///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2021 The Bochs Project // // I/O port handlers API Copyright (C) 2003 by Frank Cornelis // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #ifndef IODEV_H #define IODEV_H #include "bochs.h" #include "plugin.h" #include "param_names.h" #include "pc_system.h" #include "bx_debug/debug.h" #include "memory/memory-bochs.h" #include "gui/siminterface.h" #include "gui/gui.h" /* number of IRQ lines supported. In an ISA PC there are two PIC chips cascaded together. each has 8 IRQ lines, so there should be 16 IRQ's total */ #define BX_MAX_IRQS 16 /* keyboard indicators */ #define BX_KBD_LED_NUM 0 #define BX_KBD_LED_CAPS 1 #define BX_KBD_LED_SCRL 2 #define BX_KBD_LED_MASK_NUM 1 #define BX_KBD_LED_MASK_ALL 7 /* size of internal buffer for keyboard devices */ #define BX_KBD_ELEMENTS 16 /* size of internal buffer for mouse devices */ #define BX_MOUSE_BUFF_SIZE 48 /* maximum size of the ISA DMA buffer */ #define BX_DMA_BUFFER_SIZE 512 #define BX_MAX_PCI_DEVICES 20 typedef Bit32u (*bx_read_handler_t)(void *, Bit32u, unsigned); typedef void (*bx_write_handler_t)(void *, Bit32u, Bit32u, unsigned); typedef bool (*bx_kbd_gen_scancode_t)(void *, Bit32u); typedef Bit8u (*bx_kbd_get_elements_t)(void *); typedef void (*bx_mouse_enq_t)(void *, int, int, int, unsigned, bool); typedef void (*bx_mouse_enabled_changed_t)(void *, bool); #if BX_USE_DEV_SMF # define BX_DEV_SMF static # define BX_DEV_THIS bx_devices. #else # define BX_DEV_SMF # define BX_DEV_THIS this-> #endif ////////////////////////////////////////////////////////////////////// // bx_devmodel_c declaration ////////////////////////////////////////////////////////////////////// // This class defines virtual methods that are common to all devices. // Child classes do not need to implement all of them, because in this // definition they are defined as empty, as opposed to being pure // virtual (= 0). class BOCHSAPI bx_devmodel_c : public logfunctions { public: virtual ~bx_devmodel_c() {} virtual void init(void) {} virtual void reset(unsigned type) {} virtual void register_state(void) {} virtual void after_restore_state(void) {} #if BX_DEBUGGER virtual void debug_dump(int argc, char **argv) {} #endif }; // forward declarations class bx_list_c; class device_image_t; class cdrom_base_c; ////////////////////////////////////////////////////////////////////// // bx_pci_device_c declaration ////////////////////////////////////////////////////////////////////// #if BX_SUPPORT_PCI #define BX_DEBUG_PCI_READ(addr, value, io_len) \ if (io_len == 1) \ BX_DEBUG(("read PCI register 0x%02X value 0x%02X (len=1)", address, value)); \ else if (io_len == 2) \ BX_DEBUG(("read PCI register 0x%02X value 0x%04X (len=2)", address, value)); \ else if (io_len == 4) \ BX_DEBUG(("read PCI register 0x%02X value 0x%08X (len=4)", address, value)); #define BX_DEBUG_PCI_WRITE(addr, value, io_len) \ if (io_len == 1) \ BX_DEBUG(("write PCI register 0x%02X value 0x%02X (len=1)", addr, value)); \ else if (io_len == 2) \ BX_DEBUG(("write PCI register 0x%02X value 0x%04X (len=2)", addr, value)); \ else if (io_len == 4) \ BX_DEBUG(("write PCI register 0x%02X value 0x%08X (len=4)", addr, value)); enum { BX_PCI_BAR_TYPE_NONE = 0, BX_PCI_BAR_TYPE_MEM = 1, BX_PCI_BAR_TYPE_IO = 2 }; #define BX_PCI_ADVOPT_NOACPI 0x01 #define BX_PCI_ADVOPT_NOHPET 0x02 #define BX_PCI_ADVOPT_NOAGP 0x04 typedef struct { Bit8u