_to_handler; if (write_port_to_handler) delete [] write_port_to_handler; read_port_to_handler = new struct io_handler_struct *[PORTS]; write_port_to_handler = new struct io_handler_struct *[PORTS]; /* set handlers to the default one */ for (i=0; i < PORTS; i++) { read_port_to_handler[i] = &io_read_handlers; write_port_to_handler[i] = &io_write_handlers; } for (i=0; i < BX_MAX_IRQS; i++) { delete [] irq_handler_name[i]; irq_handler_name[i] = NULL; } // removable devices init bx_keyboard.dev = NULL; bx_keyboard.enq_event = NULL; for (i=0; i < 2; i++) { bx_mouse[i].dev = NULL; bx_mouse[i].enq_event = NULL; bx_mouse[i].enabled_changed = NULL; } // common mouse settings mouse_captured = SIM->get_param_bool(BXPN_MOUSE_ENABLED)->get(); mouse_type = SIM->get_param_enum(BXPN_MOUSE_TYPE)->get(); // register as soon as possible - the devices want to have their timers ! bx_virt_timer.init(); bx_slowdown_timer.init(); // BBD: At present, the only difference between "core" and "optional" // plugins is that initialization and reset of optional plugins is handled // by the plugin device list (). Init and reset of core plugins is done // "by hand" in this file. Basically, we're using core plugins when we // want to control the init order. // PLUG_load_plugin(hdimage, PLUGTYPE_CORE); #if BX_NETWORKING network_enabled = is_network_enabled(); if (network_enabled) PLUG_load_plugin(netmod, PLUGTYPE_CORE); #endif #if BX_SUPPORT_SOUNDLOW sound_enabled = is_sound_enabled(); if (sound_enabled) { PLUG_load_plugin(soundmod, PLUGTYPE_CORE); pluginSoundModCtl->init(); } #endif // PCI logic (i440FX) pci.enabled = SIM->get_param_bool(BXPN_PCI_ENABLED)->get(); if (pci.enabled) { chipset = SIM->get_param_enum(BXPN_PCI_CHIPSET)->get(); #if BX_SUPPORT_PCI PLUG_load_plugin(pci, PLUGTYPE_CORE); PLUG_load_plugin(pci2isa, PLUGTYPE_CORE); #if BX_SUPPORT_PCIUSB if (chipset == BX_PCI_CHIPSET_I440FX) { // UHCI is a part of the PIIX3, so load / enable it if (!PLUG_device_present("usb_uhci")) { PLUG_load_plugin(usb_uhci, PLUGTYPE_OPTIONAL); } SIM->get_param_bool(BXPN_UHCI_ENABLED)->set(1); } // USB core loaded before parsing bochsrc - unload if not used. usb_enabled = is_usb_enabled(); if (!usb_enabled) PLUG_unload_plugin(usb_common); #endif if (chipset == BX_PCI_CHIPSET_I440FX) { PLUG_load_plugin(acpi, PLUGTYPE_STANDARD); } #else BX_ERROR(("Bochs is not compiled with PCI support")); #endif } PLUG_load_plugin(cmos, PLUGTYPE_CORE); PLUG_load_plugin(dma, PLUGTYPE_CORE); PLUG_load_plugin(pic, PLUGTYPE_CORE); PLUG_load_plugin(pit, PLUGTYPE_CORE); vga_ext = SIM->get_param_string(BXPN_VGA_EXTENSION)->getptr(); if (!strcmp(vga_ext, "cirrus")) { #if BX_SUPPORT_CLGD54XX PLUG_load_plugin(svga_cirrus, PLUGTYPE_CORE); #else BX_PANIC(("Bochs is not compiled with Cirrus support")); #endif } else { PLUG_load_plugin(vga, PLUGTYPE_CORE); } PLUG_load_plugin(floppy, PLUGTYPE_CORE); #if BX_SUPPORT_APIC PLUG_load_plugin(ioapic, PLUGTYPE_STANDARD); #endif PLUG_load_plugin(keyboard, PLUGTYPE_STANDARD); #if BX_SUPPORT_BUSMOUSE if ((mouse_type == BX_MOUSE_TYPE_INPORT) || (mouse_type == BX_MOUSE_TYPE_BUS)) { PLUG_load_plugin(busmouse, PLUGTYPE_OPTIONAL); } #endif if (is_harddrv_enabled()) { PLUG_load_plugin(harddrv, PLUGTYPE_STANDARD); #if BX_SUPPORT_PCI if (pci.enabled) { PLUG_load_plugin(pci_ide, PLUGTYPE_STANDARD); } #endif } // system hardware register_io_read_handler(this, &read_handler, 0x0092, "Port 92h System Control", 1); register_io_write_handler(this, &write_handler, 0x0092, "Port 92h System Control", 1); #if BX_SUPPORT_PCI if (pci.enabled) { pci.num_pci_handlers = 0; /* set unused elements to appropriate values */ for (i=0; i < BX_MAX_PCI_DEVICES; i++) { pci.pci_handler[i].handler = NULL; } for (i=0; i < 0x100; i++) { pci.handler_id[i] = BX_MAX_PCI_DEVICES; // not assigned } for (i=0; i < BX_N_PCI_SLOTS; i++) { pci.slot_used[i] = 0; // no device connected } // confAddr accepts dword i/o only DEV_register_ioread_handler(this, read_handler, 0x0CF8, "i440FX", 4); DEV_register_iowrite_handler(this, write_handler, 0x0CF8, "i440FX", 4); for (i=0x0CFC; i<=0x0CFF; i++) { DEV_register_ioread_handler(this, read_handler, i, "i440FX", 