///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2009 Benjamin D Lunt (fys at frontiernet net) // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ///////////////////////////////////////////////////////////////////////// // Experimental USB UHCI adapter // Notes: See usb_common.cc // Define BX_PLUGGABLE in files that can be compiled into plugins. For // platforms that require a special tag on exported symbols, BX_PLUGGABLE // is used to know when we are exporting symbols and when we are importing. #define BX_PLUGGABLE #include "iodev.h" #if BX_SUPPORT_PCI && BX_SUPPORT_USB_UHCI #include "pci.h" #include "usb_common.h" #include "usb_uhci.h" #define LOG_THIS theUSB_UHCI-> bx_usb_uhci_c* theUSB_UHCI = NULL; const Bit8u uhci_iomask[32] = {2, 1, 2, 1, 2, 1, 2, 0, 4, 0, 0, 0, 1, 0, 0, 0, 3, 1, 3, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int libusb_uhci_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[]) { theUSB_UHCI = new bx_usb_uhci_c(); BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theUSB_UHCI, BX_PLUGIN_USB_UHCI); return 0; // Success } void libusb_uhci_LTX_plugin_fini(void) { delete theUSB_UHCI; } bx_usb_uhci_c::bx_usb_uhci_c() { put("UHCI"); memset((void*)&hub, 0, sizeof(bx_usb_uhci_t)); device_buffer = NULL; hub.iolight_timer_index = BX_NULL_TIMER_HANDLE; } bx_usb_uhci_c::~bx_usb_uhci_c() { char pname[16]; if (BX_UHCI_THIS device_buffer != NULL) delete [] BX_UHCI_THIS device_buffer; for (int i=0; iget_param_string(pname, SIM->get_param(BXPN_USB_UHCI))->set_handler(NULL); remove_device(i); } BX_DEBUG(("Exit")); } void bx_usb_uhci_c::init(void) { unsigned i; char pname[6]; bx_list_c *port; bx_param_string_c *device, *options; BX_UHCI_THIS device_buffer = new Bit8u[65536]; // Call our timer routine every 1mS (1,000uS) // Continuous and active BX_UHCI_THIS hub.timer_index = bx_pc_system.register_timer(this, usb_timer_handler, 1000, 1,1, "usb.timer"); if (DEV_is_pci_device(BX_PLUGIN_USB_UHCI)) { BX_UHCI_THIS hub.devfunc = 0x00; } else { BX_UHCI_THIS hub.devfunc = BX_PCI_DEVICE(1,2); } DEV_register_pci_handlers(this, &BX_UHCI_THIS hub.devfunc, BX_PLUGIN_USB_UHCI, "Experimental USB UHCI"); for (i=0; i<256; i++) { BX_UHCI_THIS pci_conf[i] = 0x0; } BX_UHCI_THIS pci_base_address[4] = 0x0; //FIXME: for now, we want a status bar // hub zero, port zero BX_UHCI_THIS hub.statusbar_id = bx_gui->register_statusitem("UHCI"); bx_list_c *usb_rt = (bx_list_c*)SIM->get_param(BXPN_MENU_RUNTIME_USB); bx_list_c *uhci = (bx_list_c*)SIM->get_param(BXPN_USB_UHCI); uhci->set_options(uhci->SHOW_PARENT); uhci->set_runtime_param(1); usb_rt->add(uhci); for (i=0; iget_param(pname, uhci); port->set_runtime_param(1); device = (bx_param_string_c*)port->get_by_name("device"); device->set_handler(usb_param_handler); device->set_runtime_param(1); options = (bx_param_string_c*)port->get_by_name("options"); options->set_runtime_param(1); BX_UHCI_THIS hub.usb_port[i].device = NULL; } //HACK: Turn on debug messages from the start //BX_UHCI_THIS setonoff(LOGLEV_DEBUG, ACT_REPORT); // register timer for i/o light if (BX_UHCI_THIS hub.iolight_timer_index == BX_NULL_TIMER_HANDLE) { BX_UHCI_THIS hub.iolight_timer_index = DEV_register_timer(this, iolight_timer_handler, 5000, 0,0, "UHCI i/o light"); } BX_UHCI_THIS hub.iolight_counter = 0; // register handler for correct device connect handling after runtime config SIM->register_runtime_config_handler(BX_UHCI_THIS_PTR, runtime_config_handler); BX_UHCI_THIS hub.device_change = 0; BX_INFO(("USB UHCI initialized")); } void bx_usb_uhci_c::reset(unsigned type) { unsigned i, j; char pname[6]; if (type == BX_RESET_HARDWARE) { static const struct reset_vals_t { unsigned addr; unsigned char val; } reset_vals[] = { { 0x00, 0x86 }, { 0x01, 