///////////////////////////////////////////////////////////////////////// // $Id: stack_pro.cc,v 1.25 2005-08-28 17:37:37 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR void BX_CPP_AttrRegparmN(1) BX_CPU_C::push_16(Bit16u value16) { /* must use StackAddrSize, and either RSP, ESP or SP accordingly */ #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (StackAddrSize64()) { write_virtual_word(BX_SEG_REG_SS, RSP-2, &value16); RSP -= 2; } else #endif if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* StackAddrSize = 32 */ write_virtual_word(BX_SEG_REG_SS, (Bit32u) (ESP-2), &value16); ESP -= 2; } else #endif { write_virtual_word(BX_SEG_REG_SS, (Bit16u) (SP-2), &value16); SP -= 2; } } /* push 32 bit operand size */ void BX_CPU_C::push_32(Bit32u value32) { /* must use StackAddrSize, and either RSP, ESP or SP accordingly */ #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (StackAddrSize64()) { write_virtual_dword(BX_SEG_REG_SS, RSP-4, &value32); RSP -= 4; } else #endif if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* StackAddrSize = 32 */ write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (ESP-4), &value32); ESP -= 4; } else #endif { write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (SP-4), &value32); SP -= 4; } } void BX_CPU_C::push_64(Bit64u value64) { /* must use StackAddrSize, and either RSP, ESP or SP accordingly */ #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (StackAddrSize64()) { write_virtual_qword(BX_SEG_REG_SS, RSP-8, &value64); RSP -= 8; } else #endif if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* StackAddrSize = 32 */ write_virtual_qword(BX_SEG_REG_SS, (Bit32u) (ESP-8), &value64); ESP -= 8; } else #endif { write_virtual_qword(BX_SEG_REG_SS, (Bit16u) (SP-8), &value64); SP -= 8; } } void BX_CPU_C::pop_16(Bit16u *value16_ptr) { bx_address temp_RSP; #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (StackAddrSize64()) temp_RSP = RSP; else #endif if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_RSP = ESP; else #endif temp_RSP = SP; /* access within limits */ read_virtual_word(BX_SEG_REG_SS, temp_RSP, value16_ptr); #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (StackAddrSize64()) RSP += 2; else #endif if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) ESP += 2; else #endif SP += 2; } void BX_CPU_C::pop_32(Bit32u *value32_ptr) { bx_address temp_RSP; #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (StackAddrSize64()) temp_RSP = RSP; else #endif if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_RSP = ESP; else #endif temp_RSP = SP; /* access within limits */ read_virtual_dword(BX_SEG_REG_SS, temp_RSP, value32_ptr); #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (StackAddrSize64()) RSP += 4; else #endif if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) ESP += 4; else #endif SP += 4; } void BX_CPU_C::pop_64(Bit64u *value64_ptr) { bx_address temp_RSP; #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (StackAddrSize64()) temp_RSP = RSP; else #endif if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_RSP = ESP; else #endif temp_RSP = SP; /* access within limits */ read_virtual_qword(BX_SEG_REG_SS, temp_RSP, value64_ptr); #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (StackAddrSize64()) RSP += 8; else #endif if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) ESP += 8; else #endif SP += 8; } bx_bool BX_CPP_AttrRegparmN(3) BX_CPU_C::can_push(bx_descriptor_t *descriptor, Bit32u esp, Bit32u bytes) { #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { return(1); } #endif // small stack compares against 16-bit SP if (!descriptor->u.segment.d_b) esp &= 0x0000ffff; if (descriptor->valid==0) { BX_PANIC(("can_push(): SS invalidated.")); return(0); } if (descriptor->p==0) { BX_PANIC(("can_push(): descriptor not present")); return(0); } if (descriptor->u.segment.c_ed) { /* expand down segment */ Bit32u expand_down_limit; if (descriptor->u.segment.d_b) expand_down_limit = 0xffffffff; else expand_down_limit = 0x0000ffff; if (esp==0) { BX_PANIC(("can_push(): esp=0, wraparound?")); return(0); } if (esp < bytes) { BX_PANIC(("can_push(): expand-down: esp < N")); return(0); } if ( (esp - bytes) <= descriptor->u.segment.limit_scaled ) { BX_PANIC(("can_push(): expand-down: esp-N < limit")); return(0); } if ( esp > expand_down_limit ) { BX_PANIC(("can_push(): esp > expand-down-limit")); return(0); } return(1); } else { /* normal (expand-up) segment */ if (descriptor->u.segment.limit_scaled==0) { BX_PANIC(("can_push(): found limit of 0")); return(0); } // Look at case where esp==0. Possibly, it's an intentional wraparound // If so, limit must be the maximum for the given stack size if (esp==0) { if (descriptor->u.segment.d_b && (descriptor->u.segment.limit_scaled==0xffffffff)) return(1); if ((descriptor->u.segment.d_b==0) && (descriptor->u.segment.limit_scaled>=0xffff)) return(1); BX_INFO(("can_push(): esp=0, normal, wraparound? limit=%08x", descriptor->u.segment.limit_scaled)); return(0); } if ( !descriptor->u.segment.d_b ) { // Weird case for 16-bit SP. esp = ((esp-bytes) & 0xffff) + bytes; } if (esp < bytes) { BX_INFO(("can_push(): expand-up: esp < N")); return(0); } if ((esp-1) > descriptor->u.segment.limit_scaled) { BX_INFO(("can_push(): expand-up: SP > limit")); return(0); } /* all checks pass */ return(1); } } bx_bool BX_CPU_C::can_pop(Bit32u bytes) { Bit32u temp_ESP, expand_down_limit; #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { return(1); } #endif if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* Big bit set: use ESP */ temp_ESP = ESP; expand_down_limit = 0xFFFFFFFF; } else { /* Big bit clear: use SP */ temp_ESP = SP; expand_down_limit = 0xFFFF; } if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid==0) { BX_PANIC(("can_pop(): SS invalidated.")); return(0); /* never gets here */ } if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p==0) { /* ??? */ BX_PANIC(("can_pop(): SS.p = 0")); return(0); } if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed) { /* expand down segment */ if ( temp_ESP == expand_down_limit ) { BX_PANIC(("can_pop(): found SP=ffff")); return(0); } if ( ((expand_down_limit - temp_ESP) + 1) >= bytes ) return(1); return(0); } else { /* normal (expand-up) segment */ if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled==0) { BX_PANIC(("can_pop(): SS.limit = 0")); } if ( temp_ESP == expand_down_limit ) { BX_PANIC(("can_pop(): found SP=ffff")); return(0); } if ( temp_ESP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled ) { BX_PANIC(("can_pop(): eSP > SS.limit")); return(0); } if ( ((BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled - temp_ESP) + 1) >= bytes ) return(1); return(0); } } void BX_CPU_C::decrementESPForPush(unsigned nBytes, Bit32u *eSP_ptr) { Bit32u eSP; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) eSP = ESP; else eSP = SP; if (protected_mode()) { if (!can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, eSP, nBytes)) { BX_INFO(("decrementESPForPush: push outside stack limits")); exception(BX_SS_EXCEPTION, 0, 0); } } else { // Real Mode. if ( (eSP>=1) && (eSP