7); DEV_register_iowrite_handler(this, write_handler, i, "i440FX", 7); } } #endif // misc. CMOS Bit64u memory_in_k = mem->get_memory_len() / 1024; Bit64u extended_memory_in_k = memory_in_k > 1024 ? (memory_in_k - 1024) : 0; if (extended_memory_in_k > 0xfc00) extended_memory_in_k = 0xfc00; DEV_cmos_set_reg(0x15, (Bit8u) BASE_MEMORY_IN_K); DEV_cmos_set_reg(0x16, (Bit8u) (BASE_MEMORY_IN_K >> 8)); DEV_cmos_set_reg(0x17, (Bit8u) (extended_memory_in_k & 0xff)); DEV_cmos_set_reg(0x18, (Bit8u) ((extended_memory_in_k >> 8) & 0xff)); DEV_cmos_set_reg(0x30, (Bit8u) (extended_memory_in_k & 0xff)); DEV_cmos_set_reg(0x31, (Bit8u) ((extended_memory_in_k >> 8) & 0xff)); Bit64u extended_memory_in_64k = memory_in_k > 16384 ? (memory_in_k - 16384) / 64 : 0; // Limit to 3 GB - 16 MB. PCI Memory Address Space starts at 3 GB. if (extended_memory_in_64k > 0xbf00) extended_memory_in_64k = 0xbf00; DEV_cmos_set_reg(0x34, (Bit8u) (extended_memory_in_64k & 0xff)); DEV_cmos_set_reg(0x35, (Bit8u) ((extended_memory_in_64k >> 8) & 0xff)); Bit64u memory_above_4gb = (mem->get_memory_len() > BX_CONST64(0x100000000)) ? (mem->get_memory_len() - BX_CONST64(0x100000000)) : 0; if (memory_above_4gb) { DEV_cmos_set_reg(0x5b, (Bit8u)(memory_above_4gb >> 16)); DEV_cmos_set_reg(0x5c, (Bit8u)(memory_above_4gb >> 24)); DEV_cmos_set_reg(0x5d, memory_above_4gb >> 32); } if (timer_handle != BX_NULL_TIMER_HANDLE) { timer_handle = bx_pc_system.register_timer(this, timer_handler, (unsigned) BX_IODEV_HANDLER_PERIOD, 1, 1, "devices.cc"); } // Clear fields for bulk IO acceleration transfers. bulkIOHostAddr = 0; bulkIOQuantumsRequested = 0; bulkIOQuantumsTransferred = 0; bx_init_plugins(); /* now perform checksum of CMOS memory */ DEV_cmos_checksum(); #if BX_SUPPORT_PCI // verify PCI slot configuration char devname[80]; char *device; if (pci.enabled) { for (i=0; iget_param_string(devname)->getptr(); if ((strlen(device) > 0) && !pci.slot_used[i]) { BX_PANIC(("Unknown plugin '%s' at PCI slot #%d", device, i+1)); } } } #endif } void bx_devices_c::reset(unsigned type) { #if BX_SUPPORT_PCI if (pci.enabled) { pci.confAddr = 0; } #endif mem->disable_smram(); bx_reset_plugins(type); } void bx_devices_c::register_state() { #if BX_SUPPORT_PCI if (pci.enabled) { bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "pcicore", "Generic PCI State"); BXRS_HEX_PARAM_FIELD(list, confAddr, pci.confAddr); } #endif bx_virt_timer.register_state(); bx_plugins_register_state(); } void bx_devices_c::after_restore_state() { bx_slowdown_timer.after_restore_state(); bx_virt_timer.set_realtime_delay(); bx_plugins_after_restore_state(); } void bx_devices_c::exit() { // delete i/o handlers before unloading plugins struct io_handler_struct *io_read_handler = io_read_handlers.next; struct io_handler_struct *curr = NULL; while (io_read_handler != &io_read_handlers) { io_read_handler->prev->next = io_read_handler->next; io_read_handler->next->prev = io_read_handler->prev; curr = io_read_handler; io_read_handler = io_read_handler->next; delete [] curr->handler_name; delete curr; } struct io_handler_struct *io_write_handler = io_write_handlers.next; while (io_write_handler != &io_write_handlers) { io_write_handler->prev->next = io_write_handler->next; io_write_handler->next->prev = io_write_handler->prev; curr = io_write_handler; io_write_handler = io_write_handler->next; delete [] curr->handler_name; delete curr; } bx_virt_timer.setup(); bx_slowdown_timer.exit(); // unload optional and user plugins first bx_unload_plugins(); bx_unload_core_plugins(); PLUG_unload_plugin(hdimage); #if BX_NETWORKING if (network_enabled) PLUG_unload_plugin(netmod); #endif #if BX_SUPPORT_SOUNDLOW if (sound_enabled) PLUG_unload_plugin(soundmod); #endif #if BX_SUPPORT_PCIUSB if (usb_enabled) PLUG_unload_plugin(usb_common); #endif init_stubs(); } Bit32u bx_devices_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len) { #if !BX_USE_DEV_SMF bx_devices_c *class_ptr = (bx_devices_c *) this_ptr; return class_ptr->read(address, io_len); } Bit32u bx_devices_c::read(Bit32u address, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_DEV_SMF