0x80 }, // 0x8086 = vendor { 0x02, 0x20 }, { 0x03, 0x70 }, // 0x7020 = device { 0x04, 0x05 }, { 0x05, 0x00 }, // command_io { 0x06, 0x80 }, { 0x07, 0x02 }, // status { 0x08, 0x01 }, // revision number { 0x09, 0x00 }, // interface { 0x0a, 0x03 }, // class_sub USB Host Controller { 0x0b, 0x0c }, // class_base Serial Bus Controller { 0x0D, 0x20 }, // bus latency { 0x0e, 0x00 }, // header_type_generic // address space 0x20 - 0x23 { 0x20, 0x01 }, { 0x21, 0x00 }, { 0x22, 0x00 }, { 0x23, 0x00 }, { 0x3c, 0x00 }, // IRQ { 0x3d, BX_PCI_INTD }, // INT { 0x60, 0x10 }, // USB revision 1.0 { 0x6a, 0x01 }, // USB clock { 0xc1, 0x20 } // PIRQ enable }; for (i = 0; i < sizeof(reset_vals) / sizeof(*reset_vals); ++i) { BX_UHCI_THIS pci_conf[reset_vals[i].addr] = reset_vals[i].val; } } // reset locals BX_UHCI_THIS busy = 0; BX_UHCI_THIS global_reset = 0; // Put the USB registers into their RESET state BX_UHCI_THIS hub.usb_command.max_packet_size = 0; BX_UHCI_THIS hub.usb_command.configured = 0; BX_UHCI_THIS hub.usb_command.debug = 0; BX_UHCI_THIS hub.usb_command.resume = 0; BX_UHCI_THIS hub.usb_command.suspend = 0; BX_UHCI_THIS hub.usb_command.reset = 0; BX_UHCI_THIS hub.usb_command.host_reset = 0; BX_UHCI_THIS hub.usb_command.schedule = 0; BX_UHCI_THIS hub.usb_status.error_interrupt = 0; BX_UHCI_THIS hub.usb_status.host_error = 0; BX_UHCI_THIS hub.usb_status.host_halted = 0; BX_UHCI_THIS hub.usb_status.interrupt = 0; BX_UHCI_THIS hub.usb_status.pci_error = 0; BX_UHCI_THIS hub.usb_status.resume = 0; BX_UHCI_THIS hub.usb_enable.short_packet = 0; BX_UHCI_THIS hub.usb_enable.on_complete = 0; BX_UHCI_THIS hub.usb_enable.resume = 0; BX_UHCI_THIS hub.usb_enable.timeout_crc = 0; BX_UHCI_THIS hub.usb_frame_num.frame_num = 0x0000; BX_UHCI_THIS hub.usb_frame_base.frame_base = 0x00000000; BX_UHCI_THIS hub.usb_sof.sof_timing = 0x40; for (j=0; jget_param(pname, SIM->get_param(BXPN_USB_UHCI))); } else { usb_set_connect_status(j, BX_UHCI_THIS hub.usb_port[j].device->get_type(), 1); } } } void bx_usb_uhci_c::register_state(void) { unsigned j; char portnum[8]; bx_list_c *hub, *usb_cmd, *usb_st, *usb_en, *port; bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "usb_uhci", "USB UHCI State"); hub = new bx_list_c(list, "hub", BX_N_USB_UHCI_PORTS + 7); usb_cmd = new bx_list_c(hub, "usb_command", 8); new bx_shadow_bool_c(usb_cmd, "max_packet_size", &BX_UHCI_THIS hub.usb_command.max_packet_size); new bx_shadow_bool_c(usb_cmd, "configured", &BX_UHCI_THIS hub.usb_command.configured); new bx_shadow_bool_c(usb_cmd, "debug", &BX_UHCI_THIS hub.usb_command.debug); new bx_shadow_bool_c(usb_cmd, "resume", &BX_UHCI_THIS hub.usb_command.resume); new bx_shadow_bool_c(usb_cmd, "suspend", &BX_UHCI_THIS hub.usb_command.suspend); new bx_shadow_bool_c(usb_cmd, "reset", &BX_UHCI_THIS hub.usb_command.reset); new bx_shadow_bool_c(usb_cmd, "host_reset", &BX_UHCI_THIS hub.usb_command.host_reset); new bx_shadow_bool_c(usb_cmd, "schedule", &BX_UHCI_THIS hub.usb_command.schedule); usb_st = new bx_list_c(hub, "usb_status", 6); new bx_shadow_bool_c(usb_st, "host_halted", &BX_UHCI_THIS hub.usb_status.host_halted); new bx_shadow_bool_c(usb_st, "host_error", &BX_UHCI_THIS hub.usb_status.host_error); new bx_shadow_bool_c(usb_st, "pci_error", &BX_UHCI_THIS hub.usb_status.pci_error); new bx_shadow_bool_c(usb_st, "resume", &BX_UHCI_THIS hub.usb_status.resume); new bx_shadow_bool_c(usb_st, "error_interrupt", &BX_UHCI_THIS hub.usb_status.error_interrupt); new bx_shadow_bool_c(usb_st, "interrupt", &BX_UHCI_THIS hub.usb_status.interrupt); usb_en = new bx_list_c(hub, "usb_enable", 4); new bx_shadow_bool_c(usb_en, "short_packet", &BX_UHCI_THIS hub.usb_enable.short_packet); new bx_shadow_bool_c(usb_en, "on_complete", &BX_UHCI_THIS