///////////////////////////////////////////////////////////////////////// // $Id: sse.cc,v 1.34 2005-09-23 16:45:41 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2003 Stanislav Shwartsman // Written by Stanislav Shwartsman // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR /* ********************************************** */ /* SSE Integer Operations (128bit MMX extensions) */ /* ********************************************** */ /* 66 0F 63 */ void BX_CPU_C::PACKSSWB_VdqWq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } result.xmmsbyte(0x0) = SaturateWordSToByteS(op1.xmm16s(0)); result.xmmsbyte(0x1) = SaturateWordSToByteS(op1.xmm16s(1)); result.xmmsbyte(0x2) = SaturateWordSToByteS(op1.xmm16s(2)); result.xmmsbyte(0x3) = SaturateWordSToByteS(op1.xmm16s(3)); result.xmmsbyte(0x4) = SaturateWordSToByteS(op1.xmm16s(4)); result.xmmsbyte(0x5) = SaturateWordSToByteS(op1.xmm16s(5)); result.xmmsbyte(0x6) = SaturateWordSToByteS(op1.xmm16s(6)); result.xmmsbyte(0x7) = SaturateWordSToByteS(op1.xmm16s(7)); result.xmmsbyte(0x8) = SaturateWordSToByteS(op2.xmm16s(0)); result.xmmsbyte(0x9) = SaturateWordSToByteS(op2.xmm16s(1)); result.xmmsbyte(0xA) = SaturateWordSToByteS(op2.xmm16s(2)); result.xmmsbyte(0xB) = SaturateWordSToByteS(op2.xmm16s(3)); result.xmmsbyte(0xC) = SaturateWordSToByteS(op2.xmm16s(4)); result.xmmsbyte(0xD) = SaturateWordSToByteS(op2.xmm16s(5)); result.xmmsbyte(0xE) = SaturateWordSToByteS(op2.xmm16s(6)); result.xmmsbyte(0xF) = SaturateWordSToByteS(op2.xmm16s(7)); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PACKSSWB_VdqWq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 64 */ void BX_CPU_C::PCMPGTB_VdqWq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } for(unsigned j=0; j<16; j++) { op1.xmmsbyte(j) = (op1.xmmsbyte(j) > op2.xmmsbyte(j)) ? 0xff : 0; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PCMPGTB_VdqWq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 65 */ void BX_CPU_C::PCMPGTW_VdqWq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm16s(0) = (op1.xmm16s(0) > op2.xmm16s(0)) ? 0xffff : 0; op1.xmm16s(1) = (op1.xmm16s(1) > op2.xmm16s(1)) ? 0xffff : 0; op1.xmm16s(2) = (op1.xmm16s(2) > op2.xmm16s(2)) ? 0xffff : 0; op1.xmm16s(3) = (op1.xmm16s(3) > op2.xmm16s(3)) ? 0xffff : 0; op1.xmm16s(4) = (op1.xmm16s(4) > op2.xmm16s(4)) ? 0xffff : 0; op1.xmm16s(5) = (op1.xmm16s(5) > op2.xmm16s(5)) ? 0xffff : 0; op1.xmm16s(6) = (op1.xmm16s(6) > op2.xmm16s(6)) ? 0xffff : 0; op1.xmm16s(7) = (op1.xmm16s(7) > op2.xmm16s(7)) ? 0xffff : 0; /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PCMPGTW_VdqWq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 66 */ void BX_CPU_C::PCMPGTD_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm32s(0) = (op1.xmm32s(0) > op2.xmm32s(0)) ? 0xffffffff : 0; op1.xmm32s(1) = (op1.xmm32s(1) > op2.xmm32s(1)) ? 0xffffffff : 0; op1.xmm32s(2) = (op1.xmm32s(2) > op2.xmm32s(2)) ? 0xffffffff : 0; op1.xmm32s(3) = (op1.xmm32s(3) > op2.xmm32s(3)) ? 0xffffffff : 0; /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PCMPGTD_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 67 */ void BX_CPU_C::PACKUSWB_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } result.xmmubyte(0x0) = SaturateWordSToByteU(op1.xmm16s(0)); result.xmmubyte(0x1) = SaturateWordSToByteU(op1.xmm16s(1)); result.xmmubyte(0x2) = SaturateWordSToByteU(op1.xmm16s(2)); result.xmmubyte(0x3) = SaturateWordSToByteU(op1.xmm16s(3)); result.xmmubyte(0x4) = SaturateWordSToByteU(op1.xmm16s(4)); result.xmmubyte(0x5) = SaturateWordSToByteU(op1.xmm16s(5)); result.xmmubyte(0x6) = SaturateWordSToByteU(op1.xmm16s(6)); result.xmmubyte(0x7) = SaturateWordSToByteU(op1.xmm16s(7)); result.xmmubyte(0x8) = SaturateWordSToByteU(op2.xmm16s(0)); result.xmmubyte(0x9) = SaturateWordSToByteU(op2.xmm16s(1)); result.xmmubyte(0xA) = SaturateWordSToByteU(op2.xmm16s(2)); result.xmmubyte(0xB) = SaturateWordSToByteU(op2.xmm16s(3)); result.xmmubyte(0xC) = SaturateWordSToByteU(op2.xmm16s(4)); result.xmmubyte(0xD) = SaturateWordSToByteU(op2.xmm16s(5)); result.xmmubyte(0xE) = SaturateWordSToByteU(op2.xmm16s(6)); result.xmmubyte(0xF) = SaturateWordSToByteU(op2.xmm16s(7)); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PACKUSWB_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 6B */ void BX_CPU_C::PACKSSDW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } result.xmm16s(0) = SaturateDwordSToWordS(op1.xmm32s(0)); result.xmm16s(1) = SaturateDwordSToWordS(op1.xmm32s(1)); result.xmm16s(2) = SaturateDwordSToWordS(op1.xmm32s(2)); result.xmm16s(3) = SaturateDwordSToWordS(op1.xmm32s(3)); result.xmm16s(4) = SaturateDwordSToWordS(op2.xmm32s(0)); result.xmm16s(5) = SaturateDwordSToWordS(op2.xmm32s(1)); result.xmm16s(6) = SaturateDwordSToWordS(op2.xmm32s(2)); result.xmm16s(7) = SaturateDwordSToWordS(op2.xmm32s(3)); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PACKSSDW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 74 */ void BX_CPU_C::PCMPEQB_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } for(unsigned j=0; j<16; j++) { op1.xmmubyte(j) = (op1.xmmubyte(j) == op2.xmmubyte(j)) ? 