switch (address) { case 0x0092: BX_DEBUG(("port92h read partially supported!!!")); BX_DEBUG((" returning %02x", (unsigned) (BX_GET_ENABLE_A20() << 1))); return(BX_GET_ENABLE_A20() << 1); #if BX_SUPPORT_PCI case 0x0CF8: return BX_DEV_THIS pci.confAddr; case 0x0CFC: case 0x0CFD: case 0x0CFE: case 0x0CFF: { Bit32u handle, retval; Bit8u devfunc, regnum; if ((BX_DEV_THIS pci.confAddr & 0x80FF0000) == 0x80000000) { devfunc = (BX_DEV_THIS pci.confAddr >> 8) & 0xff; regnum = (BX_DEV_THIS pci.confAddr & 0xfc) + (address & 0x03); handle = BX_DEV_THIS pci.handler_id[devfunc]; if ((io_len <= 4) && (handle < BX_MAX_PCI_DEVICES)) retval = BX_DEV_THIS pci.pci_handler[handle].handler->pci_read_handler(regnum, io_len); else retval = 0xFFFFFFFF; } else retval = 0xFFFFFFFF; return retval; } #endif } BX_PANIC(("unsupported IO read to port 0x%x", (unsigned) address)); return(0xffffffff); } void bx_devices_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len) { #if !BX_USE_DEV_SMF bx_devices_c *class_ptr = (bx_devices_c *) this_ptr; class_ptr->write(address, value, io_len); } void bx_devices_c::write(Bit32u address, Bit32u value, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_DEV_SMF switch (address) { case 0x0092: BX_DEBUG(("port92h write of %02x partially supported!!!", (unsigned) value)); BX_DEBUG(("A20: set_enable_a20() called")); BX_SET_ENABLE_A20((value & 0x02) >> 1); BX_DEBUG(("A20: now %u", (unsigned) BX_GET_ENABLE_A20())); if (value & 0x01) { /* high speed reset */ BX_INFO(("iowrite to port0x92 : reset resquested")); bx_pc_system.Reset(BX_RESET_SOFTWARE); } break; #if BX_SUPPORT_PCI case 0xCF8: BX_DEV_THIS pci.confAddr = value; if ((value & 0x80FFFF00) == 0x80000000) { BX_DEBUG(("440FX PMC register 0x%02x selected", value & 0xfc)); } else if ((value & 0x80000000) == 0x80000000) { BX_DEBUG(("440FX request for bus 0x%02x device 0x%02x function 0x%02x", (value >> 16) & 0xFF, (value >> 11) & 0x1F, (value >> 8) & 0x07)); } break; case 0xCFC: case 0xCFD: case 0xCFE: case 0xCFF: if ((BX_DEV_THIS pci.confAddr & 0x80FF0000) == 0x80000000) { Bit8u devfunc = (BX_DEV_THIS pci.confAddr >> 8) & 0xff; Bit8u regnum = (BX_DEV_THIS pci.confAddr & 0xfc) + (address & 0x03); Bit32u handle = BX_DEV_THIS pci.handler_id[devfunc]; if ((io_len <= 4) && (handle < BX_MAX_PCI_DEVICES)) { if (((regnum>=4) && (regnum<=7)) || (regnum==12) || (regnum==13) || (regnum>14)) { BX_DEV_THIS pci.pci_handler[handle].handler->pci_write_handler(regnum, value, io_len); } else BX_DEBUG(("read only register, write ignored")); } } break; #endif default: BX_PANIC(("IO write to port 0x%x", (unsigned) address)); } } // This defines the builtin default read handler, // so Bochs does not segfault if unmapped is not loaded Bit32u bx_devices_c::default_read_handler(void *this_ptr, Bit32u address, unsigned io_len) { UNUSED(this_ptr); return 0xffffffff; } // This defines the builtin default write handler, // so Bochs does not segfault if unmapped is not loaded void bx_devices_c::default_write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len) { UNUSED(this_ptr); } void bx_devices_c::timer_handler(void *this_ptr) { bx_devices_c *class_ptr = (bx_devices_c *) this_ptr; class_ptr->timer(); } void bx_devices_c::timer() { SIM->periodic(); if (!bx_pc_system.kill_bochs_request) bx_gui->handle_events(); } bx_bool bx_devices_c::register_irq(unsigned irq, const char *name) { if (irq >= BX_MAX_IRQS) { BX_PANIC(("IO device %s registered with IRQ=%d above %u", name, irq, (unsigned) BX_MAX_IRQS-1)); return 0; } if (irq_handler_name[irq]) { BX_PANIC(("IRQ %u conflict, %s with %s", irq, irq_handler_name[irq], name)); return 0; } irq_handler_name[irq] = new char[strlen(name)+1]; strcpy(irq_handler_name[irq], name); return 1; } bx_bool bx_devices_c::unregister_irq(unsigned irq, const char *name) { if (irq >= BX_MAX_IRQS) { BX_PANIC(("IO device %s tried to unregister IRQ %d above %u", name, irq, (unsigned) BX_MAX_IRQS-1)); return 0; } if (!irq_handler_name[irq]) { BX_INFO(("IO device %s tried to unregister IRQ %d, not registered", name, irq)); return 0; } if (strcmp(irq_handler_name[irq], name)) { BX_INFO(("IRQ %u not registered to %s but to %s", irq, name, irq_handler_name[irq])); return 0; } delete [] irq_handler_name[irq]; irq_handler_name[irq] = NULL; return 1; } bx_bool bx_devices_c::register_io_read_handler(void *this_ptr, bx_read_handler_t f, Bit32u addr, const char *name, Bit8u mask) { addr &= 0xffff; if (!f) return 0; /* first check if the port already has a handlers != the default handler */ if (read_port_to_handler[addr] && read_port_to_handler[addr] != &io_read_handlers) { // the default BX_ERROR(("IO device address conflict(read) at IO address %Xh", (unsigned) addr)); BX_ERROR((" conflicting devices: %s & %s", read_port_to_handler[addr]->handler_name, name)); return 0; } /* first find existing handle for function or create new one */ struct io_handler_struct *curr = &io_read_handlers; struct io_handler_struct *io_read_handler = NULL; do { if (curr->funct == f && curr->mask == mask && curr->this_ptr == this_ptr && !strcmp(curr->handler_name, name)) { // really want the same name too io_read_handler = curr; break; } curr = curr->next; } while (curr->next != &io_read_handlers); if (!io_read_handler) { io_read_handler = new struct io_handler_struct; io_read_handler->funct = (void *)f; io_read_handler->this_ptr = this_ptr; io_read_handler->handler_name = new char[strlen(name)+1]; strcpy(io_read_handler->handler_name, name); io_read_handler->mask = mask; io_read_handler->usage_count = 0; // add the handler to the double linked list of handlers io_read_handlers.prev->next = io_read_handler; io_read_handler->next = &io_read_handlers; io_read_handler->prev = io_read_handlers.prev; io_read_handlers.prev = io_read_handler; } io_read_handler->usage_count++; read_port_to_handler[addr] = io_read_handler; return 1; // address mapped successfully } bx_bool bx_devices_c::register_io_write_handler(void *this_ptr, bx_write_handler_t f, Bit32u addr, const char *name, Bit8u mask) { addr &= 0xffff; if (!f) return 0; /* first check if the port already has a handlers != the default handler */ if (write_port_to_handler[addr] && write_port_to_handler[addr] != &io_write_handlers) { // the default BX_ERROR(("IO device address conflict(write) at IO address %Xh", (unsigned) addr)); BX_ERROR((" conflicting devices: %s & %s", write_port_to_handler[addr]->handler_name, name)); return 0; } /* first find existing handle for function or create new one */ struct io_handler_struct *curr = &io_write_handlers; struct io_handler_struct *io_write_handler = NULL; do { if (curr->funct == f && curr->mask == mask && curr->this_ptr == this_ptr && !strcmp(curr->handler_name, name)) { // really want the same name too io_write_handler = curr; break; } curr = curr->next; } while (curr->next != &io_write_handlers); if (!io_write_handler) { io_write_handler = new struct io_handler_struct; io_write_handler->funct = (void *)f; io_write_handler->this_ptr = this_ptr; io_write_handler->handler_name = new char[strlen(name)+1]; strcpy(io_write_handler->handler_name, name); io_write_handler->mask = mask; io_write_handler->usage_count = 0; // add the handler to the double linked list of handlers io_write_handlers.prev->next = io_write_handler; io_write_handler->next = &io_write_handlers; io_write_handler->prev = io_write_handlers.prev; io_write_handlers.prev = io_write_handler; } io_write_handler->usage_count++; write_port_to_handler[addr] = io_write_handler; return 1; // address mapped successfully } bx_bool bx_devices_c::register_io_read_handler_range(void *this_ptr, bx_read_handler_t f, Bit32u begin_addr, Bit32u end_addr, const char *name, Bit8u mask) { Bit32u addr; begin_addr &= 0xffff; end_addr &= 0xffff; if (end_addr < begin_addr) { BX_ERROR(("!!! end_addr < begin_addr !!!")); return 0; } if (!f) { BX_ERROR(("!!! f == NULL !!!")); return 0; } /* first check if the port already has a handlers != the default handler */ for (addr = begin_addr; addr <= end_addr; addr++) if (read_port_to_handler[addr] && read_port_to_handler[addr] != &io_read_handlers) { // the default BX_ERROR(("IO device address conflict(read) at IO address %Xh", (unsigned) addr)); BX_ERROR((" conflicting