///////////////////////////////////////////////////////////////////////// // $Id: vm8086.cc,v 1.15 2002-09-18 05:36:48 kevinlawton Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR // Notes: // // The high bits of the 32bit eip image are ignored by // the IRET to VM. The high bits of the 32bit esp image // are loaded into ESP. A subsequent push uses // only the low 16bits since it's in VM. In neither case // did a protection fault occur during actual tests. This // is contrary to the Intel docs which claim a #GP for // eIP out of code limits. // // IRET to VM does affect IOPL, IF, VM, and RF #if BX_SUPPORT_V8086_MODE #if BX_CPU_LEVEL >= 3 void BX_CPU_C::stack_return_to_v86(Bit32u new_eip, Bit32u raw_cs_selector, Bit32u flags32) { Bit32u temp_ESP, new_esp, esp_laddr; Bit16u raw_es_selector, raw_ds_selector, raw_fs_selector, raw_gs_selector, raw_ss_selector; // Must be 32bit effective opsize, VM is in upper 16bits of eFLAGS // CPL = 0 to get here // ---------------- // | | OLD GS | eSP+32 // | | OLD FS | eSP+28 // | | OLD DS | eSP+24 // | | OLD ES | eSP+20 // | | OLD SS | eSP+16 // | OLD ESP | eSP+12 // | OLD EFLAGS | eSP+8 // | | OLD CS | eSP+4 // | OLD EIP | eSP+0 // ---------------- if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_ESP = ESP; else temp_ESP = SP; // top 36 bytes of stack must be within stack limits, else #GP(0) if ( !can_pop(36) ) { BX_PANIC(("iret: VM: top 36 bytes not within limits")); exception(BX_SS_EXCEPTION, 0, 0); return; } if ( new_eip & 0xffff0000 ) { BX_INFO(("IRET to V86-mode: ignoring upper 16-bits")); new_eip = new_eip & 0xffff; } esp_laddr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP; // load SS:ESP from stack access_linear(esp_laddr + 12, 4, 0, BX_READ, &new_esp); access_linear(esp_laddr + 16, 2, 0, BX_READ, &raw_ss_selector); // load ES,DS,FS,GS from stack access_linear(esp_laddr + 20, 2, 0, BX_READ, &raw_es_selector); access_linear(esp_laddr + 24, 2, 0, BX_READ, &raw_ds_selector); access_linear(esp_laddr + 28, 2, 0, BX_READ, &raw_fs_selector); access_linear(esp_laddr + 32, 2, 0, BX_READ, &raw_gs_selector); write_eflags(flags32, /*change IOPL*/ 1, /*change IF*/ 1, /*change VM*/ 1, /*change RF*/ 1); // load CS:EIP from stack; already read and passed as args BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = raw_cs_selector; EIP = new_eip; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = raw_es_selector; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = raw_ds_selector; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = raw_fs_selector; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = raw_gs_selector; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = raw_ss_selector; #if BX_SUPPORT_X86_64 RSP = new_esp; #else ESP = new_esp; // Full 32bits are loaded. #endif init_v8086_mode(); } void BX_CPU_C::stack_return_from_v86(bxInstruction_c *i) { if (BX_CPU_THIS_PTR get_IOPL() != 3) { // trap to virtual 8086 monitor BX_DEBUG(("IRET in vm86 with IOPL != 3")); exception(BX_GP_EXCEPTION, 0, 0); return; } if (i->os32L()) { Bit32u eip, ecs_raw, eflags_tmp; if( !can_pop(12) ) { exception(BX_SS_EXCEPTION, 0, 0); return; } pop_32(&eip); pop_32(&ecs_raw); pop_32(&eflags_tmp); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], (Bit16u) ecs_raw); EIP = eip; write_eflags(eflags_tmp, /*IOPL*/ 0, /*IF*/ 1, /*VM*/ 0, /*RF*/ 1); } else { Bit16u ip, cs_raw, flags; if( !can_pop(6) ) { exception(BX_SS_EXCEPTION, 0, 0); return; } pop_16(&ip); pop_16(&cs_raw); pop_16(&flags); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw); EIP = (Bit32u) ip; write_flags(flags, /*IOPL*/ 0, /*IF*/ 1); } } void BX_CPU_C::init_v8086_mode(void) { BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = 3; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value << 4; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = 3; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl = 3; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value << 4; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.avl = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = 3; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl = 3; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.executable = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.c_ed = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.r_w = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.a = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value << 4; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit_scaled = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.d_b = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.avl = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl = 3; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = 3; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value << 4; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.avl = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl = 3; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.p = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.dpl = 3; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.segment = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.executable = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.c_ed = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.r_w = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.a = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value << 4; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit_scaled = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.d_b = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.avl = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.rpl = 3; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.p = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.dpl = 3; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.segment = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.executable = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.c_ed = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.r_w = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.a = 1; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value << 4; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit_scaled = 0xffff; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.d_b = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.avl = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.rpl = 3; } #endif /* BX_CPU_LEVEL >= 3 */ #else // BX_SUPPORT_V8086_MODE // non-support of v8086 mode void BX_CPU_C::stack_return_to_v86(Bit32u new_eip, Bit32u raw_cs_selector, Bit32u flags32) { BX_INFO(("stack_return_to_v86: VM bit set in EFLAGS stack image")); v8086_message(); } void BX_CPU_C::stack_return_from_v86(void) { BX_INFO(("stack_return_from_v86:")); v8086_message(); } void BX_CPU_C::v8086_message(void) { BX_INFO(("Program compiled with BX_SUPPORT_V8086_MODE = 0")); BX_INFO(("You need to rerun the configure script and recompile")); BX_INFO((" to use virtual-8086 mode features.")); BX_PANIC(("Bummer!")); } #endif // BX_SUPPORT_V8086_MODE