///////////////////////////////////////////////////////////////////////// // $Id: stack16.cc,v 1.44 2009-01-16 18:18:59 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR // Make code more tidy with a few macros. #if BX_SUPPORT_X86_64==0 #define RSP ESP #endif void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_RX(bxInstruction_c *i) { push_16(BX_READ_16BIT_REG(i->opcodeReg())); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_CS(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_DS(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_ES(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_FS(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_GS(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_SS(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_DS(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u ds = pop_16(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], ds); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_ES(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u es = pop_16(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], es); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_FS(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u fs = pop_16(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], fs); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_GS(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u gs = pop_16(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], gs); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_SS(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u ss = pop_16(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], ss); BX_CPU_THIS_PTR speculative_rsp = 0; // POP SS inhibits interrupts, debug exceptions and single-step // trap exceptions until the execution boundary following the // next instruction is reached. // Same code as MOV_SwEw() BX_CPU_THIS_PTR inhibit_mask |= BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG; BX_CPU_THIS_PTR async_event = 1; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_RX(bxInstruction_c *i) { BX_WRITE_16BIT_REG(i->opcodeReg(), pop_16()); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EwM(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u val16 = pop_16(); // Note: there is one little weirdism here. It is possible to use // SP in the modrm addressing. If used, the value of SP after the // pop is used to calculate the address. bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); write_virtual_word(i->seg(), eaddr, val16); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_Iw(bxInstruction_c *i) { push_16(i->Iw()); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EwM(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit16u op1_16 = read_virtual_word(i->seg(), eaddr); push_16(op1_16); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSHAD16(bxInstruction_c *i) { Bit32u temp_ESP = ESP; Bit16u temp_SP = SP; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { write_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP - 2), AX); write_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP - 4), CX); write_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP - 6), DX); write_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP - 8), BX); write_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP - 10), temp_SP); write_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP - 12), BP); write_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP - 14), SI); write_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP - 16), DI); ESP -= 16; } else { write_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP - 2), AX); write_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP - 4), CX); write_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP - 6), DX); write_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP - 8), BX); write_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP - 10), temp_SP); write_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP - 12), BP); write_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP - 14), SI); write_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP - 16), DI); SP -= 16; } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPAD16(bxInstruction_c *i) { Bit16u di, si, bp, bx, dx, cx, ax, dummy; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { Bit32u temp_ESP = ESP; di = read_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP + 0)); si = read_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP + 2)); bp = read_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP + 4)); dummy = read_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP + 6)); bx = read_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP + 8)); dx = read_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP + 10)); cx = read_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP + 12)); ax = read_virtual_word_32(BX_SEG_REG_SS, (Bit32u)(temp_ESP + 14)); ESP += 16; } else { Bit16u temp_SP = SP; di = read_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP + 0)); si = read_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP + 2)); bp = read_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP + 4)); dummy = read_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP + 6)); bx = read_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP + 8)); dx = read_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP + 10)); cx = read_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP + 12)); ax = read_virtual_word_32(BX_SEG_REG_SS, (Bit16u)(temp_SP + 14)); SP += 16; } DI = di; SI = si; BP = bp; BX = bx; DX = dx; CX = cx; AX = ax; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER16_IwIb(bxInstruction_c *i) { Bit16u imm16 = i->Iw(); Bit8u level = i->Ib2(); level &= 0x1F; BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; push_16(BP); Bit16u frame_ptr16 = SP; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { Bit32u ebp = EBP; // Use temp copy for case of exception. if (level > 0) { /* do level-1 times */ while (--level) { ebp -= 2; Bit16u temp16 = read_virtual_word_32(BX_SEG_REG_SS, ebp); push_16(temp16); } /* push(frame pointer) */ push_16(frame_ptr16); } ESP -= imm16; // ENTER finishes with memory write check on the final stack pointer // the memory is touched but no write actually occurs // emulate it by doing RMW read access from SS:ESP read_RMW_virtual_word(BX_SEG_REG_SS, ESP); BP = frame_ptr16; } else { Bit16u bp = BP; if (level > 0) { /* do level-1 times */ while (--level) { bp -= 2; Bit16u temp16 = read_virtual_word_32(BX_SEG_REG_SS, bp); push_16(temp16); } /* push(frame pointer) */ push_16(frame_ptr16); } SP -= imm16; // ENTER finishes with memory write check on the final stack pointer // the memory is touched but no write actually occurs // emulate it by doing RMW read access from SS:SP read_RMW_virtual_word_32(BX_SEG_REG_SS, SP); } BP = frame_ptr16; BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LEAVE16(bxInstruction_c *i) { BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); Bit16u value16; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { value16 = read_virtual_word_32(BX_SEG_REG_SS, EBP); ESP = EBP + 2; } else { value16 = read_virtual_word_32(BX_SEG_REG_SS, BP); SP = BP + 2; } BP = value16; }