0xff : 0; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PCMPEQB_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 75 */ void BX_CPU_C::PCMPEQW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm16u(0) = (op1.xmm16u(0) == op2.xmm16u(0)) ? 0xffff : 0; op1.xmm16u(1) = (op1.xmm16u(1) == op2.xmm16u(1)) ? 0xffff : 0; op1.xmm16u(2) = (op1.xmm16u(2) == op2.xmm16u(2)) ? 0xffff : 0; op1.xmm16u(3) = (op1.xmm16u(3) == op2.xmm16u(3)) ? 0xffff : 0; op1.xmm16u(4) = (op1.xmm16u(4) == op2.xmm16u(4)) ? 0xffff : 0; op1.xmm16u(5) = (op1.xmm16u(5) == op2.xmm16u(5)) ? 0xffff : 0; op1.xmm16u(6) = (op1.xmm16u(6) == op2.xmm16u(6)) ? 0xffff : 0; op1.xmm16u(7) = (op1.xmm16u(7) == op2.xmm16u(7)) ? 0xffff : 0; /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PCMPEQW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 76 */ void BX_CPU_C::PCMPEQD_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm32u(0) = (op1.xmm32u(0) == op2.xmm32u(0)) ? 0xffffffff : 0; op1.xmm32u(1) = (op1.xmm32u(1) == op2.xmm32u(1)) ? 0xffffffff : 0; op1.xmm32u(2) = (op1.xmm32u(2) == op2.xmm32u(2)) ? 0xffffffff : 0; op1.xmm32u(3) = (op1.xmm32u(3) == op2.xmm32u(3)) ? 0xffffffff : 0; /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PCMPEQD_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F C4 */ void BX_CPU_C::PINSRW_VdqEdIb(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()); Bit16u op2; Bit8u count = i->Ib() & 0x7; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &op2); } op1.xmm16u(count) = op2; /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PINSRW_VdqEdIb: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F C5 */ void BX_CPU_C::PEXTRW_GdVRdqIb(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm()); Bit8u count = i->Ib() & 0x7; Bit32u result = (Bit32u) op.xmm16u(count); BX_WRITE_32BIT_REGZ(i->nnn(), result); #else BX_INFO(("PEXTRW_GdVRdqIb: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F D1 */ void BX_CPU_C::PSRLW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } if(op2.xmm64u(0) > 15) /* looking only to low 64 bits */ { op1.xmm64u(0) = 0; op1.xmm64u(1) = 0; } else { Bit8u shift = op2.xmmubyte(0); op1.xmm16u(0) >>= shift; op1.xmm16u(1) >>= shift; op1.xmm16u(2) >>= shift; op1.xmm16u(3) >>= shift; op1.xmm16u(4) >>= shift; op1.xmm16u(5) >>= shift; op1.xmm16u(6) >>= shift; op1.xmm16u(7) >>= shift; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PSRLW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F D2 */ void BX_CPU_C::PSRLD_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } if(op2.xmm64u(0) > 31) /* looking only to low 64 bits */ { op1.xmm64u(0) = 0; op1.xmm64u(1) = 0; } else { Bit8u shift = op2.xmmubyte(0); op1.xmm32u(0) >>= shift; op1.xmm32u(1) >>= shift; op1.xmm32u(2) >>= shift; op1.xmm32u(3) >>= shift; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PSRLD_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F D3 */ void BX_CPU_C::PSRLQ_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } if(op2.xmm64u(0) > 63) /* looking only to low 64 bits */ { op1.xmm64u(0) = 0; op1.xmm64u(1) = 0; } else { Bit8u shift = op2.xmmubyte(0); op1.xmm64u(0) >>= shift; op1.xmm64u(1) >>= shift; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PSRLQ_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F D4 */ void BX_CPU_C::PADDQ_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm64u(0) += op2.xmm64u(0); op1.xmm64u(1) += op2.xmm64u(1); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PADDQ_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F D5 */ void BX_CPU_C::PMULLW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } Bit32u product1 = Bit32u(op1.xmm16u(0)) * Bit32u(op2.xmm16u(0)); Bit32u product2 = Bit32u(op1.xmm16u(1)) * Bit32u(op2.xmm16u(1)); Bit32u product3 = Bit32u(op1.xmm16u(2)) * Bit32u(op2.xmm16u(2)); Bit32u product4 = Bit32u(op1.xmm16u(3)) * Bit32u(op2.xmm16u(3)); Bit32u product5 = Bit32u(op1.xmm16u(4)) * Bit32u(op2.xmm16u(4)); Bit32u product6 = Bit32u(op1.xmm16u(5)) * Bit32u(op2.xmm16u(5)); Bit32u product7 = Bit32u(op1.xmm16u(6)) * Bit32u(op2.xmm16u(6)); Bit32u product8 = Bit32u(op1.xmm16u(7)) * Bit32u(op2.xmm16u(7)); result.xmm16u(0) = product1 & 0xffff; result.xmm16u(1) = product2 & 0xffff; result.xmm16u(2) = product3 & 0xffff; result.xmm16u(3) = product4 & 0xffff; result.xmm16u(4) = product5 & 0xffff; result.xmm16u(5) = product6 & 0xffff; result.xmm16u(6) = product7 & 0xffff; result.xmm16u(7) = product8 & 0xffff; /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PMULLW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F D7 */ void BX_CPU_C::PMOVMSKB_GdVRdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm()); Bit32u result = 0; if(op.xmmubyte(0x0) & 0x80) result |= 0x0001; if(op.xmmubyte(0x1) & 0x80) result |= 0x0002; if(op.xmmubyte(0x2) & 0x80) result |= 0x0004; if(op.xmmubyte(0x3) & 0x80) result |= 0x0008; if(op.xmmubyte(0x4) & 0x80) result |= 0x0010; if(op.xmmubyte(0x5) & 0x80) result |= 0x0020; if(op.xmmubyte(0x6) & 0x80) result |= 0x0040; if(op.xmmubyte(0x7) & 0x80) result |= 0x0080; if(op.xmmubyte(0x8) & 0x80) result |= 0x0100; if(op.xmmubyte(0x9) & 0x80) result |= 0x0200; if(op.xmmubyte(0xA) & 0x80) result |= 0x0400; if(op.xmmubyte(0xB) & 0x80) result |= 0x0800; if(op.xmmubyte(0xC) & 0x80) result |= 0x1000; if(op.xmmubyte(0xD) & 0x80) result |= 0x2000; if(op.xmmubyte(0xE) & 0x80) result |= 0x4000; if(op.xmmubyte(0xF) & 0x80) result |= 0x8000; /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), result); #else BX_INFO(("PMOVMSKB_GdVRdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F D8 */ void BX_CPU_C::PSUBUSB_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } result.xmm64u(0) = result.xmm64u(1) = 0; for(unsigned j=0; j<16; j++) { if(op1.xmmubyte(j) > op2.xmmubyte(j)) { result.xmmubyte(j) = op1.xmmubyte(j) - op2.xmmubyte(j); } } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PSUBUSB_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F D9 */ void BX_CPU_C::PSUBUSW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } result.xmm64u(0) = result.xmm64u(1) = 0; for(unsigned j=0; j<8; j++) { if(op1.xmm16u(j) > op2.xmm16u(j)) { result.xmm16u(j) = op1.xmm16u(j) - op2.xmm16u(j); } } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PSUBUSW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F DA */ void BX_CPU_C::PMINUB_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } for(unsigned j=0; j<16; j++) { if(op2.xmmubyte(j) < op1.xmmubyte(j)) op1.xmmubyte(j) = op2.xmmubyte(j); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PMINUB_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* ANDPS: 0F 54 */ /* ANDPD: 66 0F 54 */ /* PAND: 66 0F DB */ void BX_CPU_C::PAND_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 1 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm64u(0) &= op2.xmm64u(0); op1.xmm64u(1) &= op2.xmm64u(1); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PAND_VdqWdq: required SSE, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F DC */ void BX_CPU_C::PADDUSB_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } for(unsigned j=0; j<16; j++) { result.xmmubyte(j) = SaturateWordSToByteU(Bit16s(op1.xmmubyte(j)) + Bit16s(op2.xmmubyte(j))); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PADDUSB_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F DD */ void BX_CPU_C::PADDUSW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } result.xmm16u(0) = SaturateDwordSToWordU(Bit32s(op1.xmm16u(0)) + Bit32s(op2.xmm16u(0))); result.xmm16u(1) = SaturateDwordSToWordU(Bit32s(op1.xmm16u(1)) + Bit32s(op2.xmm16u(1))); result.xmm16u(2) = SaturateDwordSToWordU(Bit32s(op1.xmm16u(2)) + Bit32s(op2.xmm16u(2))); result.xmm16u(3) = SaturateDwordSToWordU(Bit32s(op1.xmm16u(3)) + Bit32s(op2.xmm16u(3))); result.xmm16u(4) = SaturateDwordSToWordU(Bit32s(op1.xmm16u(4)) + Bit32s(op2.xmm16u(4))); result.xmm16u(5) = SaturateDwordSToWordU(Bit32s(op1.xmm16u(5)) + Bit32s(op2.xmm16u(5))); result.xmm16u(6) = SaturateDwordSToWordU(Bit32s(op1.xmm16u(6)) + Bit32s(op2.xmm16u(6))); result.xmm16u(7) = SaturateDwordSToWordU(Bit32s(op1.xmm16u(7)) + Bit32s(op2.xmm16u(7))); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PADDUSW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F DE */ void BX_CPU_C::PMAXUB_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } for(unsigned j=0; j<16; j++) { if(op2.xmmubyte(j) > op1.xmmubyte(j)) op1.xmmubyte(j) = op2.xmmubyte(j); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PMAXUB_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* ANDNPS: 0F 55 */ /* ANDNPD: 66 0F 55 */ /* PANDN: 66 0F DF */ void BX_CPU_C::PANDN_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 1 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm64u(0) = ~(op1.xmm64u(0)) & op2.xmm64u(0); op1.xmm64u(1) = ~(op1.xmm64u(1)) & op2.xmm64u(1); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PANDN_VdqWdq: required SSE, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F E0 */ void BX_CPU_C::PAVGB_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } for(unsigned j=0; j<16; j++) { op1.xmmubyte(j) = (op1.xmmubyte(j) + op2.xmmubyte(j) + 1) >> 1; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PAVGB_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F E1 */ void BX_CPU_C::PSRAW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } if(op2.xmm64u(0) == 0) { BX_WRITE_XMM_REG(i->nnn(), op1); return; } if(op2.xmm64u(0) > 15) /* looking only to low 64 bits */ { result.xmm16u(0) = (op1.xmm16u(0) & 0x8000) ? 