///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2020 The Bochs Project // // I/O memory handlers API Copyright (C) 2003 by Frank Cornelis // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #include "bochs.h" #include "param_names.h" #include "cpu/cpu.h" #include "iodev/iodev.h" #define LOG_THIS BX_MEM(0)-> // alignment of memory vector, must be a power of 2 #define BX_MEM_VECTOR_ALIGN 4096 #define BX_MEM_HANDLERS ((BX_CONST64(1) << BX_PHY_ADDRESS_WIDTH) >> 20) /* one per megabyte */ #if BX_LARGE_RAMFILE Bit8u* const BX_MEM_C::swapped_out = ((Bit8u*)NULL - sizeof(Bit8u)); #endif #define FLASH_READ_ARRAY 0xff #define FLASH_INT_ID 0x90 #define FLASH_READ_STATUS 0x70 #define FLASH_CLR_STATUS 0x50 #define FLASH_ERASE_SETUP 0x20 #define FLASH_ERASE_SUSP 0xb0 #define FLASH_PROG_SETUP 0x40 #define FLASH_ERASE 0xd0 BX_MEM_C::BX_MEM_C() { put("memory", "MEM0"); vector = NULL; actual_vector = NULL; blocks = NULL; len = 0; used_blocks = 0; memory_handlers = NULL; #if BX_LARGE_RAMFILE next_swapout_idx = 0; overflow_file = NULL; #endif } Bit8u* BX_MEM_C::alloc_vector_aligned(Bit64u bytes, Bit64u alignment) { Bit64u test_mask = alignment - 1; BX_MEM_THIS actual_vector = new Bit8u [(Bit32u)(bytes + test_mask)]; if (BX_MEM_THIS actual_vector == 0) { BX_PANIC(("alloc_vector_aligned: unable to allocate host RAM !")); return 0; } // round address forward to nearest multiple of alignment. Alignment // MUST BE a power of two for this to work. Bit64u masked = ((Bit64u)(BX_MEM_THIS actual_vector + test_mask)) & ~test_mask; Bit8u *vector = (Bit8u *) masked; // sanity check: no lost bits during pointer conversion assert(sizeof(masked) >= sizeof(vector)); // sanity check: after realignment, everything fits in allocated space assert(vector+bytes <= BX_MEM_THIS actual_vector+bytes+test_mask); return vector; } BX_MEM_C::~BX_MEM_C() { #if BX_LARGE_RAMFILE if (overflow_file) fclose(BX_MEM_THIS overflow_file); #endif cleanup_memory(); } void BX_MEM_C::init_memory(Bit64u guest, Bit64u host) { unsigned i, idx; BX_DEBUG(("Init $Id$")); // accept only memory size which is multiply of 1M BX_ASSERT((host & 0xfffff) == 0); BX_ASSERT((guest & 0xfffff) == 0); if (BX_MEM_THIS actual_vector != NULL) { BX_INFO(("freeing existing memory vector")); delete [] BX_MEM_THIS actual_vector; BX_MEM_THIS actual_vector = NULL; BX_MEM_THIS vector = NULL; BX_MEM_THIS blocks = NULL; } BX_MEM_THIS vector = alloc_vector_aligned(host + BIOSROMSZ + EXROMSIZE + 4096, BX_MEM_VECTOR_ALIGN); BX_INFO(("allocated memory at %p. after alignment, vector=%p", BX_MEM_THIS actual_vector, BX_MEM_THIS vector)); BX_MEM_THIS len = guest; BX_MEM_THIS allocated = host; BX_MEM_THIS rom = &BX_MEM_THIS vector[host]; BX_MEM_THIS bogus = &BX_MEM_THIS vector[host + BIOSROMSZ + EXROMSIZE]; memset(BX_MEM_THIS rom, 0xff, BIOSROMSZ + EXROMSIZE + 4096); // block must be large enough to fit num_blocks in 32-bit BX_ASSERT((BX_MEM_THIS len / BX_MEM_BLOCK_LEN) <= 0xffffffff); Bit32u num_blocks = (Bit32u)(BX_MEM_THIS len / BX_MEM_BLOCK_LEN); BX_INFO(("%.2fMB", (float)(BX_MEM_THIS len / (1024.0*1024.0)))); BX_INFO(("mem block size = 0x%08x, blocks=%u", BX_MEM_BLOCK_LEN, num_blocks)); BX_MEM_THIS blocks = new Bit8u* [num_blocks]; if (0) { // all guest memory is allocated, just map it for (idx = 0; idx < num_blocks; idx++) { BX_MEM_THIS blocks[idx] = BX_MEM_THIS vector + (idx * BX_MEM_BLOCK_LEN); } BX_MEM_THIS used_blocks = num_blocks; } else { // host cannot allocate all requested guest memory for (idx = 0; idx < num_blocks; idx++) { BX_MEM_THIS blocks[idx] = NULL; } BX_MEM_THIS used_blocks = 0; } BX_MEM_THIS memory_handlers = new struct memory_handler_struct *[BX_MEM_HANDLERS]; for (idx = 0; idx < BX_MEM_HANDLERS; idx++) BX_MEM_THIS memory_handlers[idx] = NULL; BX_MEM_THIS pci_enabled = SIM->get_param_bool(BXPN_PCI_ENABLED)->get(); BX_MEM_THIS bios_write_enabled = 0; BX_MEM_THIS bios_rom_addr = 0xffff0000; BX_MEM_THIS flash_type = 0; BX_MEM_THIS flash_status = 0x80; BX_MEM_THIS flash_wsm_state = FLASH_READ_ARRAY; BX_MEM_THIS smram_available = 0; BX_MEM_THIS smram_enable = 0; BX_MEM_THIS smram_restricted = 0; for (i = 0; i < 65; i++) BX_MEM_THIS rom_present[i] = 0; for (i = 0; i <= BX_MEM_AREA_F0000; i++) { BX_MEM_THIS memory_type[i][0] = 0; BX_MEM_THIS memory_type[i][1] = 0; } BX_MEM_THIS register_state(); } #if BX_LARGE_RAMFILE void BX_MEM_C::read_block(Bit32u block) { const Bit64u block_address = ((Bit64u)block)*BX_MEM_BLOCK_LEN; if (fseeko64(BX_MEM_THIS overflow_file, block_address, SEEK_SET)) BX_PANIC(("FATAL ERROR: Could not seek to 0x" FMT_LL "x in memory overflow file!", block_address)); // We could legitimately get an EOF condition if we are reading the last bit of memory.ram if ((fread(BX_MEM_THIS blocks[block], BX_MEM_BLOCK_LEN, 1, BX_MEM_THIS overflow_file) != 1) && (!feof(BX_MEM_THIS overflow_file))) BX_PANIC(("FATAL ERROR: Could not read from 0x" FMT_LL "x in memory overflow file!", block_address)); } #endif void BX_MEM_C::allocate_block(Bit32u block) { const Bit32u max_blocks = (Bit32u)(BX_MEM_THIS allocated / BX_MEM_BLOCK_LEN); #if BX_LARGE_RAMFILE /* * Match block to vector address * First, see if there is any spare host memory blocks we can still freely allocate */ if (BX_MEM_THIS used_blocks >= max_blocks) { Bit32u original_replacement_block = BX_MEM_THIS next_swapout_idx; // Find a block to replace bool used_for_tlb; Bit8u *buffer; do { do { // Wrap if necessary if (++(BX_MEM_THIS next_swapout_idx)==((BX_MEM_THIS len)/BX_MEM_BLOCK_LEN)) BX_MEM_THIS next_swapout_idx = 0; if (BX_MEM_THIS next_swapout_idx == original_replacement_block) BX_PANIC(("FATAL ERROR: Insufficient working RAM, all blocks are currently used for TLB entries!")); buffer = BX_MEM_THIS blocks[BX_MEM_THIS next_swapout_idx]; } while ((!buffer) || (buffer == BX_MEM_C::swapped_out)); used_for_tlb = false; // tlb buffer check loop const Bit8u* buffer_end = buffer+BX_MEM_BLOCK_LEN; // Don't replace it if any CPU is using it as a TLB entry for (int i=0; icheck_addr_in_tlb_buffers(buffer, buffer_end); } while (used_for_tlb); // Flush the block to be replaced bx_phy_address address = ((bx_phy_address)BX_MEM_THIS next_swapout_idx)*BX_MEM_BLOCK_LEN; // Create overflow file if it does not currently exist. if (!BX_MEM_THIS overflow_file) { BX_MEM_THIS overflow_file = tmpfile64(); if (!BX_MEM_THIS overflow_file) BX_PANIC(("Unable to allocate memory overflow file")); } // Write swapped out block if (fseeko64(BX_MEM_THIS overflow_file, address, SEEK_SET)) BX_PANIC(("FATAL ERROR: Could not seek to 0x" FMT_PHY_ADDRX " in overflow file!", address)); if (1 != fwrite (BX_MEM_THIS blocks[BX_MEM_THIS next_swapout_idx], BX_MEM_BLOCK_LEN, 1, BX_MEM_THIS overflow_file)) BX_PANIC(("FATAL ERROR: Could not write at 0x" FMT_PHY_ADDRX " in overflow file!", address)); // Mark swapped out block BX_MEM_THIS blocks[BX_MEM_THIS next_swapout_idx] = BX_MEM_C::swapped_out; BX_MEM_THIS blocks[block] = buffer; read_block(block); BX_DEBUG(("allocate_block: block=0x%x, replaced 0x%x", block, BX_MEM_THIS next_swapout_idx)); } else { BX_MEM_THIS blocks[block] = BX_MEM_THIS vector + (BX_MEM_THIS used_blocks++ * BX_MEM_BLOCK_LEN); BX_DEBUG(("allocate_block: block=0x%x used 0x%x of 0x%x", block, BX_MEM_THIS used_blocks, max_blocks)); } #else // Legacy default allocator if (BX_MEM_THIS used_blocks >= max_blocks) { BX_PANIC(("FATAL ERROR: all available memory is already allocated !")); } else { BX_MEM_THIS blocks[block] = BX_MEM_THIS vector + (BX_MEM_THIS used_blocks * BX_MEM_BLOCK_LEN); BX_MEM_THIS used_blocks++; } BX_DEBUG(("allocate_block: used_blocks=0x%x of 0x%x", BX_MEM_THIS used_blocks, max_blocks)); #endif } #if BX_LARGE_RAMFILE // The blocks in RAM must also be flushed to the save file. void ramfile_save_handler(void *devptr, FILE *fp) { for (Bit32u idx = 0; idx < (BX_MEM(0)->len / BX_MEM_BLOCK_LEN); idx++) { if ((BX_MEM(0)->blocks[idx]) && (BX_MEM(0)->blocks[idx] != BX_MEM(0)->swapped_out)) { bx_phy_address address = ((bx_phy_address)idx)*BX_MEM_BLOCK_LEN; if (fseeko64(fp, address, SEEK_SET)) BX_PANIC(("FATAL ERROR: Could not seek to 0x" FMT_PHY_ADDRX " in overflow file!", address)); if (1 != fwrite (BX_MEM(0)->blocks[idx], BX_MEM_BLOCK_LEN, 1, fp)) BX_PANIC(("FATAL ERROR: Could not write at 0x" FMT_PHY_ADDRX " in overflow file!", address)); } } } #endif // Note: This must be called before the memory file save handler is called. Bit64s memory_param_save_handler(void *devptr, bx_param_c *param) { const char *pname = param->get_name(); if (! strncmp(pname, "blk", 3)) { Bit32u blk_index = atoi(pname + 3); if (! BX_MEM(0)->blocks[blk_index]) return -1; #if BX_LARGE_RAMFILE // If swapped out, will be saved by common handler. if (BX_MEM(0)->blocks[blk_index] == BX_MEM(0)->swapped_out) return -2; #endif // Return the block offset into the array Bit32u val = (Bit32u) (BX_MEM(0)->blocks[blk_index] - BX_MEM(0)->vector); if ((val & (BX_MEM_BLOCK_LEN-1)) == 0) return val / BX_MEM_BLOCK_LEN; } return -1; } void memory_param_restore_handler(void *devptr, bx_param_c *param, Bit64s val) { const char *pname = param->get_name(); if (! strncmp(pname, "blk", 3)) { Bit32u blk_index = atoi(pname + 3); #if BX_LARGE_RAMFILE if ((Bit32s) val == -2) { BX_MEM(0)->blocks[blk_index] = BX_MEM(0)->swapped_out; return; } #endif if((Bit32s) val < 0) { BX_MEM(0)->blocks[blk_index] = NULL; return; } BX_MEM(0)->blocks[blk_index] = BX_MEM(0)->vector + val * BX_MEM_BLOCK_LEN; #if BX_LARGE_RAMFILE BX_MEM(0)->read_block(blk_index); #endif } } void BX_MEM_C::register_state() { char param_name[15]; bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "memory", "Memory State"); Bit32u num_blocks = (Bit32u)(BX_MEM_THIS len / BX_MEM_BLOCK_LEN); #if BX_LARGE_RAMFILE bx_shadow_filedata_c *ramfile = new bx_shadow_filedata_c(list, "ram", &(BX_MEM_THIS overflow_file)); ramfile->set_sr_handlers(this, ramfile_save_handler, (filedata_restore_handler)NULL); #else new bx_shadow_data_c(list, "ram", BX_MEM_THIS vector, BX_MEM_THIS allocated); #endif BXRS_DEC_PARAM_FIELD(list, len, BX_MEM_THIS len); BXRS_DEC_PARAM_FIELD(list, allocated, BX_MEM_THIS allocated); BXRS_DEC_PARAM_FIELD(list, used_blocks, BX_MEM_THIS used_blocks); bx_list_c *mapping = new bx_list_c(list, "mapping"); for (Bit32u blk=0; blk < num_blocks; blk++) { sprintf(param_name, "blk%d", blk); bx_param_num_c *param = new bx_param_num_c(mapping, param_name, "", "", 0, BX_MAX_BIT32U, 0); param->set_base(BASE_DEC); param->set_sr_handlers(this, memory_param_save_handler, memory_param_restore_handler); } bx_list_c *memtype = new bx_list_c(list, "memtype"); for (int i = 0; i <= BX_MEM_AREA_F0000; i++) { sprintf(param_name, "%d_r", i); new bx_shadow_bool_c(memtype, param_name, &BX_MEM_THIS memory_type[i][0]); sprintf(param_name, "%d_w", i); new bx_shadow_bool_c(memtype, param_name, &BX_MEM_THIS memory_type[i][1]); } BXRS_HEX_PARAM_FIELD(list, flash_status, BX_MEM_THIS flash_status); BXRS_DEC_PARAM_FIELD(list, flash_wsm_state, BX_MEM_THIS flash_wsm_state); } void BX_MEM_C::cleanup_memory() { unsigned idx; if (BX_MEM_THIS vector != NULL) { delete [] BX_MEM_THIS actual_vector; BX_MEM_THIS actual_vector = NULL; BX_MEM_THIS vector = NULL; BX_MEM_THIS rom = NULL; BX_MEM_THIS bogus = NULL; delete [] BX_MEM_THIS blocks; BX_MEM_THIS blocks = 0; BX_MEM_THIS used_blocks = 0; if (BX_MEM_THIS memory_handlers != NULL) { for (idx = 0; idx < BX_MEM_HANDLERS; idx++) { struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[idx]; struct memory_handler_struct *prev = NULL; while (memory_handler) { prev = memory_handler; memory_handler = memory_handler->next; delete prev; } } delete [] BX_MEM_THIS memory_handlers; BX_MEM_THIS memory_handlers = NULL; } } } // // Values for type: // 0 : System Bios // 1 : VGA Bios // 2 : Optional ROM Bios // void BX_MEM_C::load_ROM(const