//////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2005-2012 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR void BX_CPP_AttrRegparmN(3) BX_CPU_C::call_protected(bxInstruction_c *i, Bit16u cs_raw, bx_address disp) { bx_selector_t cs_selector; Bit32u dword1, dword2; bx_descriptor_t cs_descriptor; /* new cs selector must not be null, else #GP(0) */ if ((cs_raw & 0xfffc) == 0) { BX_DEBUG(("call_protected: CS selector null")); exception(BX_GP_EXCEPTION, 0); } parse_selector(cs_raw, &cs_selector); // check new CS selector index within its descriptor limits, // else #GP(new CS selector) fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &cs_descriptor); // examine AR byte of selected descriptor for various legal values if (cs_descriptor.valid==0) { BX_ERROR(("call_protected: invalid CS descriptor")); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc); } if (cs_descriptor.segment) // normal segment { check_cs(&cs_descriptor, cs_raw, BX_SELECTOR_RPL(cs_raw), CPL); #if BX_SUPPORT_X86_64 if (long_mode() && cs_descriptor.u.segment.l) { Bit64u temp_rsp = RSP; // moving to long mode, push return address onto 64-bit stack if (i->os64L()) { write_new_stack_qword(temp_rsp - 8, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); write_new_stack_qword(temp_rsp - 16, cs_descriptor.dpl, RIP); temp_rsp -= 16; } else if (i->os32L()) { write_new_stack_dword(temp_rsp - 4, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); write_new_stack_dword(temp_rsp - 8, cs_descriptor.dpl, EIP); temp_rsp -= 8; } else { write_new_stack_word(temp_rsp - 2, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); write_new_stack_word(temp_rsp - 4, cs_descriptor.dpl, IP); temp_rsp -= 4; } // load code segment descriptor into CS cache // load CS with new code segment selector // set RPL of CS to CPL branch_far64(&cs_selector, &cs_descriptor, disp, CPL); RSP = temp_rsp; } else #endif { Bit32u temp_RSP; // moving to legacy mode, push return address onto 32-bit stack if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_RSP = ESP; else temp_RSP = SP; #if BX_SUPPORT_X86_64 if (i->os64L()) { write_new_stack_qword(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], temp_RSP - 8, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); write_new_stack_qword(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], temp_RSP - 16, cs_descriptor.dpl, RIP); temp_RSP -= 16; } else #endif if (i->os32L()) { write_new_stack_dword(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], temp_RSP - 4, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); write_new_stack_dword(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], temp_RSP - 8, cs_descriptor.dpl, EIP); temp_RSP -= 8; } else { write_new_stack_word(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], temp_RSP - 2, cs_descriptor.dpl, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); write_new_stack_word(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], temp_RSP - 4, cs_descriptor.dpl, IP); temp_RSP -= 4; } // load code segment descriptor into CS cache // load CS with new code segment selector // set RPL of CS to CPL branch_far64(&cs_selector, &cs_descriptor, disp, CPL); if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) ESP = (Bit32u) temp_RSP; else SP = (Bit16u) temp_RSP; } return; } else { // gate & special segment bx_descriptor_t gate_descriptor = cs_descriptor; bx_selector_t gate_selector = cs_selector; // descriptor DPL must be >= CPL else #GP(gate selector) if (gate_descriptor.dpl < CPL) { BX_ERROR(("call_protected: descriptor.dpl < CPL")); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc); } // descriptor DPL must be >= gate selector RPL else #GP(gate selector) if (gate_descriptor.dpl < gate_selector.rpl) { BX_ERROR(("call_protected: descriptor.dpl < selector.rpl")); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc); } #if BX_SUPPORT_X86_64 if (long_mode()) { // call gate type is higher priority than non-present bit check if (gate_descriptor.type != BX_386_CALL_GATE) { BX_ERROR(("call_protected: gate type %u unsupported in long mode", (unsigned) gate_descriptor.type)); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc); } // gate descriptor must be present else #NP(gate selector) if (! IS_PRESENT(gate_descriptor)) { BX_ERROR(("call_protected: call gate not present")); exception(BX_NP_EXCEPTION, cs_raw & 0xfffc); } call_gate64(&gate_selector); return; } #endif switch (gate_descriptor.type) { case BX_SYS_SEGMENT_AVAIL_286_TSS: case BX_SYS_SEGMENT_AVAIL_386_TSS: if (gate_descriptor.type==BX_SYS_SEGMENT_AVAIL_286_TSS) BX_DEBUG(("call_protected: 16bit available TSS")); else BX_DEBUG(("call_protected: 32bit available TSS")); if (gate_descriptor.valid==0 || gate_selector.ti) { BX_ERROR(("call_protected: call bad TSS selector !")); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc); } // TSS must be present, else #NP(TSS selector) if (! IS_PRESENT(gate_descriptor)) { BX_ERROR(("call_protected: call not present TSS !")); exception(BX_NP_EXCEPTION, cs_raw & 0xfffc); } // SWITCH_TASKS _without_ nesting to TSS task_switch(i, &gate_selector, &gate_descriptor, BX_TASK_FROM_CALL, dword1, dword2); return; case BX_TASK_GATE: task_gate(i, &gate_selector, &gate_descriptor, BX_TASK_FROM_CALL); return; case BX_286_CALL_GATE: case BX_386_CALL_GATE: // gate descriptor must be present else #NP(gate selector) if (! IS_PRESENT(gate_descriptor)) { BX_ERROR(("call_protected: gate not present")); exception(BX_NP_EXCEPTION, cs_raw & 0xfffc); } call_gate(&gate_descriptor); return; default: // can't get here BX_ERROR(("call_protected(): gate.type(%u) unsupported", (unsigned) gate_descriptor.type)); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc); } } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::call_gate(bx_descriptor_t *gate_descriptor) { bx_selector_t cs_selector; Bit32u dword1, dword2; bx_descriptor_t cs_descriptor; // examine code segment selector in call gate descriptor BX_DEBUG(("call_gate: call gate")); Bit16u dest_selector = gate_descriptor->u.gate.dest_selector; Bit32u new_EIP = gate_descriptor->u.gate.dest_offset; // selector must not be null else #GP(0) if ((dest_selector & 0xfffc) == 0) { BX_ERROR(("call_gate: selector in gate null")); exception(BX_GP_EXCEPTION, 0); } parse_selector(dest_selector, &cs_selector); // selector must be within its descriptor table limits, // else #GP(code segment selector) fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &cs_descriptor); // AR byte of selected descriptor must indicate code segment, // else #GP(code segment selector) // DPL of selected descriptor must be <= CPL, // else #GP(code segment selector) if (cs_descriptor.valid==0 || cs_descriptor.segment==0 || IS_DATA_SEGMENT(cs_descriptor.type) || cs_descriptor.dpl > CPL) { BX_ERROR(("call_gate: selected descriptor is not code")); exception(BX_GP_EXCEPTION, dest_selector & 0xfffc); } // code segment must be present else #NP(selector) if (! IS_PRESENT(cs_descriptor)) { BX_ERROR(("call_gate: code segment not present !")); exception(BX_NP_EXCEPTION, dest_selector & 0xfffc); } // CALL GATE TO MORE PRIVILEGE // if non-conforming code segment and DPL < CPL then if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL)) { Bit16u SS_for_cpl_x; Bit32u ESP_for_cpl_x; bx_selector_t ss_selector; bx_descriptor_t ss_descriptor; Bit16u return_SS, return_CS; Bit32u return_ESP, return_EIP; BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL")); // get new SS selector for new privilege level from TSS get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x); // check selector & descriptor for new SS: // selector must not be null, else #TS(0) if ((SS_for_cpl_x & 0xfffc) == 0) { BX_ERROR(("call_gate: new SS null")); exception(BX_TS_EXCEPTION, 0); } // selector index must be within its descriptor table limits, // else #TS(SS selector) parse_selector(SS_for_cpl_x, &ss_selector); fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION); parse_descriptor(dword1, dword2, &ss_descriptor); // selector's RPL must equal DPL of code segment, // else #TS(SS selector) if (ss_selector.rpl != cs_descriptor.dpl) { BX_ERROR(("call_gate: SS selector.rpl != CS descr.dpl")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc); } // stack segment DPL must equal DPL of code segment, // else #TS(SS selector) if (ss_descriptor.dpl != cs_descriptor.dpl) { BX_ERROR(("call_gate: SS descr.rpl != CS descr.dpl")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc); } // descriptor must indicate writable data segment, // else #TS(SS selector) if (ss_descriptor.valid==0 || ss_descriptor.segment==0 || IS_CODE_SEGMENT(ss_descriptor.type) || !