0xffff : 0; result.xmm16u(1) = (op1.xmm16u(1) & 0x8000) ? 0xffff : 0; result.xmm16u(2) = (op1.xmm16u(2) & 0x8000) ? 0xffff : 0; result.xmm16u(3) = (op1.xmm16u(3) & 0x8000) ? 0xffff : 0; result.xmm16u(4) = (op1.xmm16u(4) & 0x8000) ? 0xffff : 0; result.xmm16u(5) = (op1.xmm16u(5) & 0x8000) ? 0xffff : 0; result.xmm16u(6) = (op1.xmm16u(6) & 0x8000) ? 0xffff : 0; result.xmm16u(7) = (op1.xmm16u(7) & 0x8000) ? 0xffff : 0; } else { Bit8u shift = op2.xmmubyte(0); result.xmm16u(0) = op1.xmm16u(0) >> shift; result.xmm16u(1) = op1.xmm16u(1) >> shift; result.xmm16u(2) = op1.xmm16u(2) >> shift; result.xmm16u(3) = op1.xmm16u(3) >> shift; result.xmm16u(4) = op1.xmm16u(4) >> shift; result.xmm16u(5) = op1.xmm16u(5) >> shift; result.xmm16u(6) = op1.xmm16u(6) >> shift; result.xmm16u(7) = op1.xmm16u(7) >> shift; if(op1.xmm16u(0) & 0x8000) result.xmm16u(0) |= (0xffff << (16 - shift)); if(op1.xmm16u(1) & 0x8000) result.xmm16u(1) |= (0xffff << (16 - shift)); if(op1.xmm16u(2) & 0x8000) result.xmm16u(2) |= (0xffff << (16 - shift)); if(op1.xmm16u(3) & 0x8000) result.xmm16u(3) |= (0xffff << (16 - shift)); if(op1.xmm16u(4) & 0x8000) result.xmm16u(4) |= (0xffff << (16 - shift)); if(op1.xmm16u(5) & 0x8000) result.xmm16u(5) |= (0xffff << (16 - shift)); if(op1.xmm16u(6) & 0x8000) result.xmm16u(6) |= (0xffff << (16 - shift)); if(op1.xmm16u(7) & 0x8000) result.xmm16u(7) |= (0xffff << (16 - shift)); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PSRAW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F E2 */ void BX_CPU_C::PSRAD_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } if(op2.xmm64u(0) == 0) { BX_WRITE_XMM_REG(i->nnn(), op1); return; } if(op2.xmm64u(0) > 31) /* looking only to low 64 bits */ { result.xmm32u(0) = (op1.xmm32u(0) & 0x80000000) ? 0xffffffff : 0; result.xmm32u(1) = (op1.xmm32u(1) & 0x80000000) ? 0xffffffff : 0; result.xmm32u(2) = (op1.xmm32u(2) & 0x80000000) ? 0xffffffff : 0; result.xmm32u(3) = (op1.xmm32u(3) & 0x80000000) ? 0xffffffff : 0; } else { Bit8u shift = op2.xmmubyte(0); result.xmm32u(0) = op1.xmm32u(0) >> shift; result.xmm32u(1) = op1.xmm32u(1) >> shift; result.xmm32u(2) = op1.xmm32u(2) >> shift; result.xmm32u(3) = op1.xmm32u(3) >> shift; if(op1.xmm32u(0) & 0x80000000) result.xmm32u(0) |= (0xffffffff << (32-shift)); if(op1.xmm32u(1) & 0x80000000) result.xmm32u(1) |= (0xffffffff << (32-shift)); if(op1.xmm32u(2) & 0x80000000) result.xmm32u(2) |= (0xffffffff << (32-shift)); if(op1.xmm32u(3) & 0x80000000) result.xmm32u(3) |= (0xffffffff << (32-shift)); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PSRAD_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F E3 */ void BX_CPU_C::PAVGW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm16u(0) = (op1.xmm16u(0) + op2.xmm16u(0) + 1) >> 1; op1.xmm16u(1) = (op1.xmm16u(1) + op2.xmm16u(1) + 1) >> 1; op1.xmm16u(2) = (op1.xmm16u(2) + op2.xmm16u(2) + 1) >> 1; op1.xmm16u(3) = (op1.xmm16u(3) + op2.xmm16u(3) + 1) >> 1; op1.xmm16u(4) = (op1.xmm16u(4) + op2.xmm16u(4) + 1) >> 1; op1.xmm16u(5) = (op1.xmm16u(5) + op2.xmm16u(5) + 1) >> 1; op1.xmm16u(6) = (op1.xmm16u(6) + op2.xmm16u(6) + 1) >> 1; op1.xmm16u(7) = (op1.xmm16u(7) + op2.xmm16u(7) + 1) >> 1; /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PAVGW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F E4 */ void BX_CPU_C::PMULHUW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } Bit32u product1 = Bit32u(op1.xmm16u(0)) * Bit32u(op2.xmm16u(0)); Bit32u product2 = Bit32u(op1.xmm16u(1)) * Bit32u(op2.xmm16u(1)); Bit32u product3 = Bit32u(op1.xmm16u(2)) * Bit32u(op2.xmm16u(2)); Bit32u product4 = Bit32u(op1.xmm16u(3)) * Bit32u(op2.xmm16u(3)); Bit32u product5 = Bit32u(op1.xmm16u(4)) * Bit32u(op2.xmm16u(4)); Bit32u product6 = Bit32u(op1.xmm16u(5)) * Bit32u(op2.xmm16u(5)); Bit32u product7 = Bit32u(op1.xmm16u(6)) * Bit32u(op2.xmm16u(6)); Bit32u product8 = Bit32u(op1.xmm16u(7)) * Bit32u(op2.xmm16u(7)); result.xmm16u(0) = (Bit16u)(product1 >> 16); result.xmm16u(1) = (Bit16u)(product2 >> 16); result.xmm16u(2) = (Bit16u)(product3 >> 16); result.xmm16u(3) = (Bit16u)(product4 >> 16); result.xmm16u(4) = (Bit16u)(product5 >> 16); result.xmm16u(5) = (Bit16u)(product6 >> 16); result.xmm16u(6) = (Bit16u)(product7 >> 16); result.xmm16u(7) = (Bit16u)(product8 >> 16); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PMULHUW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F E5 */ void BX_CPU_C::PMULHW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } Bit32s product1 = Bit32s(op1.xmm16s(0)) * Bit32s(op2.xmm16s(0)); Bit32s product2 = Bit32s(op1.xmm16s(1)) * Bit32s(op2.xmm16s(1)); Bit32s product3 = Bit32s(op1.xmm16s(2)) * Bit32s(op2.xmm16s(2)); Bit32s product4 = Bit32s(op1.xmm16s(3)) * Bit32s(op2.xmm16s(3)); Bit32s product5 = Bit32s(op1.xmm16s(4)) * Bit32s(op2.xmm16s(4)); Bit32s product6 = Bit32s(op1.xmm16s(5)) * Bit32s(op2.xmm16s(5)); Bit32s product7 = Bit32s(op1.xmm16s(6)) * Bit32s(op2.xmm16s(6)); Bit32s product8 = Bit32s(op1.xmm16s(7)) * Bit32s(op2.xmm16s(7)); result.xmm16u(0) = (Bit16u)(product1 >> 16); result.xmm16u(1) = (Bit16u)(product2 >> 16); result.xmm16u(2) = (Bit16u)(product3 >> 16); result.xmm16u(3) = (Bit16u)(product4 >> 16); result.xmm16u(4) = (Bit16u)(product5 >> 16); result.xmm16u(5) = (Bit16u)(product6 >> 16); result.xmm16u(6) = (Bit16u)(product7 >> 16); result.xmm16u(7) = (Bit16u)(product8 >> 16); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PMULHW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F E8 */ void BX_CPU_C::PSUBSB_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } for(unsigned j=0; j<16; j++) { result.xmmsbyte(j) = SaturateWordSToByteS(Bit16s(op1.xmmsbyte(j)) - Bit16s(op2.xmmsbyte(j))); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PSUBSB_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F E9 */ void BX_CPU_C::PSUBSW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } result.xmm16s(0) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(0)) - Bit32s(op2.xmm16s(0))); result.xmm16s(1) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(1)) - Bit32s(op2.xmm16s(1))); result.xmm16s(2) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(2)) - Bit32s(op2.xmm16s(2))); result.xmm16s(3) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(3)) - Bit32s(op2.xmm16s(3))); result.xmm16s(4) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(4)) - Bit32s(op2.xmm16s(4))); result.xmm16s(5) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(5)) - Bit32s(op2.xmm16s(5))); result.xmm16s(6) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(6)) - Bit32s(op2.xmm16s(6))); result.xmm16s(7) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(7)) - Bit32s(op2.xmm16s(7))); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PSUBSW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F EA */ void BX_CPU_C::PMINSW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } if(op2.xmm16s(0) < op1.xmm16s(0)) op1.xmm16s(0) = op2.xmm16s(0); if(op2.xmm16s(1) < op1.xmm16s(1)) op1.xmm16s(1) = op2.xmm16s(1); if(op2.xmm16s(2) < op1.xmm16s(2)) op1.xmm16s(2) = op2.xmm16s(2); if(op2.xmm16s(3) < op1.xmm16s(3)) op1.xmm16s(3) = op2.xmm16s(3); if(op2.xmm16s(4) < op1.xmm16s(4)) op1.xmm16s(4) = op2.xmm16s(4); if(op2.xmm16s(5) < op1.xmm16s(5)) op1.xmm16s(5) = op2.xmm16s(5); if(op2.xmm16s(6) < op1.xmm16s(6)) op1.xmm16s(6) = op2.xmm16s(6); if(op2.xmm16s(7) < op1.xmm16s(7)) op1.xmm16s(7) = op2.xmm16s(7); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PMINSW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* ORPS: 0F 56 */ /* ORPD: 66 0F 56 */ /* POR: 66 0F EB */ void BX_CPU_C::POR_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 1 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm64u(0) |= op2.xmm64u(0); op1.xmm64u(1) |= op2.xmm64u(1); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("POR_VdqWdq: required SSE, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F EC */ void BX_CPU_C::PADDSB_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } for(unsigned j=0; j<16; j++) { result.xmmsbyte(j) = SaturateWordSToByteS(Bit16s(op1.xmmsbyte(j)) + Bit16s(op2.xmmsbyte(j))); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PADDSB_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F ED */ void BX_CPU_C::PADDSW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } result.xmm16s(0) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(0)) + Bit32s(op2.xmm16s(0))); result.xmm16s(1) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(1)) + Bit32s(op2.xmm16s(1))); result.xmm16s(2) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(2)) + Bit32s(op2.xmm16s(2))); result.xmm16s(3) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(3)) + Bit32s(op2.xmm16s(3))); result.xmm16s(4) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(4)) + Bit32s(op2.xmm16s(4))); result.xmm16s(5) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(5)) + Bit32s(op2.xmm16s(5))); result.xmm16s(6) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(6)) + Bit32s(op2.xmm16s(6))); result.xmm16s(7) = SaturateDwordSToWordS(Bit32s(op1.xmm16s(7)) + Bit32s(op2.xmm16s(7))); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PADDSW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F