hub.usb_enable.on_complete); new bx_shadow_bool_c(usb_en, "resume", &BX_UHCI_THIS hub.usb_enable.resume); new bx_shadow_bool_c(usb_en, "timeout_crc", &BX_UHCI_THIS hub.usb_enable.timeout_crc); new bx_shadow_num_c(hub, "frame_num", &BX_UHCI_THIS hub.usb_frame_num.frame_num, BASE_HEX); new bx_shadow_num_c(hub, "frame_base", &BX_UHCI_THIS hub.usb_frame_base.frame_base, BASE_HEX); new bx_shadow_num_c(hub, "sof_timing", &BX_UHCI_THIS hub.usb_sof.sof_timing, BASE_HEX); for (j=0; jafter_restore_state(); } } } void bx_usb_uhci_c::init_device(Bit8u port, bx_list_c *portconf) { usbdev_type type; char pname[BX_PATHNAME_LEN]; const char *devname = NULL; devname = ((bx_param_string_c*)portconf->get_by_name("device"))->getptr(); if (devname == NULL) return; if (!strlen(devname) || !strcmp(devname, "none")) return; if (BX_UHCI_THIS hub.usb_port[port].device != NULL) { BX_ERROR(("init_device(): port%d already in use", port+1)); return; } sprintf(pname, "usb_uhci.hub.port%d.device", port+1); bx_list_c *sr_list = (bx_list_c*)SIM->get_param(pname, SIM->get_bochs_root()); type = DEV_usb_init_device(portconf, BX_UHCI_THIS_PTR, &BX_UHCI_THIS hub.usb_port[port].device, sr_list); if (BX_UHCI_THIS hub.usb_port[port].device != NULL) { usb_set_connect_status(port, type, 1); } } void bx_usb_uhci_c::remove_device(Bit8u port) { char pname[BX_PATHNAME_LEN]; if (BX_UHCI_THIS hub.usb_port[port].device != NULL) { delete BX_UHCI_THIS hub.usb_port[port].device; BX_UHCI_THIS hub.usb_port[port].device = NULL; sprintf(pname, "usb_uhci.hub.port%d.device", port+1); bx_list_c *devlist = (bx_list_c*)SIM->get_param(pname, SIM->get_bochs_root()); devlist->clear(); } } void bx_usb_uhci_c::set_irq_level(bx_bool level) { DEV_pci_set_irq(BX_UHCI_THIS hub.devfunc, BX_UHCI_THIS pci_conf[0x3d], level); } // static IO port read callback handler // redirects to non-static class handler to avoid virtual functions Bit32u bx_usb_uhci_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len) { #if !BX_USE_USB_UHCI_SMF bx_usb_uhci_c *class_ptr = (bx_usb_uhci_c *) this_ptr; return class_ptr->read(address, io_len); } Bit32u bx_usb_uhci_c::read(Bit32u address, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_USB_UHCI_SMF Bit32u val = 0x0; Bit8u offset,port; offset = address - BX_UHCI_THIS pci_base_address[4]; switch (offset) { case 0x00: // command register (16-bit) val = BX_UHCI_THIS hub.usb_command.max_packet_size << 7 | BX_UHCI_THIS hub.usb_command.configured << 6 | BX_UHCI_THIS hub.usb_command.debug << 5 | BX_UHCI_THIS hub.usb_command.resume << 4 | BX_UHCI_THIS hub.usb_command.suspend << 3 | BX_UHCI_THIS hub.usb_command.reset << 2 | BX_UHCI_THIS hub.usb_command.host_reset << 1 | BX_UHCI_THIS hub.usb_command.schedule; break; case 0x02: // status register (16-bit) val = BX_UHCI_THIS hub.usb_status.host_halted << 5 | BX_UHCI_THIS hub.usb_status.host_error << 4 | BX_UHCI_THIS hub.usb_status.pci_error << 3 | BX_UHCI_THIS hub.usb_status.resume << 2 | BX_UHCI_THIS hub.usb_status.error_interrupt << 1 | BX_UHCI_THIS hub.usb_status.interrupt; break; case 0x04: // interrupt enable register (16-bit) val = BX_UHCI_THIS hub.usb_enable.short_packet << 3 | BX_UHCI_THIS hub.usb_enable.on_complete << 2 | BX_UHCI_THIS hub.usb_enable.resume << 1 | BX_UHCI_THIS hub.usb_enable.timeout_crc; break; case 0x06: // frame number register (16-bit) val = BX_UHCI_THIS hub.usb_frame_num.frame_num; break; case 0x08: // frame base register (32-bit) val = BX_UHCI_THIS hub.usb_frame_base.frame_base; break; case 0x0C: // start of Frame Modify register (8-bit) val = BX_UHCI_THIS hub.usb_sof.sof_timing; break; case 0x14: // port #3 non existant, but linux systems check it to see if there are more than 2 BX_ERROR(("read from non existant offset 0x14 (port #3)")); val = 