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type)) { BX_ERROR(("call_gate: ss descriptor is not writable data seg")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc); } // segment must be present, else #SS(SS selector) if (! IS_PRESENT(ss_descriptor)) { BX_ERROR(("call_gate: ss descriptor not present")); exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc); } // get word count from call gate, mask to 5 bits unsigned param_count = gate_descriptor->u.gate.param_count & 0x1f; // save return SS:eSP to be pushed on new stack return_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) return_ESP = ESP; else return_ESP = SP; // save return CS:eIP to be pushed on new stack return_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) return_EIP = EIP; else return_EIP = IP; // Prepare new stack segment bx_segment_reg_t new_stack; new_stack.selector = ss_selector; new_stack.cache = ss_descriptor; new_stack.selector.rpl = cs_descriptor.dpl; // add cpl to the selector value new_stack.selector.value = (0xfffc & new_stack.selector.value) | new_stack.selector.rpl; /* load new SS:SP value from TSS */ if (ss_descriptor.u.segment.d_b) { Bit32u temp_ESP = ESP_for_cpl_x; // push pointer of old stack onto new stack if (gate_descriptor->type==BX_386_CALL_GATE) { write_new_stack_dword(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_SS); write_new_stack_dword(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_ESP); temp_ESP -= 8; for (unsigned n=param_count; n>0; n--) { temp_ESP -= 4; Bit32u param = stack_read_dword(return_ESP + (n-1)*4); write_new_stack_dword(&new_stack, temp_ESP, cs_descriptor.dpl, param); } // push return address onto new stack write_new_stack_dword(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_CS); write_new_stack_dword(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_EIP); temp_ESP -= 8; } else { write_new_stack_word(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_SS); write_new_stack_word(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_ESP); temp_ESP -= 4; for (unsigned n=param_count; n>0; n--) { temp_ESP -= 2; Bit16u param = stack_read_word(return_ESP + (n-1)*2); write_new_stack_word(&new_stack, temp_ESP, cs_descriptor.dpl, param); } // push return address onto new stack write_new_stack_word(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_CS); write_new_stack_word(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_EIP); temp_ESP -= 4; } ESP = temp_ESP; } else { Bit16u temp_SP = (Bit16u) ESP_for_cpl_x; // push pointer of old stack onto new stack if (gate_descriptor->type==BX_386_CALL_GATE) { write_new_stack_dword(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_SS); write_new_stack_dword(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_ESP); temp_SP -= 8; for (unsigned n=param_count; n>0; n--) { temp_SP -= 4; Bit32u param = stack_read_dword(return_ESP + (n-1)*4); write_new_stack_dword(&new_stack, temp_SP, cs_descriptor.dpl, param); } // push return address onto new stack write_new_stack_dword(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_CS); write_new_stack_dword(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_EIP); temp_SP -= 8; } else { write_new_stack_word(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_SS); write_new_stack_word(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_ESP); temp_SP -= 4; for (unsigned n=param_count; n>0; n--) { temp_SP -= 2; Bit16u param = stack_read_word(return_ESP + (n-1)*2); write_new_stack_word(&new_stack, temp_SP, cs_descriptor.dpl, param); } // push return address onto new stack write_new_stack_word(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_CS); write_new_stack_word(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_EIP); temp_SP -= 4; } SP = temp_SP; } // new eIP must be in code segment limit else #GP(0) if (new_EIP > cs_descriptor.u.segment.limit_scaled) { BX_ERROR(("call_gate: EIP not within CS limits")); exception(BX_GP_EXCEPTION, 0); } /* load SS descriptor */ load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl); /* load new CS:IP value from gate */ /* load CS descriptor */ /* set CPL to stack segment DPL */ /* set RPL of CS to CPL */ load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl); EIP = new_EIP; } else // CALL GATE TO SAME PRIVILEGE { BX_DEBUG(("CALL GATE TO SAME PRIVILEGE")); if (gate_descriptor->type == BX_386_CALL_GATE) { // call gate 32bit, push return address onto stack push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_32(EIP); } else { // call gate 16bit, push return address onto stack push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_16(IP); } // load CS:EIP from gate // load code segment descriptor into CS register // set RPL of CS to CPL branch_far32(&cs_selector, &cs_descriptor, new_EIP, CPL); } } #if BX_SUPPORT_X86_64 void BX_CPP_AttrRegparmN(1) BX_CPU_C::call_gate64(bx_selector_t *gate_selector) { bx_selector_t cs_selector; Bit32u dword1, dword2, dword3; bx_descriptor_t cs_descriptor; bx_descriptor_t gate_descriptor; // examine code segment selector in call gate descriptor BX_DEBUG(("call_gate64: CALL 64bit call gate")); fetch_raw_descriptor_64(gate_selector, &dword1, &dword2, &dword3, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &gate_descriptor); Bit16u dest_selector = gate_descriptor.u.gate.dest_selector; // selector must not be null else #GP(0) if ((dest_selector & 0xfffc) == 0) { BX_ERROR(("call_gate64: selector in gate null")); exception(BX_GP_EXCEPTION, 0); } parse_selector(dest_selector, &cs_selector); // selector must be within its descriptor table limits, // else #GP(code segment selector) fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &cs_descriptor); // find the RIP in the gate_descriptor Bit64u new_RIP = gate_descriptor.u.gate.dest_offset; new_RIP |= ((Bit64u)dword3 << 32); // AR byte of selected descriptor must indicate code segment, // else #GP(code segment selector) // DPL of selected descriptor must be <= CPL, // else #GP(code segment selector) if (cs_descriptor.valid==0 || cs_descriptor.segment==0 || IS_DATA_SEGMENT(cs_descriptor.type) || cs_descriptor.dpl > CPL) { BX_ERROR(("call_gate64: selected descriptor is not code")); exception(BX_GP_EXCEPTION, dest_selector & 0xfffc); } // In long mode, only 64-bit call gates are allowed, and they must point // to 64-bit code segments, else #GP(selector) if (! IS_LONG64_SEGMENT(cs_descriptor) || cs_descriptor.u.segment.d_b) { BX_ERROR(("call_gate64: not 64-bit code segment in call gate 64")); exception(BX_GP_EXCEPTION, dest_selector & 0xfffc); } // code segment must be present else #NP(selector) if (! IS_PRESENT(cs_descriptor)) { BX_ERROR(("call_gate64: code segment not present !")); exception(BX_NP_EXCEPTION, dest_selector & 0xfffc); } Bit64u old_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; Bit64u old_RIP = RIP; // CALL GATE TO MORE PRIVILEGE // if non-conforming code segment and DPL < CPL then if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL)) { BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL")); // get new RSP for new privilege level from TSS Bit64u RSP_for_cpl_x = get_RSP_from_TSS(cs_descriptor.dpl); Bit64u old_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value; Bit64u old_RSP = RSP; // push old stack long pointer onto new stack write_new_stack_qword(RSP_for_cpl_x - 8, cs_descriptor.dpl, old_SS); write_new_stack_qword(RSP_for_cpl_x - 16, cs_descriptor.dpl, old_RSP); // push long pointer to return address onto new stack write_new_stack_qword(RSP_for_cpl_x - 24, cs_descriptor.dpl, old_CS); write_new_stack_qword(RSP_for_cpl_x - 32, cs_descriptor.dpl, old_RIP); RSP_for_cpl_x -= 32; // load CS:RIP (guaranteed to be in 64 bit mode) branch_far64(&cs_selector, &cs_descriptor, new_RIP, cs_descriptor.dpl); // set up null SS descriptor load_null_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], cs_descriptor.dpl); RSP = RSP_for_cpl_x; } else { BX_DEBUG(("CALL GATE TO SAME PRIVILEGE")); // push to 64-bit stack, switch to long64 guaranteed write_new_stack_qword(RSP - 8, CPL, old_CS); write_new_stack_qword(RSP - 16, CPL, old_RIP); // load CS:RIP (guaranteed to be in 64 bit mode) branch_far64(&cs_selector, &cs_descriptor, new_RIP, CPL); RSP -= 16; } } #endif