///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2006-2015 Volker Ruppert // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // // PIIX4 ACPI support // // Define BX_PLUGGABLE in files that can be compiled into plugins. For // platforms that require a special tag on exported symbols, BX_PLUGGABLE // is used to know when we are exporting symbols and when we are importing. #define BX_PLUGGABLE #include "iodev.h" #if BX_SUPPORT_PCI #include "pci.h" #include "acpi.h" #define LOG_THIS theACPIController-> bx_acpi_ctrl_c* theACPIController = NULL; // FIXME const Bit8u acpi_pm_iomask[64] = {2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 7, 7, 7, 7, 7, 7, 7, 7, 1, 1, 0, 0, 7, 7, 0, 0, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7, 7, 7, 7, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}; const Bit8u acpi_sm_iomask[16] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 0, 0, 0}; #define PM_FREQ 3579545 #define ACPI_DBG_IO_ADDR 0xb044 #define RSM_STS (1 << 15) #define PWRBTN_STS (1 << 8) #define RTC_EN (1 << 10) #define PWRBTN_EN (1 << 8) #define GBL_EN (1 << 5) #define TMROF_EN (1 << 0) #define SCI_EN (1 << 0) #define SUS_EN (1 << 13) #define ACPI_ENABLE 0xf1 #define ACPI_DISABLE 0xf0 extern void apic_bus_deliver_smi(void); int CDECL libacpi_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[]) { theACPIController = new bx_acpi_ctrl_c(); bx_devices.pluginACPIController = theACPIController; BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theACPIController, BX_PLUGIN_ACPI); return 0; // Success } void CDECL libacpi_LTX_plugin_fini(void) { bx_devices.pluginACPIController = &bx_devices.stubACPIController; delete theACPIController; } /* ported from QEMU: compute with 96 bit intermediate result: (a*b)/c */ Bit64u muldiv64(Bit64u a, Bit32u b, Bit32u c) { union { Bit64u ll; struct { #if WORDS_BIGENDIAN Bit32u high, low; #else Bit32u low, high; #endif } l; } u, res; Bit64u rl, rh; u.ll = a; rl = (Bit64u)u.l.low * (Bit64u)b; rh = (Bit64u)u.l.high * (Bit64u)b; rh += (rl >> 32); rl &= 0xffffffff; res.l.high = (Bit32u)(rh / c); res.l.low = (Bit32u)((((rh % c) << 32) + rl) / c); return res.ll; } bx_acpi_ctrl_c::bx_acpi_ctrl_c() { put("ACPI"); memset(&s, 0, sizeof(s)); s.timer_index = BX_NULL_TIMER_HANDLE; } bx_acpi_ctrl_c::~bx_acpi_ctrl_c() { SIM->get_bochs_root()->remove("acpi"); BX_DEBUG(("Exit")); } void bx_acpi_ctrl_c::init(void) { // called once when bochs initializes BX_ACPI_THIS s.devfunc = BX_PCI_DEVICE(1, 3); DEV_register_pci_handlers(this, &BX_ACPI_THIS s.devfunc, BX_PLUGIN_ACPI, "ACPI Controller"); if (BX_ACPI_THIS s.timer_index == BX_NULL_TIMER_HANDLE) { BX_ACPI_THIS s.timer_index = bx_pc_system.register_timer(this, timer_handler, 