devices: %s & %s", read_port_to_handler[addr]->handler_name, name)); return 0; } /* first find existing handle for function or create new one */ struct io_handler_struct *curr = &io_read_handlers; struct io_handler_struct *io_read_handler = NULL; do { if (curr->funct == f && curr->mask == mask && curr->this_ptr == this_ptr && !strcmp(curr->handler_name, name)) { io_read_handler = curr; break; } curr = curr->next; } while (curr->next != &io_read_handlers); if (!io_read_handler) { io_read_handler = new struct io_handler_struct; io_read_handler->funct = (void *)f; io_read_handler->this_ptr = this_ptr; io_read_handler->handler_name = new char[strlen(name)+1]; strcpy(io_read_handler->handler_name, name); io_read_handler->mask = mask; io_read_handler->usage_count = 0; // add the handler to the double linked list of handlers io_read_handlers.prev->next = io_read_handler; io_read_handler->next = &io_read_handlers; io_read_handler->prev = io_read_handlers.prev; io_read_handlers.prev = io_read_handler; } io_read_handler->usage_count += end_addr - begin_addr + 1; for (addr = begin_addr; addr <= end_addr; addr++) read_port_to_handler[addr] = io_read_handler; return 1; // address mapped successfully } bx_bool bx_devices_c::register_io_write_handler_range(void *this_ptr, bx_write_handler_t f, Bit32u begin_addr, Bit32u end_addr, const char *name, Bit8u mask) { Bit32u addr; begin_addr &= 0xffff; end_addr &= 0xffff; if (end_addr < begin_addr) { BX_ERROR(("!!! end_addr < begin_addr !!!")); return 0; } if (!f) { BX_ERROR(("!!! f == NULL !!!")); return 0; } /* first check if the port already has a handlers != the default handler */ for (addr = begin_addr; addr <= end_addr; addr++) if (write_port_to_handler[addr] && write_port_to_handler[addr] != &io_write_handlers) { // the default BX_ERROR(("IO device address conflict(read) at IO address %Xh", (unsigned) addr)); BX_ERROR((" conflicting devices: %s & %s", write_port_to_handler[addr]->handler_name, name)); return 0; } /* first find existing handle for function or create new one */ struct io_handler_struct *curr = &io_write_handlers; struct io_handler_struct *io_write_handler = NULL; do { if (curr->funct == f && curr->mask == mask && curr->this_ptr == this_ptr && !strcmp(curr->handler_name, name)) { io_write_handler = curr; break; } curr = curr->next; } while (curr->next != &io_write_handlers); if (!io_write_handler) { io_write_handler = new struct io_handler_struct; io_write_handler->funct = (void *)f; io_write_handler->this_ptr = this_ptr; io_write_handler->handler_name = new char[strlen(name)+1]; strcpy(io_write_handler->handler_name, name); io_write_handler->mask = mask; io_write_handler->usage_count = 0; // add the handler to the double linked list of handlers io_write_handlers.prev->next = io_write_handler; io_write_handler->next = &io_write_handlers; io_write_handler->prev = io_write_handlers.prev; io_write_handlers.prev = io_write_handler; } io_write_handler->usage_count += end_addr - begin_addr + 1; for (addr = begin_addr; addr <= end_addr; addr++) write_port_to_handler[addr] = io_write_handler; return 1; // address mapped successfully } // Registration of default handlers (mainly be the unmapped device) bx_bool bx_devices_c::register_default_io_read_handler(void *this_ptr, bx_read_handler_t f, const char *name, Bit8u mask) { io_read_handlers.funct = (void *)f; io_read_handlers.this_ptr = this_ptr; if (io_read_handlers.handler_name) { delete [] io_read_handlers.handler_name; } io_read_handlers.handler_name = new char[strlen(name)+1]; strcpy(io_read_handlers.handler_name, name); io_read_handlers.mask = mask; return 1; } bx_bool bx_devices_c::register_default_io_write_handler(void *this_ptr, bx_write_handler_t f, const char *name, Bit8u mask) { io_write_handlers.funct = (void *)f; io_write_handlers.this_ptr = this_ptr; if (io_write_handlers.handler_name) { delete [] io_write_handlers.handler_name; } io_write_handlers.handler_name = new char[strlen(name)+1]; strcpy(io_write_handlers.handler_name, name); io_write_handlers.mask = mask; return 1; } bx_bool bx_devices_c::unregister_io_read_handler(void *this_ptr, bx_read_handler_t f, Bit32u addr, Bit8u mask) { addr &= 0xffff; struct io_handler_struct *io_read_handler = read_port_to_handler[addr]; //BX_INFO(("Unregistering I/O read handler at %#x", addr)); if (!io_read_handler) { BX_ERROR((">>> NO IO_READ_HANDLER <<<")); return 0; } if (io_read_handler == &io_read_handlers) { BX_ERROR((">>> CANNOT UNREGISTER THE DEFAULT IO_READ_HANDLER <<<")); return 0; // cannot unregister the default handler } if (io_read_handler->funct != f) { BX_ERROR((">>> NOT THE SAME IO_READ_HANDLER FUNC <<<")); return 0; } if (io_read_handler->this_ptr != this_ptr) { BX_ERROR((">>> NOT THE SAME IO_READ_HANDLER THIS_PTR <<<")); return 0; } if (io_read_handler->mask != mask) { BX_ERROR((">>> NOT THE SAME IO_READ_HANDLER MASK <<<")); return 0; } read_port_to_handler[addr] = &io_read_handlers; // reset to default io_read_handler->usage_count--; if (!io_read_handler->usage_count) { // kill this handler entry io_read_handler->prev->next = io_read_handler->next; io_read_handler->next->prev = io_read_handler->prev; delete [] io_read_handler->handler_name; delete io_read_handler; } return 1; } bx_bool bx_devices_c::unregister_io_write_handler(void *this_ptr, bx_write_handler_t f, Bit32u addr, Bit8u mask) { addr &= 0xffff; struct io_handler_struct *io_write_handler = write_port_to_handler[addr]; if (!io_write_handler) return 0; if (io_write_handler == &io_write_handlers) return 0; // cannot unregister the default handler if (io_write_handler->funct != f) return 0; if (io_write_handler->this_ptr != this_ptr) return 0; if (io_write_handler->mask != mask) return 0; write_port_to_handler[addr] = &io_write_handlers; // reset to default io_write_handler->usage_count--; if (!io_write_handler->usage_count) { // kill this handler entry io_write_handler->prev->next = io_write_handler->next; io_write_handler->next->prev = io_write_handler->prev; delete [] io_write_handler->handler_name; delete io_write_handler; } return 1; } bx_bool bx_devices_c::unregister_io_read_handler_range(void *this_ptr, bx_read_handler_t f, Bit32u begin, Bit32u end, Bit8u mask) { begin &= 0xffff; end &= 0xffff; Bit32u addr; bx_bool ret = 1; /* * the easy way this time */ for (addr = begin; addr <= end; addr++) if (!unregister_io_read_handler(this_ptr, f, addr, mask)) ret = 0; return ret; } bx_bool bx_devices_c::unregister_io_write_handler_range(void *this_ptr, bx_write_handler_t f, Bit32u begin, Bit32u end, Bit8u mask) { begin &= 0xffff; end &= 0xffff; Bit32u addr; bx_bool ret = 1; /* * the easy way this time */ for (addr = begin; addr <= end; addr++) if (!unregister_io_write_handler(this_ptr, f, addr, mask)) ret = 0; return ret; } /* * Read a byte of data from the IO memory address space */ Bit32u BX_CPP_AttrRegparmN(2) bx_devices_c::inp(Bit16u addr, unsigned io_len) { struct io_handler_struct *io_read_handler; Bit32u ret; BX_INSTR_INP(addr, io_len); io_read_handler = read_port_to_handler[addr]; if (io_read_handler->mask & io_len) { ret = ((bx_read_handler_t)io_read_handler->funct)(io_read_handler->this_ptr, (Bit32u)addr, io_len); } else { switch (io_len) { case 1: ret = 0xff; break; case 2: ret = 0xffff; break; default: ret = 0xffffffff; break; } if (addr != 0x0cf8) { // don't flood the logfile when probing PCI BX_ERROR(("read from port 0x%04x with len %d returns 0x%x", addr, io_len, ret)); } } BX_INSTR_INP2(addr, io_len, ret); BX_DBG_IO_REPORT(addr, io_len, BX_READ, ret); return(ret); } /* * Write a byte of data to the IO memory address space. */ void BX_CPP_AttrRegparmN(3) bx_devices_c::outp(Bit16u addr, Bit32u value, unsigned io_len) { struct io_handler_struct *io_write_handler; BX_INSTR_OUTP(addr, io_len, value); BX_DBG_IO_REPORT(addr, io_len, BX_WRITE, value); io_write_handler = write_port_to_handler[addr]; if (io_write_handler->mask & io_len) { ((bx_write_handler_t)io_write_handler->funct)(io_write_handler->this_ptr, (Bit32u)addr, value, io_len); } else if (addr != 0x0cf8) { // don't flood the logfile when probing PCI BX_ERROR(("write to port 0x%04x with len %d ignored", addr, io_len)); } } bx_bool bx_devices_c::is_harddrv_enabled(void) { char