///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2011-2013 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_AVX BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ANDN_GdBdEdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->src1()); Bit32u op2_32 = BX_READ_32BIT_REG(i->src2()); op1_32 = ~op1_32 & op2_32; SET_FLAGS_OSZAxC_LOGIC_32(op1_32); // keep PF unchanged BX_WRITE_32BIT_REGZ(i->dst(), op1_32); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::MULX_GdBdEdR(bxInstruction_c *i) { Bit32u op1_32 = EDX; Bit32u op2_32 = BX_READ_32BIT_REG(i->src2()); Bit64u product_64 = ((Bit64u) op1_32) * ((Bit64u) op2_32); BX_WRITE_32BIT_REGZ(i->src1(), GET32L(product_64)); BX_WRITE_32BIT_REGZ(i->dst(), GET32H(product_64)); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BLSI_BdEdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->src()); bx_bool tmpCF = (op1_32 != 0); op1_32 = (-op1_32) & op1_32; SET_FLAGS_OSZAxC_LOGIC_32(op1_32); // keep PF unchanged set_CF(tmpCF); BX_WRITE_32BIT_REGZ(i->dst(), op1_32); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BLSMSK_BdEdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->src()); bx_bool tmpCF = (op1_32 == 0); op1_32 = (op1_32-1) ^ op1_32; SET_FLAGS_OSZAxC_LOGIC_32(op1_32); // keep PF unchanged set_CF(tmpCF); BX_WRITE_32BIT_REGZ(i->dst(), op1_32); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BLSR_BdEdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->src()); bx_bool tmpCF = (op1_32 == 0); op1_32 = (op1_32-1) & op1_32; SET_FLAGS_OSZAxC_LOGIC_32(op1_32); // keep PF unchanged set_CF(tmpCF); BX_WRITE_32BIT_REGZ(i->dst(), op1_32); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RORX_GdEdIbR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->src()); unsigned count = i->Ib() & 0x1f; if (count) { op1_32 = (op1_32 >> count) | (op1_32 << (32 - count)); } BX_WRITE_32BIT_REGZ(i->dst(), op1_32); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHRX_GdEdBdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->src1()); unsigned count = BX_READ_32BIT_REG(i->src2()) & 0x1f; if (count) op1_32 >>= count; BX_WRITE_32BIT_REGZ(i->dst(), op1_32); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SARX_GdEdBdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->src1()); unsigned count = BX_READ_32BIT_REG(i->src2()) & 0x1f; if (count) { /* count < 32, since only lower 5 bits used */ op1_32 = ((Bit32s) op1_32) >> count; } BX_WRITE_32BIT_REGZ(i->dst(), op1_32); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHLX_GdEdBdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->src1()); unsigned count = BX_READ_32BIT_REG(i->src2()) & 0x1f; if (count) op1_32 <<= count; BX_WRITE_32BIT_REGZ(i->dst(), op1_32); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BEXTR_GdEdBdR(bxInstruction_c *i) { Bit16u control = BX_READ_16BIT_REG(i->src2()); unsigned start = control & 0xff; unsigned len = control >> 8; Bit32u op1_32 = 0; if (start < 32 && len > 0) { op1_32 = BX_READ_32BIT_REG(i->src1()); op1_32 >>= start; if (len < 32) { Bit32u extract_mask = (1 << len) - 1; op1_32 &= extract_mask; } } SET_FLAGS_OSZAPC_LOGIC_32(op1_32); BX_WRITE_32BIT_REGZ(i->dst(), op1_32); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BZHI_GdBdEdR(bxInstruction_c *i) { unsigned control = BX_READ_8BIT_REGL(i->src1()); bx_bool tmpCF = 0; Bit32u op1_32 = BX_READ_32BIT_REG(i->src2()); if (control < 32) { Bit32u mask = (1 << control) - 1; op1_32 &= mask; } else { tmpCF = 1; } SET_FLAGS_OSZAxC_LOGIC_32(op1_32); // keep PF unchanged set_CF(tmpCF); BX_WRITE_32BIT_REGZ(i->dst(), op1_32); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PEXT_GdBdEdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->src1()); Bit32u op2_32 = BX_READ_32BIT_REG(i->src2()), result_32 = 0; Bit32u wr_mask = 0x1; for (; op2_32 != 0; op2_32 >>= 1) { if (op2_32 & 0x1) { if (op1_32 & 0x1) result_32 |= wr_mask; wr_mask <<= 1; } op1_32 >>= 1; } BX_WRITE_32BIT_REGZ(i->dst(), result_32); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PDEP_GdBdEdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->src1()); Bit32u op2_32 = BX_READ_32BIT_REG(i->src2()), result_32 = 0; Bit32u wr_mask = 0x1; for (; op2_32 != 0; op2_32 >>= 1) { if (op2_32 & 0x1) { if (op1_32 & 0x1) result_32 |= wr_mask; op1_32 >>= 1; } wr_mask <<= 1; } BX_WRITE_32BIT_REGZ(i->dst(), result_32); BX_NEXT_INSTR(i); } #endif BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ADCX_GdEdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->dst()); Bit32u op2_32 = BX_READ_32BIT_REG(i->src()); Bit32u sum_32 = op1_32 + op2_32 + getB_CF(); BX_WRITE_32BIT_REGZ(i->dst(), sum_32); Bit32u carry_out = ADD_COUT_VEC(op1_32, op2_32, sum_32); set_CF(carry_out >> 31); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ADOX_GdEdR(bxInstruction_c *i) { Bit32u op1_32 = BX_READ_32BIT_REG(i->dst()); Bit32u op2_32 = BX_READ_32BIT_REG(i->src()); Bit32u sum_32 = op1_32 + op2_32 + getB_OF(); BX_WRITE_32BIT_REGZ(i->dst(), sum_32); Bit32u overflow = GET_ADD_OVERFLOW(op1_32, op2_32, sum_32, 0x80000000); set_OF(!!overflow); BX_NEXT_INSTR(i); }