type; Bit32u size; Bit32u addr; union { struct { memory_handler_t rh; memory_handler_t wh; const Bit8u *dummy; } mem; struct { bx_read_handler_t rh; bx_write_handler_t wh; const Bit8u *mask; } io; }; } bx_pci_bar_t; class BOCHSAPI bx_pci_device_c : public bx_devmodel_c { public: bx_pci_device_c(): pci_rom(NULL), pci_rom_size(0) { for (int i = 0; i < 6; i++) memset(&pci_bar[i], 0, sizeof(bx_pci_bar_t)); } virtual ~bx_pci_device_c() { if (pci_rom != NULL) delete [] pci_rom; } virtual Bit32u pci_read_handler(Bit8u address, unsigned io_len); void pci_write_handler_common(Bit8u address, Bit32u value, unsigned io_len); virtual void pci_write_handler(Bit8u address, Bit32u value, unsigned io_len) {} virtual void pci_bar_change_notify(void) {} void init_pci_conf(Bit16u vid, Bit16u did, Bit8u rev, Bit32u classc, Bit8u headt, Bit8u intpin); void init_bar_io(Bit8u num, Bit16u size, bx_read_handler_t rh, bx_write_handler_t wh, const Bit8u *mask); void init_bar_mem(Bit8u num, Bit32u size, memory_handler_t rh, memory_handler_t wh); void register_pci_state(bx_list_c *list); void after_restore_pci_state(memory_handler_t mem_read_handler); void load_pci_rom(const char *path); void set_name(const char *name) {pci_name = name;} const char* get_name(void) {return pci_name;} protected: const char *pci_name; Bit8u pci_conf[256]; bx_pci_bar_t pci_bar[6]; Bit8u *pci_rom; Bit32u pci_rom_address; Bit32u pci_rom_size; memory_handler_t pci_rom_read_handler; }; #endif ////////////////////////////////////////////////////////////////////// // declare stubs for devices ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// #define STUBFUNC(dev,method) \ pluginlog->panic("%s called in %s stub. you must not have loaded the %s plugin", #dev, #method, #dev) ////////////////////////////////////////////////////////////////////// class BOCHSAPI bx_hard_drive_stub_c : public bx_devmodel_c { public: virtual Bit32u virt_read_handler(Bit32u address, unsigned io_len) { return 0; } virtual void virt_write_handler(Bit32u address, Bit32u value, unsigned io_len) {} virtual bool bmdma_read_sector(Bit8u channel, Bit8u *buffer, Bit32u *sector_size) { STUBFUNC(HD, bmdma_read_sector); return 0; } virtual bool bmdma_write_sector(Bit8u channel, Bit8u *buffer) { STUBFUNC(HD, bmdma_write_sector); return 0; } virtual void bmdma_complete(Bit8u channel) { STUBFUNC(HD, bmdma_complete); } }; class BOCHSAPI bx_cmos_stub_c : public bx_devmodel_c { public: virtual Bit32u get_reg(Bit8u reg) { STUBFUNC(cmos, get_reg); return 0; } virtual void set_reg(Bit8u reg, Bit32u val) { STUBFUNC(cmos, set_reg); } virtual void checksum_cmos(void) { STUBFUNC(cmos, checksum); } virtual void enable_irq(bool enabled) { STUBFUNC(cmos, enable_irq); } }; class BOCHSAPI bx_pit_stub_c : public bx_devmodel_c { public: virtual void enable_irq(bool enabled) { STUBFUNC(pit, enable_irq); } }; class BOCHSAPI bx_dma_stub_c : public bx_devmodel_c { public: virtual unsigned registerDMA8Channel( unsigned channel, Bit16u (* dmaRead)(Bit8u *data_byte, Bit16u maxlen), Bit16u (* dmaWrite)(Bit8u *data_byte, Bit16u maxlen), const char *name) { STUBFUNC(dma, registerDMA8Channel); return 0; } virtual unsigned registerDMA16Channel( unsigned channel, Bit16u (* dmaRead)(Bit16u *data_word, Bit16u maxlen), Bit16u (* dmaWrite)(Bit16u *data_word, Bit16u maxlen), const char *name) { STUBFUNC(dma, registerDMA16Channel); return 0; } virtual unsigned unregisterDMAChannel(unsigned