pname[24]; for (int i=0; iget_param_bool(pname)->get()) return 1; } return 0; } bx_bool bx_devices_c::is_network_enabled(void) { if (PLUG_device_present("e1000") || PLUG_device_present("ne2k") || PLUG_device_present("pcipnic")) { return 1; } return 0; } bx_bool bx_devices_c::is_sound_enabled(void) { if (PLUG_device_present("es1370") || PLUG_device_present("sb16") || PLUG_device_present("speaker")) { return 1; } return 0; } bx_bool bx_devices_c::is_usb_enabled(void) { if (PLUG_device_present("usb_ohci") || PLUG_device_present("usb_uhci") || PLUG_device_present("usb_ehci") || PLUG_device_present("usb_xhci")) { return 1; } return 0; } // removable keyboard/mouse registration void bx_devices_c::register_removable_keyboard(void *dev, bx_keyb_enq_t keyb_enq) { if (bx_keyboard.dev == NULL) { bx_keyboard.dev = dev; bx_keyboard.enq_event = keyb_enq; } } void bx_devices_c::unregister_removable_keyboard(void *dev) { if (dev == bx_keyboard.dev) { bx_keyboard.dev = NULL; bx_keyboard.enq_event = NULL; } } void bx_devices_c::register_default_mouse(void *dev, bx_mouse_enq_t mouse_enq, bx_mouse_enabled_changed_t mouse_enabled_changed) { if (bx_mouse[0].dev == NULL) { bx_mouse[0].dev = dev; bx_mouse[0].enq_event = mouse_enq; bx_mouse[0].enabled_changed = mouse_enabled_changed; } } void bx_devices_c::register_removable_mouse(void *dev, bx_mouse_enq_t mouse_enq, bx_mouse_enabled_changed_t mouse_enabled_changed) { if (bx_mouse[1].dev == NULL) { bx_mouse[1].dev = dev; bx_mouse[1].enq_event = mouse_enq; bx_mouse[1].enabled_changed = mouse_enabled_changed; } } void bx_devices_c::unregister_removable_mouse(void *dev) { if (dev == bx_mouse[1].dev) { bx_mouse[1].dev = NULL; bx_mouse[1].enq_event = NULL; bx_mouse[1].enabled_changed = NULL; } } bx_bool bx_devices_c::optional_key_enq(Bit8u *scan_code) { if (bx_keyboard.dev != NULL) { return bx_keyboard.enq_event(bx_keyboard.dev, scan_code); } return 0; } // common mouse device handlers void bx_devices_c::mouse_enabled_changed(bx_bool enabled) { mouse_captured = enabled; if ((bx_mouse[1].dev != NULL) && (bx_mouse[1].enabled_changed != NULL)) { bx_mouse[1].enabled_changed(bx_mouse[1].dev, enabled); return; } if ((bx_mouse[0].dev != NULL) && (bx_mouse[0].enabled_changed != NULL)) { bx_mouse[0].enabled_changed(bx_mouse[0].dev, enabled); } } void bx_devices_c::mouse_motion(int delta_x, int delta_y, int delta_z, unsigned button_state, bx_bool absxy) { // If mouse events are disabled on the GUI headerbar, don't // generate any mouse data if (!mouse_captured) return; // if a removable mouse is connected, redirect mouse data to the device if (bx_mouse[1].dev != NULL) { bx_mouse[1].enq_event(bx_mouse[1].dev, delta_x, delta_y, delta_z, button_state, absxy); return; } // if a mouse is connected, direct mouse data to the device if (bx_mouse[0].dev != NULL) { bx_mouse[0].enq_event(bx_mouse[0].dev, delta_x, delta_y, delta_z, button_state, absxy); } } // generic PCI support void bx_pci_device_stub_c::init_pci_conf(Bit16u vid, Bit16u did, Bit8u rev, Bit32u classc, Bit8u headt) { memset(pci_conf, 0, 256); pci_conf[0x00] = (Bit8u)(vid & 0xff); pci_conf[0x01] = (Bit8u)(vid >> 8); pci_conf[0x02] = (Bit8u)(did & 0xff); pci_conf[0x03] = (Bit8u)(did >> 8); pci_conf[0x08] = rev; pci_conf[0x09] = (Bit8u)(classc & 0xff); pci_conf[0x0a] = (Bit8u)((classc >> 8) & 0xff); pci_conf[0x0b] = (Bit8u)((classc >> 16) & 0xff); pci_conf[0x0e] = headt; } void bx_pci_device_stub_c::register_pci_state(bx_list_c *list) { new bx_shadow_data_c(list, "pci_conf", pci_conf, 256, 1); } void bx_pci_device_stub_c::load_pci_rom(const char *path) { struct stat stat_buf; int fd, ret; unsigned long size, max_size; if (*path == '\0') { BX_PANIC(("PCI ROM image undefined")); return; } // read in PCI ROM image file fd = open(path, O_RDONLY #ifdef O_BINARY | O_BINARY #endif ); if (fd < 0) { BX_PANIC(("couldn't open PCI ROM image file '%s'.", path)); return; } ret = fstat(fd, &stat_buf); if (ret) { close(fd); BX_PANIC(("couldn't stat PCI ROM image file '%s'.", path)); return; } max_size = 0x20000; size = (unsigned long)stat_buf.st_size; if (size > max_size) { close(fd); BX_PANIC(("PCI