EE */ void BX_CPU_C::PMAXSW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } if(op2.xmm16s(0) > op1.xmm16s(0)) op1.xmm16s(0) = op2.xmm16s(0); if(op2.xmm16s(1) > op1.xmm16s(1)) op1.xmm16s(1) = op2.xmm16s(1); if(op2.xmm16s(2) > op1.xmm16s(2)) op1.xmm16s(2) = op2.xmm16s(2); if(op2.xmm16s(3) > op1.xmm16s(3)) op1.xmm16s(3) = op2.xmm16s(3); if(op2.xmm16s(4) > op1.xmm16s(4)) op1.xmm16s(4) = op2.xmm16s(4); if(op2.xmm16s(5) > op1.xmm16s(5)) op1.xmm16s(5) = op2.xmm16s(5); if(op2.xmm16s(6) > op1.xmm16s(6)) op1.xmm16s(6) = op2.xmm16s(6); if(op2.xmm16s(7) > op1.xmm16s(7)) op1.xmm16s(7) = op2.xmm16s(7); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PMAXSW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* XORPS: 0F 57 */ /* XORPD: 66 0F 57 */ /* PXOR: 66 0F EF */ void BX_CPU_C::PXOR_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 1 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm64u(0) ^= op2.xmm64u(0); op1.xmm64u(1) ^= op2.xmm64u(1); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PXOR_VdqWdq: required SSE, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F F1 */ void BX_CPU_C::PSLLW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } if(op2.xmm64u(0) > 15) /* looking only to low 64 bits */ { op1.xmm64u(0) = 0; op1.xmm64u(1) = 0; } else { Bit8u shift = op2.xmmubyte(0); op1.xmm16u(0) <<= shift; op1.xmm16u(1) <<= shift; op1.xmm16u(2) <<= shift; op1.xmm16u(3) <<= shift; op1.xmm16u(4) <<= shift; op1.xmm16u(5) <<= shift; op1.xmm16u(6) <<= shift; op1.xmm16u(7) <<= shift; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PSLLW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F F2 */ void BX_CPU_C::PSLLD_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } if(op2.xmm64u(0) > 31) /* looking only to low 64 bits */ { op1.xmm64u(0) = 0; op1.xmm64u(1) = 0; } else { Bit8u shift = op2.xmmubyte(0); op1.xmm32u(0) <<= shift; op1.xmm32u(1) <<= shift; op1.xmm32u(2) <<= shift; op1.xmm32u(3) <<= shift; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PSLLD_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F F3 */ void BX_CPU_C::PSLLQ_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } if(op2.xmm64u(0) > 63) /* looking only to low 64 bits */ { op1.xmm64u(0) = 0; op1.xmm64u(1) = 0; } else { Bit8u shift = op2.xmmubyte(0); op1.xmm64u(0) <<= shift; op1.xmm64u(1) <<= shift; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PSLLQ_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F F4 */ void BX_CPU_C::PMULUDQ_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } result.xmm64u(0) = Bit64u(op1.xmm32u(0)) * Bit64u(op2.xmm32u(0)); result.xmm64u(1) = Bit64u(op1.xmm32u(3)) * Bit64u(op2.xmm32u(3)); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PMULUDQ_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F F5 */ void BX_CPU_C::PMADDWD_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } for(unsigned j=0; j<4; j++) { if(op1.xmm32u(j) == 0x80008000 && op2.xmm32u(j) == 0x80008000) { result.xmm32u(j) = 0x80000000; } else result.xmm32u(j) = Bit32s(op1.xmm16s(2*j+0)) * Bit32s(op2.xmm16s(2*j+0)) + Bit32s(op1.xmm16s(2*j+1)) * Bit32s(op2.xmm16s(2*j+1)); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), result); #else BX_INFO(("PMADDWD_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F F6 */ void BX_CPU_C::PSADBW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; Bit16u temp1 = 0, temp2 = 0; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } temp1 += abs(op1.xmmubyte(0x0) - op2.xmmubyte(0x0)); temp1 += abs(op1.xmmubyte(0x1) - op2.xmmubyte(0x1)); temp1 += abs(op1.xmmubyte(0x2) - op2.xmmubyte(0x2)); temp1 += abs(op1.xmmubyte(0x3) - op2.xmmubyte(0x3)); temp1 += abs(op1.xmmubyte(0x4) - op2.xmmubyte(0x4)); temp1 += abs(op1.xmmubyte(0x5) - op2.xmmubyte(0x5)); temp1 += abs(op1.xmmubyte(0x6) - op2.xmmubyte(0x6)); temp1 += abs(op1.xmmubyte(0x7) - op2.xmmubyte(0x7)); temp2 += abs(op1.xmmubyte(0x8) - op2.xmmubyte(0x8)); temp2 += abs(op1.xmmubyte(0x9) - op2.xmmubyte(0x9)); temp2 += abs(op1.xmmubyte(0xA) - op2.xmmubyte(0xA)); temp2 += abs(op1.xmmubyte(0xB) - op2.xmmubyte(0xB)); temp2 += abs(op1.xmmubyte(0xC) - op2.xmmubyte(0xC)); temp2 += abs(op1.xmmubyte(0xD) - op2.xmmubyte(0xD)); temp2 += abs(op1.xmmubyte(0xE) - op2.xmmubyte(0xE)); temp2 += abs(op1.xmmubyte(0xF) - op2.xmmubyte(0xF)); op1.xmm64u(0) = Bit64u(temp1); op1.xmm64u(1) = Bit64u(temp2); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PSADBW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F F8 */ void BX_CPU_C::PSUBB_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } for(unsigned j=0; j<16; j++) { op1.xmmubyte(j) -= op2.xmmubyte(j); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PSUBB_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F F9 */ void BX_CPU_C::PSUBW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm16u(0) -= op2.xmm16u(0); op1.xmm16u(1) -= op2.xmm16u(1); op1.xmm16u(2) -= op2.xmm16u(2); op1.xmm16u(3) -= op2.xmm16u(3); op1.xmm16u(4) -= op2.xmm16u(4); op1.xmm16u(5) -= op2.xmm16u(5); op1.xmm16u(6) -= op2.xmm16u(6); op1.xmm16u(7) -= op2.xmm16u(7); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PSUBW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F FA */ void BX_CPU_C::PSUBD_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm32u(0) -= op2.xmm32u(0); op1.xmm32u(1) -= op2.xmm32u(1); op1.xmm32u(2) -= op2.xmm32u(2); op1.xmm32u(3) -= op2.xmm32u(3); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PSUBD_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F FB */ void BX_CPU_C::PSUBQ_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm64u(0) -= op2.xmm64u(0); op1.xmm64u(1) -= op2.xmm64u(1); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PSUBQ_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F FC */ void BX_CPU_C::PADDB_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } for(unsigned j=0; j<16; j++) { op1.xmmubyte(j) += op2.xmmubyte(j); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PADDB_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F FD */ void BX_CPU_C::PADDW_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm16u(0) += op2.xmm16u(0); op1.xmm16u(1) += op2.xmm16u(1); op1.xmm16u(2) += op2.xmm16u(2); op1.xmm16u(3) += op2.xmm16u(3); op1.xmm16u(4) += op2.xmm16u(4); op1.xmm16u(5) += op2.xmm16u(5); op1.xmm16u(6) += op2.xmm16u(6); op1.xmm16u(7) += op2.xmm16u(7); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PADDW_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F FE */ void BX_CPU_C::PADDD_VdqWdq(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2; /* op2 is a register or memory reference */ if (i->modC0()) { op2 = BX_READ_XMM_REG(i->rm()); } else { /* pointer, segment address pair */ readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2); } op1.xmm32u(0) += op2.xmm32u(0); op1.xmm32u(1) += op2.xmm32u(1); op1.xmm32u(2) += op2.xmm32u(2); op1.xmm32u(3) += op2.xmm32u(3); /* now write result back to destination */ BX_WRITE_XMM_REG(i->nnn(), op1); #else BX_INFO(("PADDD_VdqWdq: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 71 Grp12 010 */ void BX_CPU_C::PSRLW_PdqIb(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm()); Bit8u shift = i->Ib(); if(shift > 15) { op.xmm64u(0) = 0; op.xmm64u(1) = 0; } else { op.xmm16u(0) >>= shift; op.xmm16u(1) >>= shift; op.xmm16u(2) >>= shift; op.xmm16u(3) >>= shift; op.xmm16u(4) >>= shift; op.xmm16u(5) >>= shift; op.xmm16u(6) >>= shift; op.xmm16u(7) >>= shift; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->rm(), op); #else BX_INFO(("PSRLW_PdqIb: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 0F 71 Grp12 100 */ void BX_CPU_C::PSRAW_PdqIb(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm()), result; Bit8u shift = i->Ib(); if(shift == 0) { BX_WRITE_XMM_REG(i->nnn(), op); return; } if(shift > 15) { result.xmm16u(0) = (op.xmm16u(0) & 0x8000) ? 0xffff : 0; result.xmm16u(1) = (op.xmm16u(1) & 0x8000) ? 0xffff : 0; result.xmm16u(2) = (op.xmm16u(2) & 0x8000) ? 0xffff : 0; result.xmm16u(3) = (op.xmm16u(3) & 0x8000) ? 0xffff : 0; result.xmm16u(4) = (op.xmm16u(4) & 0x8000) ? 0xffff : 0; result.xmm16u(5) = (op.xmm16u(5) & 0x8000) ? 0xffff : 0; result.xmm16u(6) = (op.xmm16u(6) & 0x8000) ? 0xffff : 0; result.xmm16u(7) = (op.xmm16u(7) & 0x8000) ? 