channel) { STUBFUNC(dma, unregisterDMAChannel); return 0; } virtual unsigned get_TC(void) { STUBFUNC(dma, get_TC); return 0; } virtual void set_DRQ(unsigned channel, bool val) { STUBFUNC(dma, set_DRQ); } virtual void raise_HLDA(void) { STUBFUNC(dma, raise_HLDA); } }; class BOCHSAPI bx_pic_stub_c : public bx_devmodel_c { public: virtual void raise_irq(unsigned irq_no) { STUBFUNC(pic, raise_irq); } virtual void lower_irq(unsigned irq_no) { STUBFUNC(pic, lower_irq); } virtual void set_mode(bool ma_sl, Bit8u mode) { STUBFUNC(pic, set_mode); } virtual Bit8u IAC(void) { STUBFUNC(pic, IAC); return 0; } }; class BOCHSAPI bx_vga_stub_c #if BX_SUPPORT_PCI : public bx_pci_device_c #else : public bx_devmodel_c #endif { public: virtual void vga_redraw_area(unsigned x0, unsigned y0, unsigned width, unsigned height) { STUBFUNC(vga, vga_redraw_area); } virtual Bit8u mem_read(bx_phy_address addr) { STUBFUNC(vga, mem_read); return 0; } virtual void mem_write(bx_phy_address addr, Bit8u value) { STUBFUNC(vga, mem_write); } virtual void get_text_snapshot(Bit8u **text_snapshot, unsigned *txHeight, unsigned *txWidth) { STUBFUNC(vga, get_text_snapshot); } virtual void set_override(bool enabled, void *dev) { STUBFUNC(vga, set_override); } virtual void refresh_display(void *this_ptr, bool redraw) { STUBFUNC(vga, refresh_display); } }; class BOCHSAPI bx_speaker_stub_c : public bx_devmodel_c { public: virtual void beep_on(float frequency) { bx_gui->beep_on(frequency); } virtual void beep_off() { bx_gui->beep_off(); } virtual void set_line(bool level) {} }; #if BX_SUPPORT_PCI class BOCHSAPI bx_pci2isa_stub_c : public bx_pci_device_c { public: virtual void pci_set_irq (Bit8u devfunc, unsigned line, bool level) { STUBFUNC(pci2isa, pci_set_irq); } }; class BOCHSAPI bx_pci_ide_stub_c : public bx_pci_device_c { public: virtual bool bmdma_present(void) { return 0; } virtual void bmdma_start_transfer(Bit8u channel) {} virtual void bmdma_set_irq(Bit8u channel) {} }; class BOCHSAPI bx_acpi_ctrl_stub_c : public bx_pci_device_c { public: virtual void generate_smi(Bit8u value) {} }; #endif #if BX_SUPPORT_IODEBUG class BOCHSAPI bx_iodebug_stub_c : public bx_devmodel_c { public: virtual void mem_write(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, void *data) {} virtual void mem_read(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, void *data) {} }; #endif #if BX_SUPPORT_APIC class BOCHSAPI bx_ioapic_stub_c : public bx_devmodel_c { public: virtual void set_enabled(bool enabled, Bit16u base_offset) {} virtual void receive_eoi(Bit8u vector) {} virtual void set_irq_level(Bit8u int_in, bool level) {} }; #endif #if BX_SUPPORT_GAMEPORT class BOCHSAPI bx_game_stub_c : public bx_devmodel_c { public: virtual void set_enabled(bool val) { STUBFUNC(gameport, set_enabled); } }; #endif class BOCHSAPI bx_devices_c : public logfunctions { public: bx_devices_c(); ~bx_devices_c(); // Initialize the device stubs (in constructur and exit()) void init_stubs(void); // Register I/O addresses and IRQ lines. Initialize any internal // structures. init() is called only once, even if the simulator // reboots or is restarted. void init(BX_MEM_C *); // Enter reset state in response to a reset condition. // The types of reset conditions are defined in bochs.h: // power-on, hardware, or software. void reset(unsigned type); // Cleanup the devices when the simulation quits. void exit(void); void