0xFF7F; break; case 0x10: // port #1 case 0x11: case 0x12: // port #2 case 0x13: port = (offset & 0x0F) >> 1; if (port < BX_N_USB_UHCI_PORTS) { val = BX_UHCI_THIS hub.usb_port[port].suspend << 12 | 1 << 10 // some Root Hubs have bit 10 set ????? | BX_UHCI_THIS hub.usb_port[port].reset << 9 | BX_UHCI_THIS hub.usb_port[port].low_speed << 8 | 1 << 7 | BX_UHCI_THIS hub.usb_port[port].resume << 6 | BX_UHCI_THIS hub.usb_port[port].line_dminus << 5 | BX_UHCI_THIS hub.usb_port[port].line_dplus << 4 | BX_UHCI_THIS hub.usb_port[port].able_changed << 3 | BX_UHCI_THIS hub.usb_port[port].enabled << 2 | BX_UHCI_THIS hub.usb_port[port].connect_changed << 1 | BX_UHCI_THIS hub.usb_port[port].status; if (offset & 1) val >>= 8; break; } // else fall through to default default: val = 0xFF7F; // keep compiler happy BX_ERROR(("unsupported io read from address=0x%04x!", (unsigned) address)); break; } BX_DEBUG(("register read from address 0x%04X: 0x%08X (%2i bits)", (unsigned) address, (Bit32u) val, io_len * 8)); return(val); } // static IO port write callback handler // redirects to non-static class handler to avoid virtual functions void bx_usb_uhci_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len) { #if !BX_USE_USB_UHCI_SMF bx_usb_uhci_c *class_ptr = (bx_usb_uhci_c *) this_ptr; class_ptr->write(address, value, io_len); } void bx_usb_uhci_c::write(Bit32u address, Bit32u value, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_USB_UHCI_SMF Bit8u offset,port; BX_DEBUG(("register write to address 0x%04X: 0x%08X (%2i bits)", (unsigned) address, (unsigned) value, io_len * 8)); offset = address - BX_UHCI_THIS pci_base_address[4]; switch (offset) { case 0x00: // command register (16-bit) (R/W) if (value & 0xFF00) BX_DEBUG(("write to command register with bits 15:8 not zero: 0x%04x", value)); BX_UHCI_THIS hub.usb_command.max_packet_size = (value & 0x80) ? 1: 0; BX_UHCI_THIS hub.usb_command.configured = (value & 0x40) ? 1: 0; BX_UHCI_THIS hub.usb_command.debug = (value & 0x20) ? 1: 0; BX_UHCI_THIS hub.usb_command.resume = (value & 0x10) ? 1: 0; BX_UHCI_THIS hub.usb_command.suspend = (value & 0x08) ? 1: 0; BX_UHCI_THIS hub.usb_command.reset = (value & 0x04) ? 1: 0; BX_UHCI_THIS hub.usb_command.host_reset = (value & 0x02) ? 1: 0; BX_UHCI_THIS hub.usb_command.schedule = (value & 0x01) ? 1: 0; // HCRESET if (BX_UHCI_THIS hub.usb_command.host_reset) { BX_UHCI_THIS reset(0); for (unsigned i=0; i> 1; if ((port < BX_N_USB_UHCI_PORTS) && (io_len == 2)) { // If the ports reset bit is set, don't allow any writes unless the new write will clear the reset bit if (BX_UHCI_THIS hub.usb_port[port].reset & (value & (1<<9))) break; if (value & ((1<<5) | (1<<4) | (1<<0))) BX_DEBUG(("write to one or more read-only bits in port #%d register: 0x%04x", port+1, value)); if (!(value & (1<<7))) BX_DEBUG(("write to port #%d register bit 7 = 0", port+1)); if (value & (1<<8)) BX_DEBUG(("write to bit 8 in port #%d register ignored", port+1)); if ((value & (1<<12)) && BX_UHCI_THIS hub.usb_command.suspend) BX_DEBUG(("write to port #%d register bit 12 when in Global-Suspend", port+1)); BX_UHCI_THIS hub.usb_port[port].suspend = (value & (1<<12)) ? 1 : 0; BX_UHCI_THIS hub.usb_port[port].reset = (value & (1<<9)) ? 1 : 0; BX_UHCI_THIS hub.usb_port[port].resume = (value & (1<<6)) ? 1 : 0; if (!BX_UHCI_THIS hub.usb_port[port].enabled && (value & (1<<2))) BX_UHCI_THIS hub.usb_port[port].able_changed = 0; else BX_UHCI_THIS hub.usb_port[port].able_changed = (value & (1<<3)) ? 0 : BX_UHCI_THIS hub.usb_port[port].able_changed; BX_UHCI_THIS hub.usb_port[port].enabled = (value & (1<<2)) ? 1 : 0; BX_UHCI_THIS hub.usb_port[port].connect_changed = (value & (1<<1)) ? 0 : BX_UHCI_THIS hub.usb_port[port].connect_changed; // if port reset, reset function(s) //TODO: only reset items on the downstream... // for now, reset the one and only // TODO: descriptors, etc.... if (BX_UHCI_THIS hub.usb_port[port].reset) { BX_UHCI_THIS hub.usb_port[port].suspend = 0; BX_UHCI_THIS hub.usb_port[port].resume = 0; BX_UHCI_THIS hub.usb_port[port].enabled = 0; // are we are currently connected/disconnected if (BX_UHCI_THIS hub.usb_port[port].status) { if (BX_UHCI_THIS hub.usb_port[port].device != NULL) { BX_UHCI_THIS hub.usb_port[port].low_speed = (BX_UHCI_THIS hub.usb_port[port].device->get_speed() == USB_SPEED_LOW); usb_set_connect_status(port, BX_UHCI_THIS hub.usb_port[port].device->get_type(), 1); DEV_usb_send_msg(BX_UHCI_THIS hub.usb_port[port].device, USB_MSG_RESET); } } BX_INFO(("Port%d: Reset", port+1)); } break; } // else fall through to default default: BX_ERROR(("unsupported io write to address=0x%04x!", (unsigned) address)); break; } } void bx_usb_uhci_c::usb_timer_handler(void *this_ptr) { bx_usb_uhci_c *class_ptr = (bx_usb_uhci_c *) this_ptr; class_ptr->usb_timer(); } // Called once every 1ms #define USB_STACK_SIZE 256 void bx_usb_uhci_c::usb_timer(void) { int i; // If the "global reset" bit was set by software if (BX_UHCI_THIS global_reset) { for (i=0; i -1) { // Linux seems to just loop a few queues together and wait for the 1ms to end. // We will just count the stack and exit when we get to a good point to stop. if (stk >= USB_STACK_SIZE) break; // check to make sure we are not done before continue-ing on if ((stack[stk].d == HC_VERT) && stack[stk].t) { stk--; continue; } if ((stack[stk].d == HC_HORZ) && stack[stk].t) break; if (stack[stk].q) { // is a queue address = stack[stk].next; lastvertaddr = address + 4; // get HORZ slot stk++; DEV_MEM_READ_PHYSICAL(address, 4, (Bit8u*) &item); stack[stk].next = item & ~0xF; stack[stk].d = HC_HORZ; stack[stk].q = (item & 0x0002) ? 1 : 0; stack[stk].t = (item & 0x0001) ? 1 : 0; // get VERT slot stk++; DEV_MEM_READ_PHYSICAL(lastvertaddr, 4, (Bit8u*) &item); stack[stk].next = item & ~0xF; stack[stk].d = HC_VERT; stack[stk].q = (item & 0x0002) ? 1 : 0; stack[stk].t = (item & 0x0001) ? 1 : 0; BX_DEBUG(("Queue %3i: 0x%08X %i %i 0x%08X %i %i", queue_num, stack[stk-1].next, stack[stk-1].q, stack[stk-1].t, stack[stk].next, stack[stk].q, stack[stk].t)); queue_num++; } else { // else is a TD address = stack[stk].next; DEV_MEM_READ_PHYSICAL(address, 4, (Bit8u*) &td.dword0); DEV_MEM_READ_PHYSICAL(address+4, 4, (Bit8u*) &td.dword1); DEV_MEM_READ_PHYSICAL(address+8, 4, (Bit8u*) &td.dword2); DEV_MEM_READ_PHYSICAL(address+12, 4, (Bit8u*) &td.dword3); bx_bool spd = (td.dword1 & (1<<29)) ? 1 : 0; stack[stk].next = td.dword0 & ~0xF; bx_bool depthbreadth = (td.dword0 & 0x0004) ? 1 : 0; // 1 = depth first, 0 = breadth first stack[stk].q = (td.dword0 & 0x0002) ? 1 : 0; stack[stk].t = (td.dword0 & 0x0001) ? 1 : 0; if (td.dword1 & (1<<24)) interrupt = 1; if (td.dword1 & (1<<23)) { // is it an active TD BX_DEBUG(("Frame: %04i (0x%04X)", BX_UHCI_THIS hub.usb_frame_num.frame_num, BX_UHCI_THIS hub.usb_frame_num.frame_num)); if (BX_UHCI_THIS DoTransfer(address, queue_num, &td)) { // issue short packet? Bit16u r_actlen = (((td.dword1 & 0x7FF)+1) & 0x7FF); Bit16u r_maxlen = (((td.dword2>>21)+1) & 0x7FF); BX_DEBUG((" r_actlen = 0x%04X r_maxlen = 0x%04X", r_actlen, r_maxlen)); if (((td.dword2 & 0xFF) == USB_TOKEN_IN) && spd && stk && (r_actlen < r_maxlen) && ((td.dword1 & 0x00FF0000) == 0)) { shortpacket = 1; td.dword1 |= (1<<29); } if (td.dword1 & (1<<22)) stalled = 1; DEV_MEM_WRITE_PHYSICAL(address+4, 4, (Bit8u*) &td.dword1); // write back the status if (shortpacket) { td.dword0 |= 1; stack[stk].t = 1; } // copy pointer for next queue item, in to vert queue head if ((stk > 0) && (stack[stk].d == HC_VERT)) DEV_MEM_WRITE_PHYSICAL(lastvertaddr, 4, (Bit8u*) &td.dword0); } } if (stk > 0) { // if last TD in HORZ queue pointer, then we are done. if (stack[stk].t && (stack[stk].d == HC_HORZ)) break; // if Breadth first or last item in queue, move to next queue. if (!depthbreadth || stack[stk].t) { if (stack[stk].d == HC_HORZ) queue_num--; // <-- really, this should never happen until we stk--; // support bandwidth reclamation... } if (stk < 1) break; } else { if (stack[stk].t) break; } } } // set the status register bit:0 to 1 if SPD is enabled // and if interrupts not masked via interrupt register, raise irq interrupt. if (shortpacket && BX_UHCI_THIS hub.usb_enable.short_packet) { fire_int = 1; BX_DEBUG((" [SPD] We want it to fire here (Frame: %04i)", BX_UHCI_THIS hub.usb_frame_num.frame_num)); } // if one of the TD's in this frame had the ioc bit set, we need to // raise an interrupt, if interrupts are not masked via interrupt register. // always set the status register if IOC. if (interrupt && BX_UHCI_THIS hub.usb_enable.on_complete) { fire_int = 1; BX_DEBUG((" [IOC] We want it to fire here (Frame: %04i)", BX_UHCI_THIS hub.usb_frame_num.frame_num)); } if (stalled && BX_UHCI_THIS hub.usb_enable.timeout_crc) { fire_int = 1; BX_DEBUG((" [stalled] We want it to fire here (Frame: %04i)", BX_UHCI_THIS hub.usb_frame_num.frame_num)); } } // The Frame Number Register is incremented every 1ms BX_UHCI_THIS hub.usb_frame_num.frame_num++; BX_UHCI_THIS hub.usb_frame_num.frame_num &= (1024-1); // if we needed to fire an interrupt now, lets do it *after* we increment the frame_num register if (fire_int) { BX_UHCI_THIS hub.usb_status.interrupt = 1; BX_UHCI_THIS hub.usb_status.error_interrupt = stalled; set_irq_level(1); } // The status.interrupt bit should be set regardless of the enable bits if a IOC or SPD is found if (shortpacket || interrupt) BX_UHCI_THIS hub.usb_status.interrupt = 1; BX_UHCI_THIS busy = 0; // ready to do next frame item } // end run schedule // if host turned off the schedule, set the halted bit in the status register // Note: Can not use an else from the if() above since the host can changed this bit // while we are processing a frame. if (BX_UHCI_THIS hub.usb_command.schedule == 0) BX_UHCI_THIS hub.usb_status.host_halted = 1; // TODO: // If in Global_Suspend mode and any of usb_port[i] bits 6,3, or 1 are set, // we need to issue a Global_Resume (set the global resume bit). // However, since we don't do anything, let's not. } bx_bool bx_usb_uhci_c::DoTransfer(Bit32u address, Bit32u queue_num, struct TD *td) { int len = 0, ret = 0; Bit16u maxlen = (td->dword2 >> 21); Bit8u addr = (td->dword2 >> 8) & 0x7F; Bit8u endpt = (td->dword2 >> 15) & 0x0F; Bit8u pid = td->dword2 & 0xFF; BX_DEBUG(("QH%03i:TD found at address: 0x%08X", queue_num, address)); BX_DEBUG((" %08X %08X %08X %08X", td->dword0, td->dword1, td->dword2, td->dword3)); // check TD to make sure it is valid // A max length 0x500 to 0x77E is illegal if (((td->dword2 >> 21) >= 0x500) && ((td->dword2 >> 21) != 0x7FF)) { BX_ERROR(("error at 11111111111")); return 1; // error = consistency check failure } //if (td->dword0 & 0x8) return 1; // error = reserved bits in dword0 set // other error checks here // the device should remain in a stall state until the next setup packet is recieved // For some reason, this doesn't work yet. //if (dev && dev->in_stall && (pid != USB_TOKEN_SETUP)) // return FALSE; maxlen++; maxlen &= 0x7FF; /* set status bar conditions for device */ if (maxlen > 0) { if (!BX_UHCI_THIS hub.iolight_counter) { if (pid == USB_TOKEN_OUT) bx_gui->statusbar_setitem(BX_UHCI_THIS hub.statusbar_id, 1, 1); // write else bx_gui->statusbar_setitem(BX_UHCI_THIS hub.statusbar_id, 1); // read } BX_UHCI_THIS hub.iolight_counter = 5; bx_pc_system.activate_timer(BX_UHCI_THIS hub.iolight_timer_index, 5000, 0); } BX_UHCI_THIS usb_packet.pid = pid; BX_UHCI_THIS usb_packet.devaddr = addr; BX_UHCI_THIS usb_packet.devep = endpt; BX_UHCI_THIS usb_packet.data = device_buffer; BX_UHCI_THIS usb_packet.len = maxlen; switch (pid) { case USB_TOKEN_OUT: case USB_TOKEN_SETUP: if (maxlen > 0) { DEV_MEM_READ_PHYSICAL_BLOCK(td->dword3, maxlen, device_buffer); } ret = BX_UHCI_THIS broadcast_packet(&BX_UHCI_THIS usb_packet); len = maxlen; break; case USB_TOKEN_IN: ret = BX_UHCI_THIS broadcast_packet(&BX_UHCI_THIS usb_packet); if (ret >= 0) { len = ret; if (len > maxlen) { len = maxlen; ret = USB_RET_BABBLE; } if (len > 0) { DEV_MEM_WRITE_PHYSICAL_BLOCK(td->dword3, len, device_buffer); } } else { len = 0; } break; default: BX_UHCI_THIS hub.usb_status.host_error = 1; BX_UHCI_THIS set_irq_level(1); } if (ret >= 0) { BX_UHCI_THIS set_status(td, 0, 0, 0, 0, 0, 0, len-1); } else { BX_UHCI_THIS set_status(td, 1, 0, 0, 0, 0, 0, 0x007); // stalled } return 1; } int bx_usb_uhci_c::broadcast_packet(USBPacket *p) { int i, ret; ret = USB_RET_NODEV; for (i = 0; i < BX_N_USB_UHCI_PORTS && ret == USB_RET_NODEV; i++) { if ((BX_UHCI_THIS hub.usb_port[i].device != NULL) && (BX_UHCI_THIS hub.usb_port[i].enabled)) { ret = BX_UHCI_THIS hub.usb_port[i].device->handle_packet(p); } } return ret; } // If the request fails, set the stall bit ???? void bx_usb_uhci_c::set_status(struct TD *td, bx_bool stalled, bx_bool data_buffer_error, bx_bool babble, bx_bool nak, bx_bool crc_time_out, bx_bool bitstuff_error, Bit16u act_len) { // clear out the bits we can modify and/or want zero td->dword1 &= 0xDF00F800; // now set the bits according to the passed param's td->dword1 |= stalled ? (1<<22) : 0; // stalled td->dword1 |= data_buffer_error ? (1<<21) : 0; // data buffer error td->dword1 |= babble ? (1<<20) : 0; // babble td->dword1 |= nak ? (1<<19) : 0; // nak td->dword1 |= crc_time_out ? (1<<18) : 0; // crc/timeout td->dword1 |= bitstuff_error ? (1<<17) : 0; // bitstuff error td->dword1 |= (act_len & 0x7FF); // actual length if (stalled || data_buffer_error || babble || nak || crc_time_out || bitstuff_error) td->dword1 &= ~((1<<28) | (1<<27)); // clear the c_err field in there was an error } void bx_usb_uhci_c::iolight_timer_handler(void *this_ptr) { bx_usb_uhci_c *class_ptr = (bx_usb_uhci_c *) this_ptr; class_ptr->iolight_timer(); } void bx_usb_uhci_c::iolight_timer() { if (BX_UHCI_THIS hub.iolight_counter > 0) { if (--BX_UHCI_THIS hub.iolight_counter) bx_pc_system.activate_timer(BX_UHCI_THIS hub.iolight_timer_index, 5000, 0); else bx_gui->statusbar_setitem(BX_UHCI_THIS hub.statusbar_id, 0); } } void bx_usb_uhci_c::runtime_config_handler(void *this_ptr) { bx_usb_uhci_c *class_ptr = (bx_usb_uhci_c *) this_ptr; class_ptr->runtime_config(); } void bx_usb_uhci_c::runtime_config(void) { int i; char pname[6]; for (i = 0; i < BX_N_USB_UHCI_PORTS; i++) { // device change support if ((BX_UHCI_THIS hub.device_change & (1 << i)) != 0) { BX_INFO(("USB port #%d: device connect", i+1)); sprintf(pname, "port%d", i + 1); init_device(i, (bx_list_c*)SIM->get_param(pname, SIM->get_param(BXPN_USB_UHCI))); BX_UHCI_THIS hub.device_change &= ~(1 << i); } // forward to connected device if (BX_UHCI_THIS hub.usb_port[i].device != NULL) { BX_UHCI_THIS hub.usb_port[i].device->runtime_config(); } } } // pci configuration space read callback handler Bit32u bx_usb_uhci_c::pci_read_handler(Bit8u address, unsigned io_len) { Bit32u value = 0; for (unsigned i=0; i= 0x10) && (address < 0x20)) || ((address > 0x23) && (address < 0x34))) return; for (unsigned i=0; i> (i*8)) & 0xFF; oldval = BX_UHCI_THIS pci_conf[address+i]; switch (address+i) { case 