0xffff : 0; } else { result.xmm16u(0) = op.xmm16u(0) >> shift; result.xmm16u(1) = op.xmm16u(1) >> shift; result.xmm16u(2) = op.xmm16u(2) >> shift; result.xmm16u(3) = op.xmm16u(3) >> shift; result.xmm16u(4) = op.xmm16u(4) >> shift; result.xmm16u(5) = op.xmm16u(5) >> shift; result.xmm16u(6) = op.xmm16u(6) >> shift; result.xmm16u(7) = op.xmm16u(7) >> shift; if(op.xmm16u(0) & 0x8000) result.xmm16u(0) |= (0xffff << (16 - shift)); if(op.xmm16u(1) & 0x8000) result.xmm16u(1) |= (0xffff << (16 - shift)); if(op.xmm16u(2) & 0x8000) result.xmm16u(2) |= (0xffff << (16 - shift)); if(op.xmm16u(3) & 0x8000) result.xmm16u(3) |= (0xffff << (16 - shift)); if(op.xmm16u(4) & 0x8000) result.xmm16u(4) |= (0xffff << (16 - shift)); if(op.xmm16u(5) & 0x8000) result.xmm16u(5) |= (0xffff << (16 - shift)); if(op.xmm16u(6) & 0x8000) result.xmm16u(6) |= (0xffff << (16 - shift)); if(op.xmm16u(7) & 0x8000) result.xmm16u(7) |= (0xffff << (16 - shift)); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->rm(), result); #else BX_INFO(("PSRAW_PdqIb: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 71 Grp12 110 */ void BX_CPU_C::PSLLW_PdqIb(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm()); Bit8u shift = i->Ib(); if(shift > 15) { op.xmm64u(0) = 0; op.xmm64u(1) = 0; } else { op.xmm16u(0) <<= shift; op.xmm16u(1) <<= shift; op.xmm16u(2) <<= shift; op.xmm16u(3) <<= shift; op.xmm16u(4) <<= shift; op.xmm16u(5) <<= shift; op.xmm16u(6) <<= shift; op.xmm16u(7) <<= shift; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->rm(), op); #else BX_INFO(("PSLLW_PdqIb: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 72 Grp13 010 */ void BX_CPU_C::PSRLD_PdqIb(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm()); Bit8u shift = i->Ib(); if(shift > 31) { op.xmm64u(0) = 0; op.xmm64u(1) = 0; } else { op.xmm32u(0) >>= shift; op.xmm32u(1) >>= shift; op.xmm32u(2) >>= shift; op.xmm32u(3) >>= shift; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->rm(), op); #else BX_INFO(("PSRLD_PdqIb: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 0F 72 Grp13 100 */ void BX_CPU_C::PSRAD_PdqIb(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm()), result; Bit8u shift = i->Ib(); if(shift == 0) { BX_WRITE_XMM_REG(i->nnn(), op); return; } if(shift > 31) { result.xmm32u(0) = (op.xmm32u(0) & 0x80000000) ? 0xffffffff : 0; result.xmm32u(1) = (op.xmm32u(1) & 0x80000000) ? 0xffffffff : 0; result.xmm32u(2) = (op.xmm32u(2) & 0x80000000) ? 0xffffffff : 0; result.xmm32u(3) = (op.xmm32u(3) & 0x80000000) ? 0xffffffff : 0; } else { result.xmm32u(0) = op.xmm32u(0) >> shift; result.xmm32u(1) = op.xmm32u(1) >> shift; result.xmm32u(2) = op.xmm32u(2) >> shift; result.xmm32u(3) = op.xmm32u(3) >> shift; if(op.xmm32u(0) & 0x80000000) result.xmm32u(0) |= (0xffffffff << (32-shift)); if(op.xmm32u(1) & 0x80000000) result.xmm32u(1) |= (0xffffffff << (32-shift)); if(op.xmm32u(2) & 0x80000000) result.xmm32u(2) |= (0xffffffff << (32-shift)); if(op.xmm32u(3) & 0x80000000) result.xmm32u(3) |= (0xffffffff << (32-shift)); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->rm(), result); #else BX_INFO(("PSRAD_PdqIb: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 72 Grp13 110 */ void BX_CPU_C::PSLLD_PdqIb(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm()); Bit8u shift = i->Ib(); if(shift > 31) { op.xmm64u(0) = 0; op.xmm64u(1) = 0; } else { op.xmm32u(0) <<= shift; op.xmm32u(1) <<= shift; op.xmm32u(2) <<= shift; op.xmm32u(3) <<= shift; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->rm(), op); #else BX_INFO(("PSLLD_PdqIb: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 73 Grp14 010 */ void BX_CPU_C::PSRLQ_PdqIb(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm()); Bit8u shift = i->Ib(); if(shift > 63) { op.xmm64u(0) = 0; op.xmm64u(1) = 0; } else { op.xmm64u(0) >>= shift; op.xmm64u(1) >>= shift; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->rm(), op); #else BX_INFO(("PSRLQ_PdqIb: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } void BX_CPU_C::PSRLDQ_WdqIb(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm()), result; Bit8u shift = i->Ib(); result.xmm64u(0) = 0; result.xmm64u(1) = 0; for(unsigned j=shift; j<16; j++) { result.xmmubyte(j-shift) = op.xmmubyte(j); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->rm(), result); #else BX_INFO(("PSRLDQ_WdqIb: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 73 Grp14 110 */ void BX_CPU_C::PSLLQ_PdqIb(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm()); Bit8u shift = i->Ib(); if(shift > 63) { op.xmm64u(0) = 0; op.xmm64u(1) = 0; } else { op.xmm64u(0) <<= shift; op.xmm64u(1) <<= shift; } /* now write result back to destination */ BX_WRITE_XMM_REG(i->rm(), op); #else BX_INFO(("PSLLQ_PdqIb: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif } /* 66 0F 73 Grp14 111 */ void BX_CPU_C::PSLLDQ_WdqIb(bxInstruction_c *i) { #if BX_SUPPORT_SSE >= 2 BX_CPU_THIS_PTR prepareSSE(); BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm()), result; Bit8u shift = i->Ib(); result.xmm64u(0) = 0; result.xmm64u(1) = 0; for(unsigned j=shift; j<16; j++) { result.xmmubyte(j) = op.xmmubyte(j-shift); } /* now write result back to destination */ BX_WRITE_XMM_REG(i->rm(), result); #else BX_INFO(("PSLLDQ_WdqIb: required SSE2, use --enable-sse option")); UndefinedOpcode(i); #endif }