char *path, bx_phy_address romaddress, Bit8u type) { struct stat stat_buf; int fd, ret, i, start_idx, end_idx; unsigned long size, max_size, offset; bool is_bochs_bios = 0; if (*path == '\0') { if (type == 2) { BX_PANIC(("ROM: Optional ROM image undefined")); } else if (type == 1) { BX_PANIC(("ROM: VGA BIOS image undefined")); } else { BX_PANIC(("ROM: System BIOS image undefined")); } return; } // read in ROM BIOS image file fd = open(path, O_RDONLY #ifdef O_BINARY | O_BINARY #endif ); if (fd < 0) { if (type < 2) { BX_PANIC(("ROM: couldn't open ROM image file '%s'.", path)); } else { BX_ERROR(("ROM: couldn't open ROM image file '%s'.", path)); } return; } ret = fstat(fd, &stat_buf); if (ret) { if (type < 2) { close(fd); BX_PANIC(("ROM: couldn't stat ROM image file '%s'.", path)); } else { close(fd); BX_ERROR(("ROM: couldn't stat ROM image file '%s'.", path)); } return; } size = (unsigned long)stat_buf.st_size; if (type > 0) { max_size = 0x20000; } else { max_size = BIOSROMSZ; } if (size > max_size) { close(fd); BX_PANIC(("ROM: ROM image too large")); return; } if (type == 0) { if (romaddress > 0) { if ((romaddress + size) != 0x100000 && (romaddress + size)) { close(fd); BX_PANIC(("ROM: System BIOS must end at 0xfffff")); return; } } else { romaddress = ~(size - 1); } offset = romaddress & BIOS_MASK; if ((romaddress & 0xf0000) < 0xf0000) { BX_MEM_THIS rom_present[64] = 1; } BX_MEM_THIS bios_rom_addr = (Bit32u)romaddress; is_bochs_bios = ((strstr(path, "BIOS-bochs-latest") != NULL) || (strstr(path, "BIOS-bochs-legacy") != NULL)); if (size == 0x40000) { BX_MEM_THIS flash_type = 2; // 28F002BC-T } else if (size == 0x20000) { BX_MEM_THIS flash_type = 1; // 28F001BX-T } } else { if ((size % 512) != 0) { close(fd); BX_PANIC(("ROM: ROM image size must be multiple of 512 (size = %ld)", size)); return; } if ((romaddress % 2048) != 0) { close(fd); BX_PANIC(("ROM: ROM image must start at a 2k boundary")); return; } if ((romaddress < 0xc0000) || (((romaddress + size - 1) > 0xdffff) && (romaddress < 0xe0000))) { close(fd); BX_PANIC(("ROM: ROM address space out of range")); return; } if (romaddress < 0xe0000) { offset = (romaddress & EXROM_MASK) + BIOSROMSZ; start_idx = (((Bit32u)romaddress - 0xc0000) >> 11); end_idx = start_idx + (size >> 11) + (((size % 2048) > 0) ? 1 : 0); } else { offset = romaddress & BIOS_MASK; start_idx = 64; end_idx = 64; } for (i = start_idx; i < end_idx; i++) { if (BX_MEM_THIS rom_present[i]) { close(fd); BX_PANIC(("ROM: address space 0x%x already in use", (i * 2048) + 0xc0000)); return; } else { BX_MEM_THIS rom_present[i] = 1; } } } while (size > 0) { ret = read(fd, (bx_ptr_t) &BX_MEM_THIS rom[offset], size); if (ret <= 0) { BX_PANIC(("ROM: read failed on BIOS image: '%s'",path)); } size -= ret; offset += ret; } close(fd); offset -= (unsigned long)stat_buf.st_size; size = (unsigned long)stat_buf.st_size; if (is_bochs_bios || ((BX_MEM_THIS rom[offset] == 0x55) && (BX_MEM_THIS rom[offset+1] == 0xaa))) { if ((type == 0) && ((romaddress & 0xfffff) == 0xe0000)) { offset += 0x10000; size = 0x10000; } Bit8u checksum = 0; for (i = 0; i < (int)size; i++) { checksum += BX_MEM_THIS rom[offset + i]; } if (checksum != 0) { if (type == 1) { BX_PANIC(("ROM: checksum error in VGABIOS image: '%s'", path)); } else if (is_bochs_bios) { BX_ERROR(("ROM: checksum error in BIOS image: '%s'", path)); } } } BX_INFO(("rom at 0x%05x/%u ('%s')", (unsigned) romaddress, (unsigned) stat_buf.st_size, path)); } void BX_MEM_C::load_RAM(const char *path, bx_phy_address ramaddress) { struct stat stat_buf; int fd, ret; unsigned long size, offset; if (*path == '\0') { BX_PANIC(("RAM: Optional RAM image undefined")); return; } // read in RAM BIOS image file fd = open(path, O_RDONLY #ifdef O_BINARY | O_BINARY #endif ); if (fd < 0) { BX_PANIC(("RAM: couldn't open RAM image file '%s'.", path)); return; } ret = fstat(fd, &stat_buf); if (ret) { close(fd); BX_PANIC(("RAM: couldn't stat RAM image file '%s'.", path)); return; } size = (unsigned long)stat_buf.st_size; offset = (unsigned long)ramaddress; while (size > 0) { ret = read(fd, (bx_ptr_t) BX_MEM_THIS get_vector(offset), size); if (ret <= 0) { BX_PANIC(("RAM: read failed on RAM image: '%s'",path)); } size -= ret; offset += ret; } close(fd); BX_INFO(("ram at 0x%05x/%u ('%s')", (unsigned) ramaddress, (unsigned) stat_buf.st_size, path)); } bool BX_MEM_C::dbg_fetch_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit8u *buf) { bx_phy_address a20addr = A20ADDR(addr); struct memory_handler_struct *memory_handler = NULL; bool ret = 1, use_memory_handler = 0, use_smram = 0; bool is_bios = (a20addr >= (bx_phy_address)BX_MEM_THIS bios_rom_addr); #if BX_PHY_ADDRESS_LONG if (a20addr > BX_CONST64(0xffffffff)) is_bios = 0; #endif if ((a20addr >= 0x000a0000 && a20addr < 0x000c0000) && BX_MEM_THIS smram_available) { // SMRAM memory space if (BX_MEM_THIS smram_enable || (cpu->smm_mode() && !BX_MEM_THIS smram_restricted)) use_smram = 1; } memory_handler = BX_MEM_THIS memory_handlers[a20addr >> 20]; while (memory_handler) { if (memory_handler->begin <= a20addr && memory_handler->end >= a20addr) { if (!use_smram) { use_memory_handler = 1; break; } } memory_handler = memory_handler->next; } for (; len>0; len--) { if (use_memory_handler) { memory_handler->read_handler(a20addr, 1, buf, memory_handler->param); } #if BX_SUPPORT_PCI else if (BX_MEM_THIS pci_enabled && (a20addr >= 0x000c0000 && a20addr < 0x00100000)) { unsigned area = (unsigned)(a20addr >> 14) & 0x0f; if (area > BX_MEM_AREA_F0000) area = BX_MEM_AREA_F0000; if (BX_MEM_THIS memory_type[area][0] == 0) { // Read from ROM if ((a20addr & 0xfffe0000) == 0x000e0000) { // last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF if (BX_MEM_THIS flash_type > 0) { *buf = BX_MEM_THIS flash_read(BIOS_MAP_LAST128K(a20addr)); } else { *buf = BX_MEM_THIS rom[BIOS_MAP_LAST128K(a20addr)]; } } else { *buf = BX_MEM_THIS rom[(a20addr & EXROM_MASK) + BIOSROMSZ]; } } else { // Read from ShadowRAM *buf = *(BX_MEM_THIS get_vector(a20addr)); } } #endif // #if BX_SUPPORT_PCI else if ((a20addr < BX_MEM_THIS len) && !is_bios) { if (a20addr < 0x000c0000 || a20addr >= 0x00100000) { *buf = *(BX_MEM_THIS get_vector(a20addr)); } // must be in C0000 - FFFFF range else if ((a20addr & 0xfffe0000) == 0x000e0000) { // last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF *buf = BX_MEM_THIS rom[BIOS_MAP_LAST128K(a20addr)]; } else { *buf = BX_MEM_THIS rom[(a20addr & EXROM_MASK) + BIOSROMSZ]; } } #if BX_PHY_ADDRESS_LONG else if (a20addr > BX_CONST64(0xffffffff)) { *buf = 0xff; ret = 0; // error, beyond limits of memory } #endif else if (is_bios) { if (BX_MEM_THIS flash_type > 0) { *buf = BX_MEM_THIS flash_read(a20addr & BIOS_MASK); } else { *buf = BX_MEM_THIS rom[a20addr & BIOS_MASK]; } } else { *buf = 0xff; ret = 0; // error, beyond limits of memory } buf++; a20addr++; } return ret; } #if BX_DEBUGGER || BX_GDBSTUB bool BX_MEM_C::dbg_set_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit8u *buf) { bx_phy_address a20addr = A20ADDR(addr); struct memory_handler_struct *memory_handler = NULL; bool use_memory_handler = 0, use_smram = 0; if ((a20addr + len - 1) > BX_MEM_THIS len) { return(0); // error, beyond limits of memory } bool is_bios = (a20addr >= (bx_phy_address)BX_MEM_THIS bios_rom_addr); #if BX_PHY_ADDRESS_LONG if (a20addr > BX_CONST64(0xffffffff)) is_bios = 0; #endif if ((a20addr >= 0x000a0000 && a20addr < 0x000c0000) && BX_MEM_THIS smram_available) { // SMRAM memory space if (BX_MEM_THIS smram_enable || (cpu->smm_mode() && !BX_MEM_THIS smram_restricted)) use_smram = 1; } memory_handler = BX_MEM_THIS memory_handlers[a20addr >> 20]; while (memory_handler) { if (memory_handler->begin <= a20addr && memory_handler->end >= a20addr) { if (!use_smram) { use_memory_handler = 1; break; } } memory_handler = memory_handler->next; } for (; len>0; len--) { if (use_memory_handler) { memory_handler->write_handler(a20addr, 1, buf, memory_handler->param); } #if BX_SUPPORT_PCI else if (BX_MEM_THIS pci_enabled && (a20addr >= 0x000c0000 && a20addr < 0x00100000)) { unsigned area = (unsigned)(a20addr >> 14) & 0x0f; if (area > BX_MEM_AREA_F0000) area = BX_MEM_AREA_F0000; if (BX_MEM_THIS memory_type[area][1] == 1) { // Write to ShadowRAM *(BX_MEM_THIS get_vector(a20addr)) = *buf; } else { // Ignore write to ROM } } #endif // #if BX_SUPPORT_PCI else if ((a20addr < 0x000c0000 || a20addr >= 0x00100000) && !is_bios) { *(BX_MEM_THIS get_vector(a20addr)) = *buf; } buf++; a20addr++; } return(1); } bool BX_MEM_C::dbg_crc32(bx_phy_address addr1, bx_phy_address addr2, Bit32u *crc) { *crc = 0; if (addr1 > addr2) return(0); if (addr2 >= BX_MEM_THIS len) return(0); // error, specified address past last phy mem addr unsigned len = 1 + addr2 - addr1; // do not cross 4K boundary while(1) { unsigned remainsInPage = 0x1000 - (addr1 & 0xfff); unsigned access_length = (len < remainsInPage) ? len : remainsInPage; *crc = crc32(BX_MEM_THIS get_vector(addr1), access_length); addr1 += access_length; len -= access_length; } return(1); } #endif // // Return a host address corresponding to the guest physical memory // address (with A20 already applied), given that the calling // code will perform an 'op' operation. This address will be // used for direct access to guest memory. // Values of 'op' are { BX_READ, BX_WRITE, BX_EXECUTE, BX_RW }. // // The other assumption is that the calling code _only_ accesses memory // directly within the page that encompasses the address requested. // // // Memory map inside the 1st megabyte: // // 0x00000 - 0x7ffff DOS area (512K) // 0x80000 - 0x9ffff Optional fixed memory hole (128K) // 0xa0000 - 0xbffff Standard PCI/ISA Video Mem / SMMRAM (128K) // 0xc0000 - 0xdffff Expansion Card BIOS and Buffer Area (128K) // 0xe0000 - 0xeffff Lower BIOS Area (64K) // 0xf0000 - 0xfffff Upper BIOS Area (64K) // Bit8u *BX_MEM_C::getHostMemAddr(BX_CPU_C *cpu, bx_phy_address addr, unsigned rw) { bx_phy_address a20addr = A20ADDR(addr); bool is_bios = (a20addr >= (bx_phy_address)BX_MEM_THIS bios_rom_addr); #if BX_PHY_ADDRESS_LONG if (a20addr > BX_CONST64(0xffffffff)) is_bios = 0; #endif bool write = rw & 1; // allow direct access to SMRAM memory space for code and veto data if ((cpu != NULL) && (rw == BX_EXECUTE)) { // reading from SMRAM memory space if ((a20addr >= 0x000a0000 && a20addr < 0x000c0000) && (BX_MEM_THIS smram_available)) { if (BX_MEM_THIS smram_enable || cpu->smm_mode()) return BX_MEM_THIS get_vector(a20addr); } } #if BX_SUPPORT_MONITOR_MWAIT if (write && BX_MEM_THIS is_monitor(a20addr & ~((bx_phy_address)(0xfff)), 0xfff)) { // Vetoed! Write monitored page ! return(NULL); } #endif struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[a20addr >> 20]; while (memory_handler) { if (memory_handler->begin <= a20addr && memory_handler->end >= a20addr) { if (memory_handler->da_handler) return memory_handler->da_handler(a20addr, rw, memory_handler->param); else return(NULL); // Vetoed! memory handler for i/o apic, vram, mmio and PCI PnP } memory_handler = memory_handler->next; } if (! write) { if ((a20addr >= 0x000a0000 && a20addr < 0x000c0000)) return(NULL); // Vetoed! Mem mapped IO (VGA) #if BX_SUPPORT_PCI else if (BX_MEM_THIS pci_enabled && (a20addr >= 0x000c0000 && a20addr < 0x00100000)) { unsigned area = (unsigned)(a20addr >> 14) & 0x0f; if (area > BX_MEM_AREA_F0000) area = BX_MEM_AREA_F0000; if (BX_MEM_THIS memory_type[area][0] == 0) { // Read from ROM if ((a20addr & 0xfffe0000) == 0x000e0000) { // last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF return (Bit8u *) &BX_MEM_THIS rom[BIOS_MAP_LAST128K(a20addr)]; } else { return (Bit8u *) &BX_MEM_THIS rom[(a20addr & EXROM_MASK) + BIOSROMSZ]; } } else { // Read from ShadowRAM return BX_MEM_THIS get_vector(a20addr); } } #endif else if ((a20addr < BX_MEM_THIS len) && !is_bios) { if (a20addr < 0x000c0000 || a20addr >= 0x00100000) { return BX_MEM_THIS get_vector(a20addr); } // must be in C0000 - FFFFF range else if ((a20addr & 0xfffe0000) == 0x000e0000) { // last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF return (Bit8u *) &BX_MEM_THIS rom[BIOS_MAP_LAST128K(a20addr)]; } else { return((Bit8u *) &BX_MEM_THIS rom[(a20addr & EXROM_MASK) + BIOSROMSZ]); } } #if BX_PHY_ADDRESS_LONG else if (a20addr > BX_CONST64(0xffffffff)) { // Error, requested addr is out of bounds. return (Bit8u *) &BX_MEM_THIS bogus[a20addr & 0xfff]; } #endif else if (is_bios) { return (Bit8u *) &BX_MEM_THIS rom[a20addr & BIOS_MASK]; } else { // Error, requested addr is out of bounds. return (Bit8u *) &BX_MEM_THIS bogus[a20addr & 0xfff]; } } else { // op == {BX_WRITE, BX_RW} if ((a20addr >= BX_MEM_THIS len) || is_bios) return(NULL); // Error, requested addr is out of bounds. else if (a20addr >= 0x000a0000 && a20addr < 0x000c0000) return(NULL); // Vetoed! Mem mapped IO (VGA) #if BX_SUPPORT_PCI else if (BX_MEM_THIS pci_enabled && (a20addr >= 0x000c0000 && a20addr < 0x00100000)) { // Veto direct writes to this area. Otherwise, there is a chance // for Guest2HostTLB and memory consistency problems, for example // when some 16K block marked as write-only using PAM registers. return(NULL); } #endif else { if (a20addr < 0x000c0000 || a20addr >= 0x00100000) { return BX_MEM_THIS get_vector(a20addr); } else { return(NULL); // Vetoed! ROMs } } } } /* * One needs to provide both a read_handler and a write_handler. */ bool BX_MEM_C::registerMemoryHandlers(void *param, memory_handler_t read_handler, memory_handler_t write_handler, memory_direct_access_handler_t da_handler, bx_phy_address begin_addr, bx_phy_address end_addr) { if (end_addr < begin_addr) return 0; if (!read_handler) // allow NULL write and fetch handler return 0; BX_INFO(("Register memory access handlers: 0x" FMT_PHY_ADDRX " - 0x" FMT_PHY_ADDRX, begin_addr, end_addr)); for (Bit32u page_idx = (Bit32u)(begin_addr >> 20); page_idx <= (Bit32u)(end_addr >> 20); page_idx++) { Bit16u bitmap = 0xffff; if (begin_addr > (page_idx << 20)) { bitmap &= (0xffff << ((begin_addr >> 16) & 0xf)); } if (end_addr < ((page_idx + 1) << 20)) { bitmap &= (0xffff >> (0x0f - ((end_addr >> 16) & 0xf))); } if (BX_MEM_THIS memory_handlers[page_idx] != NULL) { if ((bitmap & BX_MEM_THIS memory_handlers[page_idx]->bitmap) != 0) { BX_ERROR(("Register failed: overlapping memory handlers!")); return 0; } else { bitmap |= BX_MEM_THIS memory_handlers[page_idx]->bitmap; } } struct memory_handler_struct *memory_handler = new struct memory_handler_struct; memory_handler->next = BX_MEM_THIS memory_handlers[page_idx]; BX_MEM_THIS memory_handlers[page_idx] = memory_handler; memory_handler->read_handler = read_handler; memory_handler->write_handler = write_handler; memory_handler->da_handler = da_handler; memory_handler->param = param; memory_handler->begin = begin_addr; memory_handler->end = end_addr; memory_handler->bitmap = bitmap; } return 1; } bool BX_MEM_C::unregisterMemoryHandlers(void *param, bx_phy_address begin_addr, bx_phy_address end_addr) { bool ret = 1; BX_INFO(("Memory access handlers unregistered: 0x" FMT_PHY_ADDRX " - 0x" FMT_PHY_ADDRX, begin_addr, end_addr)); for (Bit32u page_idx = (Bit32u)(begin_addr >> 20); page_idx <= (Bit32u)(end_addr >> 20); page_idx++) { Bit16u bitmap = 0xffff; if (begin_addr > (page_idx << 20)) { bitmap &= (0xffff << ((begin_addr >> 16) & 0xf)); } if (end_addr < ((page_idx + 1) << 20)) { bitmap &= (0xffff >> (0x0f - ((end_addr >> 16) & 0xf))); } struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[page_idx]; struct memory_handler_struct *prev = NULL; while (memory_handler && memory_handler->param != param && memory_handler->begin != begin_addr && memory_handler->end != end_addr) { memory_handler->bitmap &= ~bitmap; prev = memory_handler; memory_handler = memory_handler->next; } if (!memory_handler) { ret = 0; // we should have found it continue; // anyway, try the other pages } if (prev) prev->next = memory_handler->next; else BX_MEM_THIS memory_handlers[page_idx] = memory_handler->next; delete memory_handler; } return ret; } void BX_MEM_C::enable_smram(bool enable, bool restricted) { BX_MEM_THIS smram_available = 1; BX_MEM_THIS smram_enable = (enable > 0); BX_MEM_THIS smram_restricted = (restricted > 0); } void BX_MEM_C::disable_smram(void) { BX_MEM_THIS smram_available = 0; BX_MEM_THIS smram_enable = 0; BX_MEM_THIS smram_restricted = 0; } // check if SMRAM is aavailable for CPU data accesses bool BX_MEM_C::is_smram_accessible(void) { return(BX_MEM_THIS smram_available) && (BX_MEM_THIS smram_enable || !BX_MEM_THIS smram_restricted); } void BX_MEM_C::set_memory_type(memory_area_t area, bool rw, bool dram) { if (area <= BX_MEM_AREA_F0000) { BX_MEM_THIS memory_type[area][rw] = dram; } } void BX_MEM_C::set_bios_write(bool enabled) { BX_MEM_THIS bios_write_enabled = enabled; } void BX_MEM_C::set_bios_rom_access(Bit8u region, bool enabled) { if (enabled) { BX_MEM_THIS bios_rom_access |= region; } else { BX_MEM_THIS bios_rom_access &= ~region; } } Bit8u BX_MEM_C::flash_read(Bit32u addr) { Bit8u ret = 0; switch (BX_MEM_THIS flash_wsm_state) { case FLASH_INT_ID: if (addr & 1) { ret = (BX_MEM_THIS flash_type == 2) ? 0x7c : 0x94; } else { ret = 0x89; } BX_DEBUG(("flash read ID (address = 0x%08x value = 0x%02x)", addr, ret)); break; case FLASH_READ_ARRAY: BX_DEBUG(("flash read from ROM (address = 0x%08x)", addr)); ret = BX_MEM_THIS rom[addr]; break; default: ret = BX_MEM_THIS flash_status; if (BX_MEM_THIS flash_wsm_state == FLASH_ERASE) { BX_MEM_THIS flash_status |= 0x80; } BX_DEBUG(("flash read status (address = 0x%08x value = 0x%02x)", addr, ret)); } return ret; } void BX_MEM_C::flash_write(Bit32u addr, Bit8u data) { Bit32u flash_addr; int i; if (BX_MEM_THIS flash_type == 2) { flash_addr = addr & 0x3ffff; } else { flash_addr = addr & 0x1ffff; } if (BX_MEM_THIS flash_wsm_state == FLASH_PROG_SETUP) { BX_DEBUG(("flash write to ROM (address = 0x%08x, data = 0x%02x)", flash_addr, data)); BX_MEM_THIS rom[addr] &= data; BX_MEM_THIS flash_wsm_state = FLASH_READ_STATUS; } else { BX_DEBUG(("flash write command (address = 0x%08x, code = 0x%02x)", flash_addr, data)); switch (data) { case FLASH_INT_ID: case FLASH_READ_ARRAY: case FLASH_ERASE_SETUP: case FLASH_ERASE_SUSP: case FLASH_PROG_SETUP: BX_MEM_THIS flash_wsm_state = data; break; case FLASH_READ_STATUS: if (BX_MEM_THIS flash_wsm_state != FLASH_ERASE) { BX_MEM_THIS flash_wsm_state = data; } break; case FLASH_CLR_STATUS: BX_MEM_THIS flash_status &= ~0x38; BX_MEM_THIS flash_wsm_state = FLASH_READ_ARRAY; break; case FLASH_ERASE: if (BX_MEM_THIS flash_wsm_state == FLASH_ERASE_SETUP) { BX_MEM_THIS flash_status &= ~0xc0; BX_MEM_THIS flash_wsm_state = FLASH_ERASE; if ((BX_MEM_THIS flash_type == 1) && ((flash_addr = 0x1c000) || (flash_addr = 0x1d000))) { for (i = 0; i < 0x1000; i++) { BX_MEM_THIS rom[addr + i] = 0xff; } } else if ((BX_MEM_THIS flash_type == 2) && ((flash_addr = 0x38000) || (flash_addr = 0x3a000))) { for (i = 0; i < 0x2000; i++) { BX_MEM_THIS rom[addr + i] = 0xff; } } } else if (BX_MEM_THIS flash_wsm_state == FLASH_ERASE_SUSP) { BX_MEM_THIS flash_status &= ~0x40; BX_MEM_THIS flash_wsm_state = FLASH_ERASE; } else { BX_DEBUG(("flash_write(): unexpected ERASE CONFIRM / ERASE RESUME")); } break; default: BX_DEBUG(("flash_write(): unsupported code 0x%02x", data)); } } } #if BX_SUPPORT_MONITOR_MWAIT // // MONITOR/MWAIT - x86arch way to optimize idle loops in CPU // bool BX_MEM_C::is_monitor(bx_phy_address begin_addr, unsigned len) { for (int i=0; iis_monitor(begin_addr, len)) return 1; } return 0; // // this is NOT monitored page } void BX_MEM_C::check_monitor(bx_phy_address begin_addr, unsigned len) { for (int i=0; icheck_monitor(begin_addr, len); } } #endif