register_state(void); void after_restore_state(void); BX_MEM_C *mem; // address space associated with these devices bool register_io_read_handler(void *this_ptr, bx_read_handler_t f, Bit32u addr, const char *name, Bit8u mask); bool unregister_io_read_handler(void *this_ptr, bx_read_handler_t f, Bit32u addr, Bit8u mask); bool register_io_write_handler(void *this_ptr, bx_write_handler_t f, Bit32u addr, const char *name, Bit8u mask); bool unregister_io_write_handler(void *this_ptr, bx_write_handler_t f, Bit32u addr, Bit8u mask); bool register_io_read_handler_range(void *this_ptr, bx_read_handler_t f, Bit32u begin_addr, Bit32u end_addr, const char *name, Bit8u mask); bool register_io_write_handler_range(void *this_ptr, bx_write_handler_t f, Bit32u begin_addr, Bit32u end_addr, const char *name, Bit8u mask); bool unregister_io_read_handler_range(void *this_ptr, bx_read_handler_t f, Bit32u begin, Bit32u end, Bit8u mask); bool unregister_io_write_handler_range(void *this_ptr, bx_write_handler_t f, Bit32u begin, Bit32u end, Bit8u mask); bool register_default_io_read_handler(void *this_ptr, bx_read_handler_t f, const char *name, Bit8u mask); bool register_default_io_write_handler(void *this_ptr, bx_write_handler_t f, const char *name, Bit8u mask); bool register_irq(unsigned irq, const char *name); bool unregister_irq(unsigned irq, const char *name); Bit32u inp(Bit16u addr, unsigned io_len) BX_CPP_AttrRegparmN(2); void outp(Bit16u addr, Bit32u value, unsigned io_len) BX_CPP_AttrRegparmN(3); void register_default_keyboard(void *dev, bx_kbd_gen_scancode_t kbd_gen_scancode, bx_kbd_get_elements_t kbd_get_elements); void register_removable_keyboard(void *dev, bx_kbd_gen_scancode_t kbd_gen_scancode, bx_kbd_get_elements_t kbd_get_elements, Bit8u led_mask); void unregister_removable_keyboard(void *dev); void register_default_mouse(void *dev, bx_mouse_enq_t mouse_enq, bx_mouse_enabled_changed_t mouse_enabled_changed); void register_removable_mouse(void *dev, bx_mouse_enq_t mouse_enq, bx_mouse_enabled_changed_t mouse_enabled_changed); void unregister_removable_mouse(void *dev); void gen_scancode(Bit32u key); Bit8u kbd_get_elements(void); void release_keys(void); void paste_bytes(Bit8u *data, Bit32s length); void kbd_set_indicator(Bit8u devid, Bit8u ledid, bool state); void mouse_enabled_changed(bool enabled); void mouse_motion(int delta_x, int delta_y, int delta_z, unsigned button_state, bool absxy); void add_sound_device(void); void remove_sound_device(void); #if BX_SUPPORT_PCI Bit32u pci_get_confAddr(void) {return pci.confAddr;} Bit32u pci_get_slot_mapping(void) {return pci.map_slot_to_dev;} bool register_pci_handlers(bx_pci_device_c *device, Bit8u *devfunc, const char *name, const char *descr, Bit8u bus = 0); bool pci_set_base_mem(void *this_ptr, memory_handler_t f1, memory_handler_t f2, Bit32u *addr, Bit8u *pci_conf, unsigned size); bool pci_set_base_io(void *this_ptr, bx_read_handler_t f1, bx_write_handler_t f2, Bit32u *addr, Bit8u *pci_conf, unsigned size, const Bit8u *iomask, const char *name); #endif bool is_agp_present(); static void timer_handler(void *); void timer(void); bx_cmos_stub_c *pluginCmosDevice; bx_dma_stub_c *pluginDmaDevice; bx_hard_drive_stub_c *pluginHardDrive; bx_pic_stub_c *pluginPicDevice; bx_pit_stub_c *pluginPitDevice; bx_speaker_stub_c *pluginSpeaker; bx_vga_stub_c *pluginVgaDevice; #if BX_SUPPORT_IODEBUG bx_iodebug_stub_c *pluginIODebug; #endif #if