ROM image too large")); return; } if ((size % 512) != 0) { close(fd); BX_PANIC(("PCI ROM image size must be multiple of 512 (size = %ld)", size)); return; } while ((size - 1) < max_size) { max_size >>= 1; } pci_rom_size = (max_size << 1); pci_rom = new Bit8u[pci_rom_size]; while (size > 0) { ret = read(fd, (bx_ptr_t) pci_rom, size); if (ret <= 0) { BX_PANIC(("read failed on PCI ROM image: '%s'", path)); } size -= ret; } close(fd); BX_INFO(("loaded PCI ROM '%s' (size=%u / PCI=%uk)", path, (unsigned) stat_buf.st_size, pci_rom_size >> 10)); } #if BX_SUPPORT_PCI bx_bool bx_devices_c::register_pci_handlers(bx_pci_device_stub_c *dev, Bit8u *devfunc, const char *name, const char *descr) { unsigned i, handle; int first_free_slot = -1; char devname[80]; char *device; if (strcmp(name, "pci") && strcmp(name, "pci2isa") && strcmp(name, "pci_ide") && ((*devfunc & 0xf8) == 0x00)) { for (i = 0; i < BX_N_PCI_SLOTS; i++) { sprintf(devname, "pci.slot.%d", i+1); device = SIM->get_param_string(devname)->getptr(); if (strlen(device) > 0) { if (!strcmp(name, device)) { *devfunc = ((i + 2) << 3) | (*devfunc & 0x07); pci.slot_used[i] = 1; BX_INFO(("PCI slot #%d used by plugin '%s'", i+1, name)); break; } } else if (first_free_slot == -1) { first_free_slot = i; } } if ((*devfunc & 0xf8) == 0x00) { // auto-assign device to PCI slot if possible if (first_free_slot != -1) { i = (unsigned)first_free_slot; sprintf(devname, "pci.slot.%d", i+1); SIM->get_param_string(devname)->set(name); *devfunc = ((i + 2) << 3) | (*devfunc & 0x07); pci.slot_used[i] = 1; BX_INFO(("PCI slot #%d used by plugin '%s'", i+1, name)); } else { BX_ERROR(("Plugin '%s' not connected to a PCI slot", name)); return 0; } } } /* check if device/function is available */ if (pci.handler_id[*devfunc] == BX_MAX_PCI_DEVICES) { if (pci.num_pci_handlers >= BX_MAX_PCI_DEVICES) { BX_INFO(("too many PCI devices installed.")); BX_PANIC((" try increasing BX_MAX_PCI_DEVICES")); return 0; } handle = pci.num_pci_handlers++; pci.pci_handler[handle].handler = dev; pci.handler_id[*devfunc] = handle; BX_INFO(("%s present at device %d, function %d", descr, *devfunc >> 3, *devfunc & 0x07)); return 1; // device/function mapped successfully } else { return 0; // device/function not available, return false. } } bx_bool bx_devices_c::pci_set_base_mem(void *this_ptr, memory_handler_t f1, memory_handler_t f2, Bit32u *addr, Bit8u *pci_conf, unsigned size) { Bit32u newbase; Bit32u oldbase = *addr; Bit32u mask = ~(size - 1); Bit8u pci_flags = pci_conf[0x00] & 0x0f; if ((pci_flags & 0x06) > 0) { BX_PANIC(("PCI base memory flag 0x%02x not supported", pci_flags)); return 0; } pci_conf[0x00] &= (mask & 0xf0); pci_conf[0x01] &= (mask >> 8) & 0xff; pci_conf[0x02] &= (mask >> 16) & 0xff; pci_conf[0x03] &= (mask >> 24) & 0xff; ReadHostDWordFromLittleEndian(pci_conf, newbase); pci_conf[0x00] |= pci_flags; if (newbase != mask && newbase != oldbase) { // skip PCI probe if (oldbase > 0) { DEV_unregister_memory_handlers(this_ptr, oldbase, oldbase + size - 1); } if (newbase > 0) { DEV_register_memory_handlers(this_ptr, f1, f2, newbase, newbase + size - 1); } *addr = newbase; return 1; } return 0; } bx_bool bx_devices_c::pci_set_base_io(void *this_ptr, bx_read_handler_t f1, bx_write_handler_t f2, Bit32u *addr, Bit8u *pci_conf, unsigned size, const Bit8u *iomask, const char *name) { unsigned i; Bit32u newbase; Bit32u oldbase = *addr; Bit16u mask = ~(size - 1); Bit8u pci_flags = pci_conf[0x00] & 0x03; pci_conf[0x00] &= (mask & 0xfc); pci_conf[0x01] &= (mask >> 8); ReadHostDWordFromLittleEndian(pci_conf, newbase); pci_conf[0x00] |= pci_flags; if (((newbase & 0xfffc) != mask) && (newbase != oldbase)) { // skip PCI probe if (oldbase > 0) { for (i=0; i 0) { DEV_unregister_ioread_handler(this_ptr, f1, oldbase + i, iomask[i]); DEV_unregister_iowrite_handler(this_ptr, f2, oldbase + i, iomask[i]); } } } if (newbase > 0) { for (i=0; i 0) { DEV_register_ioread_handler(this_ptr, f1, newbase + i, name, iomask[i]); DEV_register_iowrite_handler(this_ptr, f2, newbase + i, name, iomask[i]); } } } *addr = newbase; return 1; } return 0; } #endif