1000, 0, 0, "ACPI"); } DEV_register_iowrite_handler(this, write_handler, ACPI_DBG_IO_ADDR, "ACPI", 4); BX_ACPI_THIS s.pm_base = 0x0; BX_ACPI_THIS s.sm_base = 0x0; // initialize readonly registers init_pci_conf(0x8086, 0x7113, 0x03, 0x068000, 0x00); BX_ACPI_THIS pci_conf[0x3d] = BX_PCI_INTA; } void bx_acpi_ctrl_c::reset(unsigned type) { BX_ACPI_THIS pci_conf[0x04] = 0x00; // command_io + command_mem BX_ACPI_THIS pci_conf[0x05] = 0x00; BX_ACPI_THIS pci_conf[0x06] = 0x80; // status_devsel_medium BX_ACPI_THIS pci_conf[0x07] = 0x02; BX_ACPI_THIS pci_conf[0x3c] = 0x00; // IRQ // PM base 0x40 - 0x43 BX_ACPI_THIS pci_conf[0x40] = 0x01; BX_ACPI_THIS pci_conf[0x41] = 0x00; BX_ACPI_THIS pci_conf[0x42] = 0x00; BX_ACPI_THIS pci_conf[0x43] = 0x00; // clear DEVACTB register on PIIX4 ACPI reset BX_ACPI_THIS pci_conf[0x58] = 0x00; BX_ACPI_THIS pci_conf[0x59] = 0x00; // device resources BX_ACPI_THIS pci_conf[0x5a] = 0x00; BX_ACPI_THIS pci_conf[0x5b] = 0x00; BX_ACPI_THIS pci_conf[0x5f] = 0x90; BX_ACPI_THIS pci_conf[0x63] = 0x60; BX_ACPI_THIS pci_conf[0x67] = 0x98; // SM base 0x90 - 0x93 BX_ACPI_THIS pci_conf[0x90] = 0x01; BX_ACPI_THIS pci_conf[0x91] = 0x00; BX_ACPI_THIS pci_conf[0x92] = 0x00; BX_ACPI_THIS pci_conf[0x93] = 0x00; BX_ACPI_THIS s.pmsts = 0; BX_ACPI_THIS s.pmen = 0; BX_ACPI_THIS s.pmcntrl = 0; BX_ACPI_THIS s.tmr_overflow_time = 0xffffff; BX_ACPI_THIS s.smbus.stat = 0; BX_ACPI_THIS s.smbus.ctl = 0; BX_ACPI_THIS s.smbus.cmd = 0; BX_ACPI_THIS s.smbus.addr = 0; BX_ACPI_THIS s.smbus.data0 = 0; BX_ACPI_THIS s.smbus.data1 = 0; BX_ACPI_THIS s.smbus.index = 0; for (unsigned i = 0; i < 32; i++) { BX_ACPI_THIS s.smbus.data[i] = 0; } } void bx_acpi_ctrl_c::register_state(void) { bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "acpi", "ACPI Controller State"); BXRS_HEX_PARAM_FIELD(list, pmsts, BX_ACPI_THIS s.pmsts); BXRS_HEX_PARAM_FIELD(list, pmen, BX_ACPI_THIS s.pmen); BXRS_HEX_PARAM_FIELD(list, pmcntrl, BX_ACPI_THIS s.pmcntrl); BXRS_HEX_PARAM_FIELD(list, tmr_overflow_time, BX_ACPI_THIS s.tmr_overflow_time); bx_list_c *smbus = new bx_list_c(list, "smbus", "ACPI SMBus"); BXRS_HEX_PARAM_FIELD(smbus, stat, BX_ACPI_THIS s.smbus.stat); BXRS_HEX_PARAM_FIELD(smbus, ctl, BX_ACPI_THIS s.smbus.ctl); BXRS_HEX_PARAM_FIELD(smbus, cmd, BX_ACPI_THIS s.smbus.cmd); BXRS_HEX_PARAM_FIELD(smbus, addr, BX_ACPI_THIS s.smbus.addr); BXRS_HEX_PARAM_FIELD(smbus, data0, BX_ACPI_THIS s.smbus.data0); BXRS_HEX_PARAM_FIELD(smbus, data1, BX_ACPI_THIS s.smbus.data1); BXRS_HEX_PARAM_FIELD(smbus, index, BX_ACPI_THIS s.smbus.index); new bx_shadow_data_c(smbus, "data", BX_ACPI_THIS s.smbus.data, 32, 1); register_pci_state(list); } void bx_acpi_ctrl_c::after_restore_state(void) { if (DEV_pci_set_base_io(BX_ACPI_THIS_PTR, read_handler, write_handler, &BX_ACPI_THIS s.pm_base, &BX_ACPI_THIS pci_conf[0x40], 64, &acpi_pm_iomask[0], "ACPI PM base")) { BX_INFO(("new PM base address: 0x%04x", BX_ACPI_THIS s.pm_base)); } if (DEV_pci_set_base_io(BX_ACPI_THIS_PTR, read_handler, write_handler, &BX_ACPI_THIS s.sm_base, &BX_ACPI_THIS pci_conf[0x90], 16, &acpi_sm_iomask[0], "ACPI SM base")) { BX_INFO(("new SM base address: 0x%04x", BX_ACPI_THIS s.sm_base)); } } void bx_acpi_ctrl_c::set_irq_level(bx_bool level) { DEV_pci_set_irq(BX_ACPI_THIS s.devfunc, BX_ACPI_THIS pci_conf[0x3d], level); } Bit32u bx_acpi_ctrl_c::get_pmtmr(void) { Bit64u value = muldiv64(bx_pc_system.time_usec(), PM_FREQ, 1000000); return (Bit32u)(value & 0xffffff); } Bit16u bx_acpi_ctrl_c::get_pmsts(void) { Bit16u pmsts = BX_ACPI_THIS s.pmsts; Bit64u value = muldiv64(bx_pc_system.time_usec(), PM_FREQ, 1000000); if (value >= BX_ACPI_THIS s.tmr_overflow_time) BX_ACPI_THIS s.pmsts |= TMROF_EN; return pmsts; } void bx_acpi_ctrl_c::pm_update_sci(void) { Bit16u pmsts = get_pmsts(); bx_bool sci_level = (((pmsts & BX_ACPI_THIS s.pmen) & (RTC_EN | PWRBTN_EN | GBL_EN | TMROF_EN)) != 0); BX_ACPI_THIS set_irq_level(sci_level); // schedule a timer interruption if needed if ((BX_ACPI_THIS s.pmen & TMROF_EN) && !(pmsts & TMROF_EN)) { Bit64u expire_time = muldiv64(BX_ACPI_THIS s.tmr_overflow_time, 1000000, PM_FREQ); bx_pc_system.activate_timer(BX_ACPI_THIS s.timer_index, (Bit32u)expire_time, 0); } else { bx_pc_system.deactivate_timer(BX_ACPI_THIS s.timer_index); } } void bx_acpi_ctrl_c::generate_smi(Bit8u value) { /* ACPI specs 3.0, 4.7.2.5 */ if (value == ACPI_ENABLE) { BX_ACPI_THIS s.pmcntrl |= SCI_EN; } else if (value == ACPI_DISABLE) { BX_ACPI_THIS s.pmcntrl &= ~SCI_EN; } if (BX_ACPI_THIS pci_conf[0x5b] & 0x02) { apic_bus_deliver_smi(); } } // static IO port read callback handler // redirects to non-static class handler to avoid virtual functions Bit32u bx_acpi_ctrl_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len) { #if !BX_USE_ACPI_SMF bx_acpi_ctrl_c *class_ptr = (bx_acpi_ctrl_c *) this_ptr; return class_ptr->read(address, io_len); } Bit32u bx_acpi_ctrl_c::read(Bit32u address, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_ACPI_SMF Bit8u reg = address & 0x3f; Bit32u value = 0xffffffff; if ((address & 0xffc0) == BX_ACPI_THIS s.pm_base) { if ((BX_ACPI_THIS pci_conf[0x80] & 0x01) == 0) { return value; } switch (reg) { case 0x00: value = BX_ACPI_THIS get_pmsts(); break; case 0x02: value = BX_ACPI_THIS s.pmen; break; case 0x04: value = BX_ACPI_THIS s.pmcntrl; break; case 0x08: value = BX_ACPI_THIS get_pmtmr(); break; default: BX_INFO(("ACPI read from PM register 0x%02x not implemented