BX_SUPPORT_APIC bx_ioapic_stub_c *pluginIOAPIC; #endif #if BX_SUPPORT_GAMEPORT bx_game_stub_c *pluginGameport; #endif #if BX_SUPPORT_PCI bx_pci2isa_stub_c *pluginPci2IsaBridge; bx_pci_ide_stub_c *pluginPciIdeController; bx_acpi_ctrl_stub_c *pluginACPIController; #endif // stub classes that the pointers (above) can point to until a plugin is // loaded bx_cmos_stub_c stubCmos; bx_dma_stub_c stubDma; bx_hard_drive_stub_c stubHardDrive; bx_pic_stub_c stubPic; bx_pit_stub_c stubPit; bx_speaker_stub_c stubSpeaker; bx_vga_stub_c stubVga; #if BX_SUPPORT_IODEBUG bx_iodebug_stub_c stubIODebug; #endif #if BX_SUPPORT_APIC bx_ioapic_stub_c stubIOAPIC; #endif #if BX_SUPPORT_GAMEPORT bx_game_stub_c stubGameport; #endif #if BX_SUPPORT_PCI bx_pci2isa_stub_c stubPci2Isa; bx_pci_ide_stub_c stubPciIde; bx_acpi_ctrl_stub_c stubACPIController; #endif // Some info to pass to devices which can handled bulk IO. This allows // the interface to remain the same for IO devices which can't handle // bulk IO. We should probably implement special INPBulk() and OUTBulk() // functions which stick these values in the bx_devices_c class, and // then call the normal functions rather than having gross globals // variables. Bit8u* bulkIOHostAddr; unsigned bulkIOQuantumsRequested; unsigned bulkIOQuantumsTransferred; private: struct io_handler_struct { struct io_handler_struct *next; struct io_handler_struct *prev; void *funct; // C++ type checking is great, but annoying void *this_ptr; char *handler_name; // name of device int usage_count; Bit8u mask; // io_len mask }; struct io_handler_struct io_read_handlers; struct io_handler_struct io_write_handlers; #define PORTS 0x10000 struct io_handler_struct **read_port_to_handler; struct io_handler_struct **write_port_to_handler; // more for informative purposes, the names of the devices which // are use each of the IRQ 0..15 lines are stored here char *irq_handler_name[BX_MAX_IRQS]; static Bit32u read_handler(void *this_ptr, Bit32u address, unsigned io_len); static void write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len); BX_DEV_SMF Bit32u read(Bit32u address, unsigned io_len); BX_DEV_SMF void write(Bit32u address, Bit32u value, unsigned io_len); static Bit32u default_read_handler(void *this_ptr, Bit32u address, unsigned io_len); static void default_write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len); // runtime options / paste feature static Bit64s param_handler(bx_param_c *param, bool set, Bit64s val); void paste_delay_changed(Bit32u value); void service_paste_buf(); bool mouse_captured; // host mouse capture enabled Bit8u mouse_type; struct { void *dev; bx_mouse_enq_t enq_event; bx_mouse_enabled_changed_t enabled_changed; } bx_mouse[2]; struct { void *dev; bx_kbd_gen_scancode_t gen_scancode; bx_kbd_get_elements_t get_elements; Bit8u led_mask; bool bxkey_state[BX_KEY_NBKEYS]; } bx_keyboard[2]; // The paste buffer does NOT exist in the hardware. It is a bochs // construction that allows the user to "paste" arbitrary length sequences of // keystrokes into the emulated machine. Since the hardware buffer is only // 16 bytes, a very small amount of data can be added to the hardware buffer // at a time. The paste buffer keeps track of the bytes that have not yet // been pasted. // // Lifetime of a paste buffer: The paste data comes from the system // clipboard, which must be accessed using platform independent code in the // gui. Because