0x04: value8 &= 0x05; BX_UHCI_THIS pci_conf[address+i] = value8; break; case 0x3d: // case 0x3e: // case 0x3f: // case 0x05: // disallowing write to command hi-byte case 0x06: // disallowing write to status lo-byte (is that expected?) break; case 0x3c: if (value8 != oldval) { BX_INFO(("new irq line = %d", value8)); BX_UHCI_THIS pci_conf[address+i] = value8; } break; case 0x20: value8 = (value8 & 0xfc) | 0x01; case 0x21: case 0x22: case 0x23: baseaddr_change |= (value8 != oldval); default: BX_UHCI_THIS pci_conf[address+i] = value8; } } if (baseaddr_change) { if (DEV_pci_set_base_io(BX_UHCI_THIS_PTR, read_handler, write_handler, &BX_UHCI_THIS pci_base_address[4], &BX_UHCI_THIS pci_conf[0x20], 32, &uhci_iomask[0], "USB UHCI Hub")) { BX_INFO(("new base address: 0x%04x", BX_UHCI_THIS pci_base_address[4])); } } if (io_len == 1) BX_DEBUG(("write PCI register 0x%02x value 0x%02x", address, value)); else if (io_len == 2) BX_DEBUG(("write PCI register 0x%02x value 0x%04x", address, value)); else if (io_len == 4) BX_DEBUG(("write PCI register 0x%02x value 0x%08x", address, value)); } void bx_usb_uhci_c::usb_set_connect_status(Bit8u port, int type, bx_bool connected) { usb_device_c *device = BX_UHCI_THIS hub.usb_port[port].device; if (device != NULL) { if (device->get_type() == type) { if (connected) { BX_UHCI_THIS hub.usb_port[port].low_speed = (device->get_speed() == USB_SPEED_LOW); if (BX_UHCI_THIS hub.usb_port[port].low_speed) { BX_UHCI_THIS hub.usb_port[port].line_dminus = 1; // dminus=1 & dplus=0 = low speed (at idle time) BX_UHCI_THIS hub.usb_port[port].line_dplus = 0; // dminus=0 & dplus=1 = high speed (at idle time) } else { BX_UHCI_THIS hub.usb_port[port].line_dminus = 0; BX_UHCI_THIS hub.usb_port[port].line_dplus = 1; } BX_UHCI_THIS hub.usb_port[port].status = 1; BX_UHCI_THIS hub.usb_port[port].connect_changed = 1; BX_UHCI_THIS hub.usb_port[port].able_changed = 1; // if in suspend state, signal resume if (BX_UHCI_THIS hub.usb_command.suspend) { BX_UHCI_THIS hub.usb_port[port].resume = 1; BX_UHCI_THIS hub.usb_status.resume = 1; if (BX_UHCI_THIS hub.usb_enable.resume) { BX_UHCI_THIS hub.usb_status.interrupt = 1; set_irq_level(1); } } if (!device->get_connected()) { if (!device->init()) { usb_set_connect_status(port, type, 0); BX_ERROR(("port #%d: connect failed", port+1)); } else { BX_INFO(("port #%d: connect: %s", port+1, device->get_info())); } } } else { BX_UHCI_THIS hub.usb_port[port].status = 0; BX_UHCI_THIS hub.usb_port[port].connect_changed = 1; BX_UHCI_THIS hub.usb_port[port].enabled = 0; BX_UHCI_THIS hub.usb_port[port].able_changed = 1; BX_UHCI_THIS hub.usb_port[port].low_speed = 0; BX_UHCI_THIS hub.usb_port[port].line_dminus = 0; BX_UHCI_THIS hub.usb_port[port].line_dplus = 0; remove_device(port); } } } } // USB runtime parameter handler const char *bx_usb_uhci_c::usb_param_handler(bx_param_string_c *param, int set, const char *oldval, const char *val, int maxlen) { usbdev_type type = USB_DEV_TYPE_NONE; int portnum; if (set) { portnum = atoi((param->get_parent())->get_name()+4) - 1; bx_bool empty = ((strlen(val) == 0) || (!strcmp(val, "none"))); if ((portnum >= 0) && (portnum < BX_N_USB_UHCI_PORTS)) { if (empty && BX_UHCI_THIS hub.usb_port[portnum].status) { BX_INFO(("USB port #%d: device disconnect", portnum+1)); if (BX_UHCI_THIS hub.usb_port[portnum].device != NULL) { type = BX_UHCI_THIS hub.usb_port[portnum].device->get_type(); } usb_set_connect_status(portnum, type, 0); } else if (!empty && !BX_UHCI_THIS hub.usb_port[portnum].status) { BX_UHCI_THIS hub.device_change |= (1 << portnum); } } else { BX_PANIC(("usb_param_handler called with unexpected parameter '%s'", param->get_name())); } } return val; } #endif // BX_SUPPORT_PCI && BX_SUPPORT_USB_UHCI