yet", reg)); } BX_DEBUG(("ACPI read from PM register 0x%02x returns 0x%08x", reg, value)); } else { if (((BX_ACPI_THIS pci_conf[0x04] & 0x01) == 0) && ((BX_ACPI_THIS pci_conf[0xd2] & 0x01) == 0)) { return value; } switch (reg) { case 0x00: value = BX_ACPI_THIS s.smbus.stat; break; case 0x02: BX_ACPI_THIS s.smbus.index = 0; value = BX_ACPI_THIS s.smbus.ctl & 0x1f; break; case 0x03: value = BX_ACPI_THIS s.smbus.cmd; break; case 0x04: value = BX_ACPI_THIS s.smbus.addr; break; case 0x05: value = BX_ACPI_THIS s.smbus.data0; break; case 0x06: value = BX_ACPI_THIS s.smbus.data1; break; case 0x07: value = BX_ACPI_THIS s.smbus.data[BX_ACPI_THIS s.smbus.index++]; if (BX_ACPI_THIS s.smbus.index > 31) { BX_ACPI_THIS s.smbus.index = 0; } break; default: value = 0; BX_INFO(("ACPI read from SMBus register 0x%02x not implemented yet", reg)); } BX_DEBUG(("ACPI read from SMBus register 0x%02x returns 0x%08x", reg, value)); } return value; } // static IO port write callback handler // redirects to non-static class handler to avoid virtual functions void bx_acpi_ctrl_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len) { #if !BX_USE_ACPI_SMF bx_acpi_ctrl_c *class_ptr = (bx_acpi_ctrl_c *) this_ptr; class_ptr->write(address, value, io_len); } void bx_acpi_ctrl_c::write(Bit32u address, Bit32u value, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_ACPI_SMF Bit8u reg = address & 0x3f; if ((address & 0xffc0) == BX_ACPI_THIS s.pm_base) { if ((BX_ACPI_THIS pci_conf[0x80] & 0x01) == 0) { return; } BX_DEBUG(("ACPI write to PM register 0x%02x, value = 0x%04x", reg, value)); switch (reg) { case 0x00: { Bit16u pmsts = BX_ACPI_THIS get_pmsts(); if (pmsts & value & TMROF_EN) { // if TMRSTS is reset, then compute the new overflow time Bit64u d = muldiv64(bx_pc_system.time_usec(), PM_FREQ, 1000000); BX_ACPI_THIS s.tmr_overflow_time = (d + BX_CONST64(0x800000)) & ~BX_CONST64(0x7fffff); } BX_ACPI_THIS s.pmsts &= ~value; BX_ACPI_THIS pm_update_sci(); } break; case 0x02: BX_ACPI_THIS s.pmen = value; BX_ACPI_THIS pm_update_sci(); break; case 0x04: { BX_ACPI_THIS s.pmcntrl = value & ~(SUS_EN); if (value & SUS_EN) { // change suspend type Bit16u sus_typ = (value >> 10) & 7; switch (sus_typ) { case 0: // soft power off bx_user_quit = 1; LOG_THIS setonoff(LOGLEV_PANIC, ACT_FATAL); BX_PANIC(("ACPI control: soft power off")); break; case 1: BX_INFO(("ACPI control: suspend to ram")); BX_ACPI_THIS s.pmsts |= (RSM_STS | PWRBTN_STS); DEV_cmos_set_reg(0xF, 0xFE); bx_pc_system.Reset(BX_RESET_HARDWARE); break; default: break; } } } break; default: BX_INFO(("ACPI write to PM register 0x%02x not implemented yet", reg)); } } else if ((address & 0xfff0) == BX_ACPI_THIS s.sm_base) { if (((BX_ACPI_THIS pci_conf[0x04] & 