every gui has its own way of managing the clipboard memory // (in X windows, you're supposed to call Xfree for example), in the platform // specific code we make a copy of the clipboard buffer with // "new Bit8u[length]". Then the pointer is passed into // bx_device_c::paste_bytes, along with the length. The gui code never touches // the pastebuf again, and does not free it. The devices code is // responsible for deallocating the paste buffer using delete [] buf. The // paste buffer is binary data, and it is probably NOT null terminated. // // Summary: A paste buffer is allocated (new) in the platform-specific gui // code, passed to the devices code, and is freed (delete[]) when it is no // longer needed. struct { Bit8u *buf; // ptr to bytes to be pasted, or NULL if none in progress Bit32u buf_len; // length of pastebuf Bit32u buf_ptr; // ptr to next byte to be added to hw buffer Bit32u delay; // number of timer events before paste Bit32u counter; // count before paste bool service; // set to 1 when gen_scancode() is called from paste service bool stop; // stop the current paste operation on keypress or hardware reset } paste; struct { bool enabled; #if BX_SUPPORT_PCI Bit32u advopts; Bit8u handler_id[0x101]; // 256 PCI devices/functions + 1 AGP device struct { bx_pci_device_c *handler; } pci_handler[BX_MAX_PCI_DEVICES]; unsigned num_pci_handlers; Bit8u map_slot_to_dev; bool slot_used[BX_N_PCI_SLOTS]; Bit32u confAddr; #endif } pci; int timer_handle; int statusbar_id[3]; Bit8u sound_device_count; bool is_harddrv_enabled(); }; // memory stub has an assumption that there are no memory accesses splitting 4K page BX_CPP_INLINE void DEV_MEM_READ_PHYSICAL(bx_phy_address phy_addr, unsigned len, Bit8u *ptr) { unsigned remainingInPage = 0x1000 - (phy_addr & 0xfff); if (len <= remainingInPage) { BX_MEM(0)->readPhysicalPage(NULL, phy_addr, len, ptr); } else { BX_MEM(0)->readPhysicalPage(NULL, phy_addr, remainingInPage, ptr); ptr += remainingInPage; phy_addr += remainingInPage; len -= remainingInPage; BX_MEM(0)->readPhysicalPage(NULL, phy_addr, len, ptr); } } BX_CPP_INLINE void DEV_MEM_READ_PHYSICAL_DMA(bx_phy_address phy_addr, unsigned len, Bit8u *ptr) { while(len > 0) { unsigned remainingInPage = 0x1000 - (phy_addr & 0xfff); if (len < remainingInPage) remainingInPage = len; BX_MEM(0)->dmaReadPhysicalPage(phy_addr, remainingInPage, ptr); ptr += remainingInPage; phy_addr += remainingInPage; len -= remainingInPage; } } // memory stub has an assumption that there are no memory accesses splitting 4K page BX_CPP_INLINE void DEV_MEM_WRITE_PHYSICAL(bx_phy_address phy_addr, unsigned len, Bit8u *ptr) { unsigned remainingInPage = 0x1000 - (phy_addr & 0xfff); if (len <= remainingInPage) { BX_MEM(0)->writePhysicalPage(NULL, phy_addr, len, ptr); } else { BX_MEM(0)->writePhysicalPage(NULL, phy_addr, remainingInPage, ptr); ptr += remainingInPage; phy_addr += remainingInPage; len -= remainingInPage; BX_MEM(0)->writePhysicalPage(NULL, phy_addr, len, ptr); } } BX_CPP_INLINE void DEV_MEM_WRITE_PHYSICAL_DMA(bx_phy_address phy_addr, unsigned len, Bit8u *ptr) { while(len > 0) { unsigned remainingInPage = 0x1000 - (phy_addr & 0xfff); if (len < remainingInPage) remainingInPage = len; BX_MEM(0)->dmaWritePhysicalPage(phy_addr, remainingInPage, ptr); ptr += remainingInPage; phy_addr += remainingInPage; len -= remainingInPage; } } BOCHSAPI extern bx_devices_c bx_devices; #endif /* IODEV_H */