0x01) == 0) && ((BX_ACPI_THIS pci_conf[0xd2] & 0x01) == 0)) { return; } BX_DEBUG(("ACPI write to SMBus register 0x%02x, value = 0x%04x", reg, value)); switch (reg) { case 0x00: BX_ACPI_THIS s.smbus.stat = 0; BX_ACPI_THIS s.smbus.index = 0; break; case 0x02: BX_ACPI_THIS s.smbus.ctl = 0; // TODO: execute SMBus command break; case 0x03: BX_ACPI_THIS s.smbus.cmd = 0; break; case 0x04: BX_ACPI_THIS s.smbus.addr = 0; break; case 0x05: BX_ACPI_THIS s.smbus.data0 = 0; break; case 0x06: BX_ACPI_THIS s.smbus.data1 = 0; break; case 0x07: BX_ACPI_THIS s.smbus.data[BX_ACPI_THIS s.smbus.index++] = value; if (BX_ACPI_THIS s.smbus.index > 31) { BX_ACPI_THIS s.smbus.index = 0; } break; default: BX_INFO(("ACPI write to SMBus register 0x%02x not implemented yet", reg)); } } else { BX_DEBUG(("DBG: 0x%08x", value)); } } void bx_acpi_ctrl_c::timer_handler(void *this_ptr) { bx_acpi_ctrl_c *class_ptr = (bx_acpi_ctrl_c *) this_ptr; class_ptr->timer(); } void bx_acpi_ctrl_c::timer() { BX_ACPI_THIS pm_update_sci(); } // pci configuration space read callback handler Bit32u bx_acpi_ctrl_c::pci_read_handler(Bit8u address, unsigned io_len) { Bit32u value = 0; for (unsigned i=0; i= 0x10) && (address < 0x34)) return; for (unsigned i=0; i> (i*8)) & 0xFF; oldval = BX_ACPI_THIS pci_conf[address+i]; switch (address+i) { case 0x04: value8 = (value8 & 0xfe) | (value & 0x01); goto set_value; break; case 0x06: // disallowing write to status lo-byte (is that expected?) break; case 0x3c: if (value8 != oldval) { BX_INFO(("new irq line = %d", value8)); } goto set_value; break; case 0x40: value8 = (value8 & 0xc0) | 0x01; case 0x41: case 0x42: case 0x43: pm_base_change |= (value8 != oldval); goto set_value; break; case 0x90: value8 = (value8 & 0xf0) | 0x01; case 0x91: case 0x92: case 0x93: sm_base_change |= (value8 != oldval); default: set_value: BX_ACPI_THIS pci_conf[address+i] = value8; } } if (pm_base_change) { if (DEV_pci_set_base_io(BX_ACPI_THIS_PTR, read_handler, write_handler, &BX_ACPI_THIS s.pm_base, &BX_ACPI_THIS pci_conf[0x40], 64, &acpi_pm_iomask[0], "ACPI PM base")) { BX_INFO(("new PM base address: 0x%04x", BX_ACPI_THIS s.pm_base)); } } if (sm_base_change) { if (DEV_pci_set_base_io(BX_ACPI_THIS_PTR, read_handler, write_handler, &BX_ACPI_THIS s.sm_base, &BX_ACPI_THIS pci_conf[0x90], 16, &acpi_sm_iomask[0], "ACPI SM base")) { BX_INFO(("new SM base address: 0x%04x", BX_ACPI_THIS s.sm_base)); } } if (io_len == 1) BX_DEBUG(("write PCI register 0x%02x value 0x%02x", address, value)); else if (io_len == 2) BX_DEBUG(("write PCI register 0x%02x value 0x%04x", address, value)); else if (io_len == 4) BX_DEBUG(("write PCI register 0x%02x value 0x%08x", address, value)); } #endif // BX_SUPPORT_PCI